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Abstract

Background: The incorporation of statistical models that account for experimental variability
provides a necessary framework for the interpretation of microarray data. A robust experimental
design coupled with an analysis of variance (ANOVA) incorporating a model that accounts for
known sources of experimental variability can significantly improve the determination of
differences in gene expression and estimations of their significance.

Results: To realize the full benefits of performing analysis of variance on microarray data we have
developed CARMA, a microarray analysis platform that reads data files generated by most
microarray image processing software packages, performs ANOVA using a user-defined linear
model, and produces easily interpretable graphical and numeric results. No pre-processing of the
data is required and user-specified parameters control most aspects of the analysis including
statistical significance criterion. The software also performs location and intensity dependent
lowess normalization, automatic outlier detection and removal, and accommodates missing data.

Conclusion: CARMA provides a clear quantitative and statistical characterization of each
measured gene that can be used to assess marginally acceptable measures and improve confidence
in the interpretation of microarray results. Overall, applying CARMA to microarray datasets
incorporating repeated measures effectively reduces the number of gene incorrectly identified as
differentially expressed and results in a more robust and reliable analysis.

Background

High-density microarrays[1,2], in combination with high-
throughput sequencing efforts|3,4], are proving invalua-
ble in the investigation of complex systems. Researchers,
however, struggle with the challenges associated with ana-
lyzing and interpreting the enormous amounts of data
generated by microarray experiments. While initial analy-

sis techniques focused on individual hybridizations and
selected differentially expressed genes based on the ratio
of the measured levels of gene expression between two
samples|5], the results of any single microarray hybridiza-
tion is subject to substantial variability[6], and conse-
quently are unreliable. Therefore, as with any biological
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Hybridization scheme for 6 samples where all samples are
hybridized against a reference sample. B Interwoven loop
hybridization scheme for the aquaporin-1 knockout experi-
ment used in this study, where W1-W3 and KOI-KO3
denote each of the wild type and aquaporin-| deficient mice
respectively. Each arrow in both schemes represents one
hybridization, with the tail of the arrow denoting labeling
with the Alexa 546 dye and the head of the arrow denoting
labeling with the Alexa 647 dye.

assay, robust microarray experiments rely on replica-
tion[7].

Kerr et al. 8] first described the use of analysis of variance
(ANOVA) in combination with optimal experimental
designs incorporating replicate measures, for microarrays.
This technique uses a basic additive linear model to
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account for known sources of variability, thereby improv-
ing estimates of differences in gene expression and provid-
ing a measure of confidence for those estimates. Others
have expanded these techniques to incorporate mixed
models[9], multi-factorial designs[10], and biological
replication strategies[11]. In addition, advancements in
data  transformation  [12-14] and  normaliza-
tion[13,15,16] have improved the quality of the data to
which subsequent analyses are applied.

In an effort to apply many of these powerful statistical
techniques to our microarray datasets, we have developed
an analysis platform with supporting software named
CARMA (Computational Analysis of Replicate Measures
for Arrays). In addition to performing ANOVA on micro-
array datasets that incorporate replication, CARMA also
performs all of the necessary steps for calculating differen-
tial expression in a microarray data set including import-
ing, transforming, and normalizing the raw data files. The
analysis is designed to be easy to apply, require only a
basic understanding of the underlying principles, and pro-
vides output in both an easy to interpret graphical format
and a delimited text file. Each step in the process was cho-
sen for its broad applicability to microarray data, with
user-defined parameters tailoring the analysis to each
experiment. To demonstrate the utility of our approach,
we present an example analysis of a microarray experi-
ment designed to characterize gene expression in an
aquaporin-1 knockout mouse model.

Implementation

CARMA was implemented using the R programming lan-
guage and environment[17] because of its "wide variety of
statistical (linear and nonlinear modeling, classical statis-
tical tests, time-series analysis, classification, clustering,
etc) and graphical techniques". In addition R is available
at no cost and runs on a variety of computing platforms.
Under CARMA, analysis begins with data files and user-
defined parameters being read from delimited files. Nor-
malization between the two channels of each array and
between both channels of all arrays is achieved using the
loess function, which was chosen because of its ability to
perform simultaneous location and intensity dependent
lowess normalization. ANOVA is implemented using the
aov function utilizing partitioned error for replicates, or
the Ime function for more complicated models, including
mixed models. Graphical output and delimited text files
are generated to present the results of the normalization,
analysis of variance, and the ANOVA contrasts. CARMA is
available as an R package for Microsoft Windows [Addi-
tional file 2], and as an R source file [Additional file 3]. A
user manual is also available [Additional file 1].
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Results and discussion

Example dataset

The microarray dataset used for this manuscript contains
measurements of gene expression in kidneys from adult
aquaporin-1 knockout and wild type mice[18] (GEO
Accession GSE2402) [additional files 4, 5, 6, 7, 8]. In
brief, RNA from kidney medullae of three aquaporin-1
knockout mice and three wild type mice was reverse-tran-
scribed incorporating an amino modified dUTP, labeled
using Alexa Fluor 546 and 647 ester dyes, and hybridized
to a custom microarray containing the NIA Mouse 15 K
cDNA clone set[19] with each clone printed in duplicate.
Slides were scanned using an Applied Precision array-
WoRx Biochip Reader and image analysis was accom-
plished using softWoRx Tracker software. Because this
experiment is balanced for both mouse (each mouse sam-
ple is hybridized twice with each dye) and genotype (3
mice of each genotype were used), it was possible to per-
form two different analyses; one to determine differences
in gene expression between mice and the other to deter-
mine differences in gene expression between the
aquaporin-1 knockout and wild type groups. The results
of the comparison between the aquaporin-1 knockout
and wild type groups have been reported previously [18],
therefore this paper presents the comparison of gene
expression between individual mice in order to demon-
strate the functionality of CARMA.

Experimental design

Successful microarray data analysis depends on a sound
experimental design. The most common approach con-
sists of all samples of interest being hybridized against a
common reference sample (with or without swapping the
dyes) (Figure 1). While this approach is useful for experi-
ments with large numbers of samples, or cases where all
samples are not available at one time, it is usually possible
to implement a more efficient design. In the "Interwoven
Loop" design[20] employed in the aquaporin-1 knockout
experiment (Figure 1), samples are hybridized against
each other, thus providing twice as much data for the sam-
ples of interest than the reference design for the same
number of hybridizations. Applying this balanced design,
in which each variable of interest participates in the same
number of hybridizations, enables the calculation of both
experimental and biological effects.

Analysis of variance (ANOVA) and linear model

In the simplest sense, microarray data is the measured
intensities, at defined wavelengths, of elements (or
"spots"), which have been arrayed on a glass slide.
Included in these measurements are numerous sources of
variability. Given that a two-channel microarray experi-
ment consists of multiple samples labeled with two dyes
hybridized to multiple arrays containing multiple spots
(that represent genes), there are four main sources of var-
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iability termed: Array, Dye, Gene, and Variety[8]. The
Array term refers to the variability in the measured inten-
sities associated with a specific hybridization, due to
either variability between slides, variability between
hybridizations (e.g. differences in the amount of cDNA
used in each hybridization), or both. The Dye term refers
to variability caused by differences in fluorochrome
chemistry, coefficient of extinction, incorporation effi-
ciency, photobleachability, scanner sensitivity, etc. The
Gene term refers to each element (or replicate elements)
on the microarray. Since each element will hybridize to its
complementary sequence in each sample, the intensity of
each spot will depend on its nucleotide sequence, which
is considered unique. The Variety term refers to the distin-
guishing feature of interest (such as time, treatment, or
dosage) in the experimental samples. The goal of most
microarray experiments is to determine the effect of this
Variety term on the measured intensity for each element.
In other words, how does dosage (or time, treatment, gen-
otype, etc.) affect the expression of each gene?

Based on the four main effects (Array, Dye, Gene, Variety)
and allowing for all interactions between those effects,
there are 16 possible terms that could be included in the
model[20], however many of the interaction effects do
not make practical sense. In addition, performing a log-
based transformation (see later sections) on the microar-
ray dataset before applying the linear model allows the
use of an additive linear model. Equation 1.1 describes
the collection of mathematical equations that can be used
to calculate values for each of the known factors that con-
tribute to the transformed measured intensities:

iijkl =+ A+ Dj+ G+ (AD)ij+ (GA) i + (GD)ijf (GV)y+ €
i (1.1)

Equation 1.1 defines a relatively complete model for the
sources of variability in a microarray experiment; however
there are practical limitations to its implementation. Uti-
lizing a least squares approach to solve equation 1.1, even
for reasonably small microarray datasets (e.g. 4 hybridiza-
tion of a 10,000 element array), requires gigabytes of
memory, precluding the use of a personal computer. In
addition, it assumes equal variance between all genes.
Splitting equation 1.1 into two equations, one containing
all Gene independent terms, and another equation con-
taining all gene-dependent terms, yields equations 1.2
and 1.3 respectively:

ij=u+A;+ Dj+AD;+ ¢;; (1.2)
i = G+ GA + (GD)y+ (GV) it &5y (1.3)
Applying these two models sequentially[9] to a dataset

significantly reduces the memory requirements and time
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required for computation, and allows for gene specific
variances. When using these two models, equation 1.2
effectively serves to perform a linear global normalization
between the two channels for each array and between
arrays. Instead, because only the Gene x Variety effect is
usually of interest, and in order to allow for non-linear
global normalization, CARMA performs a lowess normal-
ization between the two channels of each array and
between both channels of all arrays, followed by a gene-
by-gene ANOVA implementing equation 1.3 alone. Lim-
iting equation 1.3 to the subset of data for each gene
yields equation 1.4:

iijig = G+ GAyg + GBlyj + GV + &g = iy = L+ A +Dj +V + gy (14)

Implementing this form of the equation reduces compu-
tation times to a few hours on a basic personal computer
(500 MHz Pentium III with 512 MB of memory) for even
relatively large data sets (e.g. an experiment involving
32,000 elements and 12 hybridization).

Background subtraction and transformation

Most microarray scanners generate 16 bit numbers, result-
ing in measurements ranging from 0 to 65,535 for each
pixel in the generated images. Microarray image process-
ing software is then used to analyze each image, generat-
ing a multitude of measures for each spot, which are
usually further processed to produce one measure of
intensity for each channel for each spot. The most contro-
versial part of this process is whether to subtract some
measure of background (defined as the pixels around the
areas delineated as spots) from each spot (defined as the
pixels within each area delineated as a spot). Background
subtraction is often used to reduce the negative impact of
local image artifacts, and provide better estimates of gene
expression by subtracting fluorescent signal that is unre-
lated to the fluorescently labeled hybridized target cDNA.
Nevertheless, some researchers have concluded that back-
ground subtraction increases variance and degrades the
performance of subsequent analyses[21]. In most cases,
however, this increase in variance is not simply due to
background subtraction, but the combination of back-
ground subtraction and a log-based transformation of the
data. In effect, subtracting the background intensities
from the spot intensities reduces the values for low inten-
sity measurements to the point that error is no longer
multiplicative, but additive, causing a log-based transfor-
mation to inflate the variance of these small values. In
other words, the measurement error associated with small
values is not proportional to the true value, but is a com-
bination of some random error added to the true value.
For instance, a log base 2 transformation assigns the same
significance to the difference between 2 and 32 (log,(32)
- log,(2) = 4) as the difference between 2000 and 32000
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(log,(32000) - 1log,(2000) = 4), even though a difference
of 32 is well within the noise of current microarray scan-
ning technology and of no real significance.

The logarithm base 2 of the expression ratio is the most
widely used transformation for microarray data due to its
continuous range of values and similar treatment of up-
and down-regulation[22]. It has the added effects of
improving linearity and variance homogeneity, and con-
verting multiplicative error into additive error, thus allow-
ing the application of a linear additive model|8]. While
log transformations work well for moderate to high signal
intensities, they have the undesirable effect of magnifying
small differences in intensity at low signal intensities[23].
In addition, log transformations cannot be applied to neg-
ative numbers, which can result from background subtrac-
tion, and they transform numbers between 0 and 1 into
negative values. To address these problems some research-
ers have proposed discarding data below a threshold[24],
while others have proposed variance-stabilizing transfor-
mations [12-14]. CARMA implements a version of the lin-
log transformation[13] that has been adapted to better
cope with large negative numbers (where the local back-
ground signal intensity is significantly higher than the
spot signal intensity) as follows.

log,(=1/Yy,)+2*log,(d;)—2/In(2) Yy <—d;
Zyp =qlogy(di)+ Yy, /(d; *In(2))-1/In(2)  —d; <Yy <d;
log, (Yi.) Yy, 2 d;

where Z;, represents the transformed intensities, Y;; repre-
sents the untransformed intensities, and d; represents the
threshold between the log and linear portions of the trans-
formation. The subscripts i and k denote the array and ele-
ment (spot) for each intensity, respectively. This modified
linlog transformation is symmetrical around O (raw sig-
nal) and both it and its first derivative are continuous. It
is similar to a log, transformation for both large positive
and large negative intensities, and a linear transformation
at low intensities (positive or negative). For the example
analysis in this manuscript, the crossover point (d;)
between the linear and log portions of the transformation
was calculated based on the median of one standard devi-
ation of the local background of all spots. This method of
calculating the cutoff for the linlog function was based on
the observation that the variability in the measured inten-
sities at background levels provides a good indication of
the minimum intensity that the scanner can accurately
measure (the point at which error becomes multiplica-
tive). This approach has worked well in practice, and has
the advantage of not assuming any distribution for the
data. Recently CARMA has been enhanced to include the
capability of calculating the linlog crossover point based
on minimizing the absolute deviation of the inner quar-
tile range (IQR) for each bin from the median IQR, for 20
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Plot of the pre-normalized data, channel one (green) vs. channel 2 (red), for one hybridization in the aquaporin-1 dataset after
applying A log2 transformation without background subtraction or B linlog transformation without background subtraction or
C log2 transformation after background subtraction or D linlog transformation after background subtraction.

bins spanning the range of intensities for each hybridiza-
tion.

Utilizing the aquaporin-1 dataset, we compared the effect
of local background versus no background subtraction,
and the consequences of applying either a log, or linlog
transformation, on the ability to detect differentially
expressed genes. Because this dataset consists of four rep-
licate measurements for 6 mice, one success criterion is
minimizing the within mouse variance while maximizing
the between mouse variance[25], which equates to maxi-
mizing the ANOVA F value for the Variety (mouse) term,
in equation 1.4. In the case of log, background subtracted
data, values less than 1 were set to 1, and in the case of the
linlog transformation, the crossover point between the
linear and logarithmic segments was set to the median of
one standard deviation of the background for all spots.

Figure 2 illustrates the effect of each background subtrac-
tion/transformation method on one of the hybridizations
in the dataset. The most obvious change due to back-
ground subtraction is the expansion of the range of the
data resulting from the removal of the relatively large sig-
nal floor associated with the longer exposure times and
CCD-based image capture employed in the Applied Preci-
sion arrayWoRx Biochip Reader. This large signal floor
also negates any difference between the log, and linlog
transformation on the non-background subtracted data
because error remains multiplicative across the entire
range of values. The difference in transformation applied
to the background subtracted data however, is obvious as
indicated by the larger spread of the lower range of the
log, transformed data as compared to the linlog trans-
formed data. Table 1 presents a summary quantitative
comparison of the effect of each transformation on the
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Table I: Comparison of background and transformation techniques
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Number of Genes
Linlog Transformed

Background Subtracted Background Subtracted
Log2 Transformed

Non-Background
Subtracted Log2

Non-Background
Subtracted Linlog

Transformed Transformed
10 778 375 565 565
100 3091 1464 2087 2087
1000 7084 3565 5019 5019

The sum of the gene Variety term ANOVA F values for the first 10, 100, or 1000 genes ranked by Variety term ANOVA F value. Larger numbers
represent higher ratios of the between mouse variance over the within mouse variance.

ratio of the between group mean squares over the within
group mean squares after location and intensity depend-
ent lowess normalization and gene-by-gene analysis of
variance. On a row-by-row basis after ranking, the
ANOVA F values for the linlog transformed local back-
ground subtracted data were larger than any of the other
combinations of background subtraction and transforma-
tion, for every element in the dataset. Also, applying a
step-up p-value procedure[26] to the ANOVA p-value con-
trolling at a 5% false discovery rate resulted in 8 genes
being identified as differentially expressed for both of the
non-background subtracted datasets, and 22 and 129
genes being identified as differentially expressed for the
log, transformed and linlog transformed background sub-
tracted data, respectively.

Normalization

Differences in fluorochrome characteristics, scanner wave-
length sensitivities and settings, dye incorporation, and
other non-biological effects all contribute to differences in
the intensities between the two channels of any hybridiza-
tion. And while global normalization techniques apply
the same adjustment to every spot for a hybridization[22],
it is often necessary to correct for intensity and location
specific effects|13,15,27-29]. CARMA implements a
locally weighted regression (lowess)[15,16] transforma-
tion that can adjust for either intensity or location (or
both) dependent effects. In addition, CARMA normalizes
between both channels of all arrays, serving to minimize
the Array term in the linear model and aiding in the visu-
alization of the normalized data.

Figure 3 displays the data for one of the hybridizations in
the aquaporin-1 dataset, both before and after normaliza-
tion. As is common with two dye hybridizations, pre-nor-
malized data shows curvature of the data at lower
intensities (Figure 3A). Following lowess normalization
for both intensity and position on the array, the curvature
(intensity bias) of the plotted data is removed and the dis-
tribution of the data is narrowed (spatial bias) as com-
pared to the pre-normalized data (Figure 3D). Our
observations indicate that the location dependent effect is
due to spatial hybridization variability and spatial scan-
ning biases often caused by photo bleaching. In practice,

the location of an element on the array can play a signifi-
cant role in normalization, particularly with epifluores-
cence-based scanners (unpublished observation), and can
vary by as much as a factor of 2 from one end of the slide
to the other (Figure 3E). The extent to which location
affects the intensity measurements is specific to each
hybridization and scanning process.

Variance shrinking

Microarray datasets usually contain thousands of ele-
ments, each representing one gene, but only a few meas-
urements for each element. Whereas performing a global
ANOVA on the entire dataset assumes equal variance
within the data for each gene, it is generally accepted that
independent analysis of the subset of data for each gene
does not utilize sufficient data to determine an adequate
representation of the variance associated with each gene.
On the other hand, the major consequence of performing
a gene-by-gene ANOVA is the overestimation of the signif-
icance of the calculated differences in expression for genes
with abnormally small variances, and the underestima-
tion of the significance of the calculated differences in
expression for genes with abnormally large variances.
Researchers have addressed these issues by including
information from all genes on the array when assessing
the significance of differences in expression for each gene
[30-34]. CARMA calculates four variances and associated
p-values for each gene[35]: gene specific variance, pooled
variance (average for all genes), half of the gene and half
of the pooled variance, and an estimator based on the
James-Stein-Lindley shrinkage concept|36] that uses a for-
mula to calculate the variance based on both the gene and
pooled variances.

Data filtering and outlier detection

Given that the samples hybridized to most large microar-
rays will contain transcripts for only a subset of the genes
represented on the microarray, removing spots that
exhibit low intensities for all samples can both reduce the
number of genes incorrectly identified as differentially
expressed between samples and decrease the computing
time required for subsequent analyses. As implemented in
CARMA, the ANOVA is usually (based on typical user set-
tings) performed on only those genes that have back-
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Normalization of a two-channel hybridization. A The linlog transformed data before normalization plotted as channel | (Alexa
546 dye) versus channel 2 (Alexa 647 dye) intensities. B,C Ratio-Intensity plot before (B) and after (C) spatial and intensity
lowess normalization. "M" refers to the log ratio of the two channels and "A" refers to the geometric mean of the spot inten-
sity for both channels. The blue line in B is the spatial/intensity lowess normalization fitted curve, with the curvature of the line
representing the intensity-dependent fit and the width of the line representing the spatial component of the lowess normaliza-
tion. D The final normalized data used for the ANOVA. E A plot of the correction factors, by array position, used to normalize
intensities due to spatial effects only. Shown are the amount adjusted for each of the 650 elements in the 12 % 4 subarrays (in
the X and Y directions, respectively) of the mouse cDNA microarray used in the study. A location depended effect can be
observed as a general increase over the length of the slide (bottom to top) and a dip near the center of the slide.

Page 7 of 13

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:149 http://www.biomedcentral.com/1471-2105/7/149

3085 - Mus musculus plasminogen activator, tissue (Plat), mRNA
Effect vs Variety Intensity vs Variety

-] A -1 B

«4'-_ “ ] £

g:. I %m 8 2

= T - a N ot

§ I { = e

2]

awT3 KO1 KO2 KO3 awT3 KO1 Ko2 KO3

Varlety Varlety

Intensity vs Array Normal Q-Q Plot Cook’s Distance Plot

06

o : o

0.25
1

0.2
1

Intensity
8
1
Sampie Quantlies
04 2
Cock's Distance
0.15
1

0.10

6
1
=
-06
1
0.05
1

o a 1
o 8 o

5
1
8

> ~ -] L
T T T T T T T L T T T T T T T T T T T T T T
10 11 12 -2 -1 Q 1 2 VawT1  VawT2  vawTi  VKO1 VKO2 VKO3

000

Thacratical Quantiles

Va =0.004769

Array wvarlaty

Flagged as: F111

Figure 4

Results of ANOVA for the Mus Musculus Plat gene. In panels B-E of this figure the color of the plotted data points represents
the fluorochrome that was used to label the sample (green = Alexa 546, Red = Alexa 647). A Graphical display of the Variety
term estimate and standard error for the relative Plat gene expression for mice WT2, WT3, KOI, KO2, KO3 referenced to
WTI (the a in front of WTI, WT2 and WT3 is simply a label marker). Solid lines represent the final estimates after removal of
outliers, while the dashed lines represent estimates before removal of outliers. The Dye2 (Alexa 647) effect and its standard
error are also shown. B, C Transformed and normalized intensities plotted by sample (B) or hybridization (C). Colored cir-
cles (confident) and triangles (below user defined confidence threshold) represent the normalized measured intensities for
each element (i.e. spot), and dashes represent the calculated intensities from the ANOVA model. An x denotes a point that
was identified as an outlier. D A normal Q-Q plot for all data providing an indicator of the normality of the residuals. E The
Cook's distance plot illustrating the influence of each data point on the fit of the model.

ground subtracted intensities greater than 1 or 2
background standard deviations for at least 51% of the
measurements for at least one sample in the hybridization
scheme. Furthermore, in the case of microarrays with rep-
licate elements, usually at least 51% of the replicates must
have background subtracted intensities greater than 1 or 2
background standard deviations in order for any of the
replicates to be included in the ANOVA. In other words,

the ANOVA is only performed on genes that are consist-
ently expressed at measurable levels in at least one of the
samples.

CARMA also has the capability to remove anomalous
measurements through outlier detection. Dust, impuri-
ties, surface inhomogeneities, fluorochrome-specific
effects, local hybridization effects, technician effects, etc.
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all contribute to non-systematic variability in the meas-
ured intensities. Anomalous measurements can be identi-
fied by their incongruity with other measurements within
a hybridization and through inconsistencies between rep-
licated measures[22,27]. Following the ANOVA of the
normalized data for a gene, CARMA applies the following
formula to identify outliers:

14> |quantile((OP/2)/n, df -1)|

Where r,; = studentized residual of the ith element, OP =
user defined outlier probability, n = the number of meas-
urements, and df = degrees of freedom. ANOVA is per-
formed recursively, removing the most extreme outlier
after each step, until all outliers (which meet the criteria
above) have been removed. The results of both the origi-
nal ANOVA (using all data points), and the last ANOVA,
performed on the dataset with all outliers removed, are
shown in the graphical output (Figure 4A).

Missing data

Most microarray hybridizations will have regions that are
obviously problematic. While it may not be worthwhile to
flag small abnormalities such as fine dust particles, large
abnormalities should be flagged for exclusion from anal-
ysis. Missing data, whether flagged manually, filtered out,
removed through outlier detection, or unavailable
because of a failed hybridization may result in some
experimental imbalance. This imbalance, however, is less
problematic than including erroneous data. Therefore,
CARMA utilizes functions that can accommodate missing
data, to apply the linear model and perform the ANOVA.

Output and display

Any analysis is only as good as its ability to portray rele-
vant information to the researcher. In addition to generat-
ing tab delimited output files, CARMA creates an Adobe
Portable Document Format (pdf) file containing easy to
interpret graphical output (Figure 4) including an esti-
mate, and its standard error, for each level (possible
value) of the Variety effect, as well as plots of the normal-
ized data and other statistical quality control information.
This graphical output allows the researcher to refine and
prioritize the list of differentially expressed genes by help-
ing to identify cases of non-normality, outliers, unex-
pected patterns, etc. Visualizing the normalized data and
the results of the ANOVA also helps to identify and correct
cases of mislabeled samples and misaligned grids. All of
the numbers used and generated by the ANOVA, and a file
containing the contrasts between all pair-wise combina-
tions of the levels of the Variety effect are also provided in
delimited text files.

http://www.biomedcentral.com/1471-2105/7/149

Conclusion

Microarray experiments are intended to determine relative
differences in gene expression between various treatments
or conditions. As with nearly all experiments, and exacer-
bated by the number of measures obtained from microar-
ray hybridizations, experimental noise can confound
measurements and lead to the incorrect identification of
random variations as significant differences in gene
expression. We have employed a generalized approach
and developed supporting software (CARMA) for per-
forming ANOVA on microarray datasets that is easy to
implement, generates readily interpretable graphical
results, and accounts for experimental sources of variabil-
ity. Applying ANOVA to microarray datasets incorporat-
ing replicated measures improves estimates of differences
in gene expression between samples and provides a statis-
tical basis for determining the significance of these differ-
ences. Also, because each sample is involved in multiple
hybridizations, it is possible to identify and remove
incongruous data points that are caused by dust particles,
local background, etc, as well as allow for missing data
caused by occasional failed or abnormal hybridizations.
CARMA provides a clear quantitative and statistical char-
acterization of each measured element on the microarray
that can be used to assess marginally acceptable measures
and improve confidence in the interpretation of microar-
ray results. Overall, applying CARMA to microarray data-
sets incorporating replicated measures effectively reduces
the number of gene incorrectly identified as differentially
expressed and results in a more robust and reliable analy-
sis.

In some situations it is advantageous to study the effects
of more than one Variety on gene expression. For exam-
ple, in gene knockout studies both genotype and treat-
ment dependent effects may be important. Also, in cases
where subjects are exposed to multiple treatments,
accounting for individual-specific effects may expose dif-
ferences in gene expression due to treatment that might
otherwise be obscured. In these cases equation 1.4 can be
modified to include terms for each of the varieties of inter-
est. For example, the following model could be used to
examine the effects of genotype (V1), drug treatment (V2),
and the interaction between genotype and drug treatment
(V1v2):

T = H+Aj+ D+ V1 + V2, + VIV, +e 5, (1.5)
Theoretically equation 1.5 could be expanded to include
any number of varieties, however because of an exponen-
tial increase in the number of hybridization that must be
performed most researchers limit their experiments to
studying a maximum of two varieties.
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Implementation of CARMA depends on a few assump-
tions. First, the lowess normalization assumes that the
expression levels for the majority of genes in each sample
are the same. While this is usually the case, even under
conditions where the expression levels of the majority of
genes are affected, lowess normalization produces the
desired result of adjusting the dataset such that genes that
behave dissimilarly from the majority are more likely to
be identified as differentially expressed. Second, when
determining the significance of differences in gene expres-
sion between samples, it is assumed that the data is nor-
mally distributed after the application of the linear model.
We make this assumption in order to utilize the readily
available R packages that perform ANOVA and their supe-
rior computational efficiency over non-parametric
approaches. Lastly, in order to apply the ANOVA to each
gene individually, it is assumed that after transformation
and normalization each gene is independent of the other
genes on each array. Theoretically, because each element
(gene) is on every array there is not complete independ-
ence between genes, however we chose to implement the
ANOVA on each gene independently in order to allow
genes to have dissimilar variances, and to efficiently
implement the ANOVA.

Background subtraction has been criticized for inflating
the variance of microarray datasets, but this increased var-
iability is almost always limited to elements that exhibit
low intensity measures. This increased variability is not
simply due to the smaller numbers, but rather the meth-
ods by which these numbers are measured and trans-
formed. Both photomultiplier tubes (PMT) and charge-
coupled devices (CCD) cannot accurately distinguish
small differences in intensity. Therefore the assumption
that error is multiplicative for these values is inaccurate
and thus the application of a basic log-based transforma-
tion is inappropriate. The commonly seen flaring of the
data at lower intensities, in either a simple green channel
vs. red channel or a ratio-intensity plot, is not usually an
indication of the inappropriate application of background
subtraction, but rather an inappropriate transformation.
In addition, not removing the relatively large uniform
background associated with some datasets, such as those
generated by CCD based scanners, can completely
obscure the magnitude of any differences in gene expres-
sion. As illustrated by this dataset, different approaches to
background subtraction and transformation can have a
significant effect on the identification of differentially
expressed genes. In fact, at most only 25 % the top 100
genes were shared between the background subtracted
and non-background subtracted results.

Many statisticians are hesitant to remove outliers based
solely on statistical criteria. In the case of microarray data-
sets, however, we know that there are invalid measure-
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ments in every dataset; yet it is often impractical to
manually flag each instance. CARMA not only automati-
cally detects and removes outliers, but also provides sup-
porting graphs to assist in the final determination of the
validity of the measurements that were removed. For
example, in Figure 4, panels B and C, the green 'x' that
indicates one of the excluded outliers is clearly separated
from the rest of the measures (the corresponding red
measurement is also excluded). Of course the researcher
can also investigate each spot on the images from which
the measurements were derived to further authenticate
measurements flagged as outliers, or turn off outlier detec-
tion altogether if so desired. In addition to removing spo-
radic anomalous measurements, outlier detection has
proven invaluable for detecting mislabeled samples and
misaligned grids. In these cases, without outlier detection,
all or a part of a microarray dataset is often labeled as too
variable and of little value. A quick inspection of CARMA's
graphical output reveals these problems as a series of
genes for which the same hybridization's values were
dropped as outliers, providing not only an indication that
there is a problem, but also the exact hybridization that is
the cause of the problem.

Because of the balanced design of this experiment we were
able to assess the affects of inter-individual variability in
the aquaporin-1 knockout vs. wildtype microarray data-
set. The fact that 3% (129 out of 4361) of the confidently
measured genes were identified as differentially expressed
between mice of the same genotype highlights the signifi-
cant amount of variability in gene expression between
even genetically similar mice. This finding corroborates
the results of an earlier study[37], underscoring the need
for including biological replicates in any study, especially
those addressing gene expression and molecular activities.

CARMA was designed to be an integrated, easy to use,
analysis platform that researchers can apply to their
microarray datasets without preprocessing their data or
writing any computer code, with an emphasis on provid-
ing results in an easily interpretable format. In particular,
we have attempted to identify and address issues such as
the relatively high background and scanning related pho-
tobleaching that can occur with CCD based imaging sys-
tems, and include means to address many of the real-
world problems associated with microarray experiments.
There are already a number of existing microarray analysis
tools that prove useful in analyzing microarray datasets
[34,38,39]. CARMA implements many of the same statis-
tical and analytical processes employed in these packages
and includes the following additional features:

¢ Ability to read data files generated by most microarray
image processing software
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¢ No need to preprocess or combine raw data files

e Automatic exclusion of genes with low confidence meas-
ures for all samples

¢ Modified linlog transformation that better handles large
negative numbers (that can result from background sub-
traction)

e Automatic computation of linlog crossover point

e Simultaneous intensity and location lowess normaliza-
tion

e Ability to process incomplete datasets for fixed effect
models

e Automatic outlier detection and removal
¢ Detailed graphical output for each gene

¢ Ability to detect and identify misaligned grids or misla-
beled samples

The relative expression values generated by CARMA (i.e.
the Variety value for each gene relative to a reference sam-
ple), can be further processed by commercial and freeware
software packages designed to organize, cluster and dis-
play microarray data. In this regard, the relative expression
values are analogous to the more traditional ratio-metric
measures in that both provide a relative difference in
expression between samples. Of course more advanced
users can modify or extract portions of CARMA to inte-
grate into their own analyses if so desired. Future develop-
ment of CARMA may include developing a graphical user
interface, improving the implementation of mixed mod-
els, adding new methods of normalization, implementing
bootstrapping to calculate significance, and adapting
CARMA to function as a Bioconductor|38] package.
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