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Abstract

Background: Microarray technology has made it possible to simultaneously measure the
expression levels of large numbers of genes in a short time. Gene expression data is information
rich; however, extensive data mining is required to identify the patterns that characterize the
underlying mechanisms of action. Clustering is an important tool for finding groups of genes with
similar expression patterns in microarray data analysis. However, hard clustering methods, which
assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets

because in such datasets the clusters of genes frequently overlap.

Results: In this study we applied the fuzzy partitional clustering method known as Fuzzy C-Means
(FCM) to overcome the limitations of hard clustering. To identify the effect of data normalization,
we used three normalization methods, the two common scale and location transformations and
Lowess normalization methods, to normalize three microarray datasets and three simulated
datasets. First we determined the optimal parameters for FCM clustering. We found that the
optimal fuzzification parameter in the FCM analysis of a microarray dataset depended on the
normalization method applied to the dataset during preprocessing. We additionally evaluated the
effect of normalization of noisy datasets on the results obtained when hard clustering or FCM
clustering was applied to those datasets. The effects of normalization were evaluated using both
simulated datasets and microarray datasets. A comparative analysis showed that the clustering
results depended on the normalization method used and the noisiness of the data. In particular, the
selection of the fuzzification parameter value for the FCM method was sensitive to the

normalization method used for datasets with large variations across samples.

Conclusion: Lowess normalization is more robust for clustering of genes from general microarray
data than the two common scale and location adjustment methods when samples have varying
expression patterns or are noisy. In particular, the FCM method slightly outperformed the hard
clustering methods when the expression patterns of genes overlapped and was advantageous in
finding co-regulated genes. Thus, the FCM approach offers a convenient method for finding subsets

of genes that are strongly associated to a given cluster.
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Background

DNA microarray technology has the potential to create
enormous duantities of data in short times. The vast
amounts of information generated by microarray experi-
ments have led to the need for methods for analyzing such
data. Clustering has proved to be an important tool for
this purpose. The ability of clustering methods to extract
groups of genes with similar functions from huge datasets
stems from the fact that genes with similar functions
evince similar expression patterns of co-regulation [1,2].

Clustering methods can be broadly classified into two
types according to the method adopted to define clusters
[3]: hierarchical and partitional clustering methods. Hier-
archical clustering [2,4] produces dendrograms, in which
each branch represents a group of genes that have a higher
order relationship. One major shortcoming of this
approach is that it cannot identify co-expressed genes in
large gene expression datasets when such datasets are col-
lected under varying conditions [5]. In addition, hierar-
chical clustering does not produce a unique dendrogram
and does not reflect the multiple ways in which expres-
sion patterns of genes can be similar [6]. Partitional clus-
tering attempts to directly decompose the dataset into a
set of disjoint clusters. The representative Partitioning
Around Medoids (PAM) [7], K-means [8], and hierarchi-
cal clustering methods assign each gene to a single cluster,
even if the expression profile of that gene has a number of
similar cluster patterns. Although these methods work
well when applied to datasets with well-defined clusters,
they are inappropriate for microarray data due to the com-
plicated structures of such biological datasets. In addition,
it is difficult to find distinct clusters in gene expression
data using hard clustering methods, because clusters of
genes in gene expression data do not have well-defined
boundaries [2].

To overcome the limitations of these hard clustering
methods, here we apply fuzzy partitional clustering based
on the Fuzzy C-Means (FCM) algorithm [9,10]. FCM clus-
tering provides a systematic and unbiased way to change
precise values into several descriptors of cluster member-
ships [9]. Thus, this method provides more information
regarding the degrees of membership of each gene to each
cluster of genes. The main advantage of using fuzzy clus-
tering to analyze gene expression data lies in its ability to
handle noisy data [3]. FCM clustering also attempts to
find the most characteristic data point in each cluster,
which can be considered the center of the cluster, and
then the degree of membership for each gene in the cluster
[3]. When implementing fuzzy algorithms, it is very
important to choose appropriate values for parameters
like the weighting exponent, m (the so-called fuzzifica-
tion). Especially, in fuzzy models the minimization crite-
rion for the objective function depends on m. In the fuzzy
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clustering literature, a value of m = 2 is commonly used,
but this value is not appropriate for gene expression data
[11]. Moreover, the optimal value of m depends on the
dataset used, and the clustering results are sensitive to m.
Thus the appropriateness of a value of m for use in cluster
analysis of a dataset is very sensitive to the characteristics
of the dataset. Two factors that affect the dataset character-
istics are the noisiness of the data and the method used to
normalize the dataset. Therefore research into normaliz-
ing and removing noise from datasets has been a very
important component of previous work on clustering
analysis. In particular, for the same dataset and cluster
analysis method, we expect that the results of clustering
will vary depending on the method used to normalize the
data. Normalization of microarray data is required to
remove systematic variations introduced in the experi-
ments, which affect the measured expression levels. In
microarray experiments, there are many sources of sys-
tematic variation, for example differences in labeling effi-
ciency between different fluorescent dyes. We used the
two common scale and location transformation methods
(we called Z- and R-methods) and Lowess normalization
method.

In the present study, we compare FCM clustering with
three hard clustering approaches: the PAM, K-means and
hierarchical methods. In addition, we evaluate the effect
of the method used to normalize microarray data on the
results obtained when clustering analysis is applied to the
normalized dataset. This comparative analysis is per-
formed using three normalization methods, applied to
three microarray datasets and three simulated datasets. In
the Materials and Methods section, we introduce the FCM
clustering algorithm for finding groups of genes with sim-
ilar expression patterns in microarray data, and review in
detail validation techniques for evaluating the final clus-
ters.

Results and discussion

Before applying the clustering algorithm to each dataset,
all data were preprocessed by appropriate transformation
and normalization methods, and determined the optimal
fuzzification, m. We then used this value of m in applying
the FCM method to each normalized dataset, and com-
pared the clustering results to determine the effects of the
data normalization. After determining the fuzzification,
m, the number of clusters has to be determined. In the
present work, the number of clusters, ¢, was taken as the
number that gave the maximum value of the silhouette
index. This procedure was performed on three microarray
datasets, referred to as the serum [12,13], sporulation [14]
and yeast [15] datasets. Finally, we compared the FCM
clustering method with other clustering methods using
the adjusted Rand index.
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Table I: Parameters used for the FCM clustering of the real datasets. Comparison of fuzzification, m, and number of clusters, c,
according to the different normalization methods (values in parentheses are the numbers of clusters for the normalized data). N and p
indicate the numbers of genes and arrays for the dataset used in the analysis, respectively. In particular, selection of m depends on the

normalization method applied to the dataset.

Normalization method

Dataset N p Z (c) R (c) Lowess (c)
Serum 517 13 1.25 (10) 1.30 (9) 1.30 (I1)
Sporulation 522 16 1.63 (1) 1.75 (11) 1.66 (12)
Yeast 2945 7 1.16 (10) 1.28 (9) 1.66 (13)

Determination of the fuzzification parameter

The fuzzification parameter, m, was obtained using an
approach based on the work of Dembele and Kastner
[11]. They proposed that the commonly used value of m =
2 is inappropriate for FCM clustering of microarray data.
Following this previous work [11], we determined the
fuzzification parameter for each normalized dataset. The
values of m and the number of clusters, ¢, used for the
FCM clustering of the three datasets and three normaliza-
tion methods are given in Table 1. The fuzzification
parameter varies depending on both the normalization
method and the dataset used. Figure 1 shows boxplots of
the membership values for each gene from the FCM clus-
tering of the three datasets after normalization by the
three methods. When m is fixed to 2, for the sporulation
and yeast datasets, the membership values for most genes
are close to 1/c, and the membership values are relatively
insensitive to the normalization method. When the opti-
mal value of m is used, by contrast, most membership is
shared by the first and second highest membership values.
In particular, the first and second highest membership
values of all genes are well separated by the Lowess nor-
malization for most of the datasets normalized using this
method. Here, the first highest membership values are
used to allocate each gene to a single cluster, as in hard
clustering methods. In addition, the membership values
can be used to find genes strongly associated to given clus-
ter. We used the median of the membership values as the
threshold membership for specifying that a gene is tightly
associated with a particular cluster [11]. Compared to the
only scale and location transformations, normalization
using the Lowess method gives many more genes strongly
associated to a given cluster due to the high median of the
first highest membership in the Lowess method of figure
1 and figure 2.

The distribution of the highest two membership values is
observed using a scatter plot of these values for each gene
for the optimal m by each normalization method (Figure
2). The results displayed in Figures 1 and 2 show that
when the optimal m is used, the distribution of the mem-
bership values varies markedly depending on the normal-
ization method applied to the dataset. In each of the three

datasets, the median of the first highest membership dif-
fers greatly depending on the normalization method
used. For the serum, sporulation and yeast datasets, the
median of the first highest membership is greatest when
the dataset was normalized using the Lowess method,
with values 0f 0.92, 0.57, and 0.90 respectively. Moreover,
in the case of the serum and yeast datasets, the gene activ-
ities can practically be determined from their first and sec-
ond highest membership values, whereas the sporulation
dataset has low membership values. On the other hand,
the serum dataset shows a larger dispersion of genes over
samples than the other two datasets. In addition, for each
dataset, the distribution of membership depends on the
normalization method applied to the dataset. In the case
of the Lowess method, the association of the first and sec-
ond highest membership is strong in each dataset because
the median memberships are relatively high. In the case of
the R-transformation, by contrast, only a weak association
is observed in each dataset of Figure 2. These results indi-
cate that relatively high membership values can be
obtained for the dataset with small variability among
samples, and that the Lowess normalization appears to be
more effective to the other methods.

Effect of data normalization

Sensitivity of clustering to the fuzzification parameter

Box plot representations of the membership values for
each gene, in decreasing order, are shown in Figure 3 for
four values of m (1.2, 1.4, 1.6, and 1.8). These values were
selected based on the knowledge that if m is close to 1, the
clusters obtained are almost crisp, and if m is close to 2,
the distribution of membership values becomes more
spread out, with m values higher than 2 resulting in the
loss of any useful information about membership values
[5]. To identify the effect of normalization technique on
the clustering results, we applied each normalization
method to the serum dataset and compared the member-
ship values obtained by the FCM method for a range of m
values. This dataset was chosen because it has a large var-
iation of gene expression levels, unlike the other two data-
sets. For the data transformed by the Z and R methods, the
first highest membership of genes decreases rapidly with
increasing m. In contrast, the data normalized using the
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Figure |

Boxplots of sorted membership values for real data. Boxplots of sorted membership values for three real datasets nor-
malized by the Z, R or Lowess method, after FCM clustering using an m value of 2 or the optimal value. The x-axis indicates the
sorted membership values for each gene (highest, second highest, etc.) and the y-axis indicates the membership value. (a)
serum data, (b) sporulation data and (c) yeast data.
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Figure 2

Scatterplot of the two highest membership values of all genes. Scatter plots of the two highest membership values of
all genes for the optimal m in the dataset. The distribution of the highest two membership values is observed using the scatter
plot of the first two highest memberships for each gene for the optimal m and three normalization methods. The x axis indi-
cates the first highest membership, the y axis indicates the second highest membership, and the vertical line indicates the
median value of the highest membership value. (a) Serum data (b) sporulation data (c) yeast data.
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Figure 3

Boxplots of sorted membership values for the serum dataset for four different m values. Boxplots of sorted mem-
bership values for the serum dataset, for three normalization methods and four values of m ranging from 1.2 to 1.8. The x axis
indicates the number of clusters, and the y axis indicates membership value (a) Z-normalization (b) R-normalization (c) Lowess-
normalization.
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Table 2: Validation of FCM clustering for simulated data by normalization. Adjusted Rand indices for clusters by applying the FCM
method to three simulated datasets normalized using three methods, where the fuzzification (m) value used was either the optimal

value or m = 2.

Data\method When m is optimal When m is fixed to 2

z R Lowess z R Lowess
SD1/450 0.47 0.44 0.82 0.49 0.40 0.81
SD2/450 0.43 0.38 0.70 0.49 0.41 0.77
SD3/180 0.12 0.10 0.60 0.15 0.14 0.58

Lowess method shows the highest membership values of
all genes and the membership values decrease slowly with
increasing m. The data in Figure 3 thus indicate that the
clusters obtained using Lowess-normalized data are more
robust to different values of m than those obtained using
only Z- and R-transformed data.

Stability of clusters using FCM

We compared the performances of the three normaliza-
tion methods when applied to three simulated datasets,
referred to as SD1/450 and SD2/450 and SD3/90. The
true number of clusters in each of these datasets was
known to be ¢ = 9; the nine clusters in SD1/450 and SD2/
450 are well separated, whereas those in SD3/90 have
some overlap as shown in Figure 4. Here the performance
of each normalization method was quantified using the
adjusted Rand index, which is a measure of the agreement
of determined clusters in comparison with the true clus-
ters. Cluster allocations were determined from the first
highest membership, and compared with the correct clus-
ters for FCM clustering. The results of these comparisons
are shown in Table 2. The values of the adjusted Rand
index obtained by comparing the true clusters to those
obtained by applying FCM clustering (using both the
optimal m value and m = 2) to the datasets normalized by
the Z, R and Lowess methods showed that the Lowess-nor-
malized dataset performed better than those normalized
by the other two only scale and location transformation
methods. In fact, even when m was fixed at 2, the analysis
results obtained using the Lowess normalized data were
similar to those obtained using the optimal m. In contrast,
the Z and R transformations did not work well.

The results presented above (Table 2 and Figure 1)
showed that the Lowess normalization outperformed the

other two transformations methods. To further analyze
the efficacy of the FCM approach, we used the adjusted
Rand index to compare the true clusters in the SD1/450,
SD2/450, and SD3/90 datasets with those obtained by
applying FCM using the optimal m values for each dataset
and three hard clustering methods (PAM, K-means, and
Hierarchical clustering method) to these three simulated
datasets after Lowess normalization. The results are
shown in Table 3. For the SD1/450 and SD2/450 datasets,
which have well separated clusters, the PAM and Hierar-
chical clustering methods performed very well; the per-
formance of the FCM clustering was good, although not as
good as those of the PAM and Hierarchical clustering
methods. In the case of the SD3/90 dataset, which has
overlapping expression patterns across samples, FCM
clustering slightly outperform other hard clustering meth-
ods. Also, FCM clustering has similar values of index over
three datasets, in contrast, hard clusterings have very dif-
ferent values of index. This means hard clustering is unsta-
ble on data with overlapping clusters contrary to FCM
clustering. FCM clustering of microarray data using the
common fuzzification parameter value of m = 2 is known
to give poor performance compared to the results of hard
clustering; however, the present results show that if the
optimal fuzzification parameter value is used, the cluster-
ing performance similar to that obtained using hard clus-
tering is achieved for the dataset with overlapping clusters.

On the basis of these results, we can find merits for FCM
clustering as follows; first, the membership values of FCM
clustering can be used on several levels. Basically, the
membership values can be used assign each gene to one
cluster, resulting in an effect equivalent to the hard clus-
tering method; second, using membership values, it is
possible to find genes which display a strong association

Table 3: Comparison results for clusters obtained using the FCM method and three hard clustering methods for the three simulated
datasets. Adjusted Rand indices for clusters obtained using the FCM method and the hard clustering methods PAM, K-means and

Hierarchical clustering for the three simulated datasets.

Data FCM PAM K-means Hierarchical
SD /450 0.85 0.98 0.55 1.00
SD2/450 0.70 0.85 0.71 0.83
SD3/180 0.69 0.63 0.59 0.6l
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(b) SD3/90
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Expression patterns of the simulated datasets. (a) SD1/450 and SD2/450 have nine distinct patterns over |10 time points,
and each cluster contains 50 genes; (b) SD3/90 contains nine overlapped patterns over 10 time points, and each cluster con-

tains 10 genes.

to a given cluster and the most likely to work together
even in different pathways. For example, there are 258
strong association genes in serum dataset as shown in fig-
ure 2(a). In the figure, we find genes with first highest
membership values that are greater than the median value
of 0.87. Thus we can expect these genes are always co-
expressed and co-regulated under all conditions.

Comparative analysis of FCM and PAM clustering of noisy
data

The FCM method provides a systematic, unbiased formal-
ism for transforming precise values into several descrip-
tors of cluster membership [9]. Compared to the hard
clustering methods, the FCM method provides more
information on the degree of biological similarity of each
gene. The main advantage of the FCM method in microar-
ray data analysis is that it explains the noise in the data.
Expression levels with low membership values for all clus-
ters may be considered as noise points, and the final clus-
tering results may depend on those noise points. In other
words, because noisy data contain many points that have
low membership values for all clusters, such data cannot
be well clustered across all samples. Therefore, identifying
noise points is essential to gene clustering using the FCM
method.

To test the ability of the FCM method to handle noisy
data, we performed additional clustering calculations on
versions of the serum, yeast, and sporulation microarray
datasets that had been modified to include noise and sub-
sequently normalized by the Lowess method as shown in
Figure 5. The noisy datasets were generated by adding a
small Gaussian random variable of mean 0 and standard
deviation 1 to the gene expression levels in the original
microarray dataset, and then the resulting dataset was nor-
malized by the Lowess method. The noisy gene expression
datasets were clustered and the results compared to the
clustering of the original dataset by measuring the agree-
ment between the clustering results as shown in Figure 6.
The agreement measures the degree to which the pairs of
genes allocated to a cluster in one clustering calculation
agree with those allocated to the same cluster in another
calculation. To identify the ability of the FCM method to
cluster noisy data, we compared the results obtained using
this approach with those obtained using PAM clustering
known as representative partitional clustering method
with good performance. For each type of dataset, we used
the same number of clusters for each clustering method in
both the original and noisy datasets.

Finally, to evaluate the robustness of FCM clustering to
noise in data, we computed the agreement of pairs of
genes assigned to the same clusters in the clusterings of
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(a) Serum data
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Figure 5

Identification of influence of noise by FCM and PAM clustering. Expression patterns for any two clusters between
original and noisy data clustering for FCM and PAM clustering in serum and sporulation datasets. For each dataset, upside line
of figure indicates the original clustering and the downside line indicates the noisy data clustering, and first and second columns
are the results of FCM clustering and others two are the results of PAM clustering. The x axis indicates the number of clusters,
and y axis indicates the values of data points (a) Serum data (b) sporulation data.
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n(OCANC) 100 (%)

A ment
greemen n(oc U NC)
Clustering/dataset Serum data(%)  Sporulation Yeast data(%)
data(%)
FCM 85.2 63.7 97.8
PAM 81.7 62.9 93.8
Figure 6

Calculation of agreement between original and noisy data clustering. OC indicates original data clustering of genes,
and NC indicates noisy data clustering of genes. n(OC N NC) is the number of genes assigned to the same clusters in both clus-
terings, and n(OC U NC) is the number of genes assigned to one cluster at least for both clusterings. Here, the agreement com-
putes the degree of agreement between the original and noisy datasets, where the noisy dataset was generated by adding a
Gaussian random variable of mean 0, and standard deviation | to the original dataset.

the original dataset and the corresponding noisy dataset
as shown in Figure 6. In the analysis of the original serum
dataset and its noisy counterpart, PAM and FCM cluster-
ing allocated similar percentages (average 81.7% and
85.2% respectively) of the pairs of genes to the same clus-
ter in the analyses of the original and noisy datasets. In the
clustering analysis of the original and noisy sporulation
and yeast datasets by FCM clustering, however, 63.7% and
97.8% of pairs were in the same clusters, respectively,
which were slightly higher than the percentages obtained
using PAM clustering (62.9% and 93.8% respectively).
These results are briefly illustrated with the two serum and
sporulation datasets which indicate the low degree of
agreement of pairs of genes assigned to the same clusters
between original and noisy added datasets. Figure 5
shows the expression patterns from the original and noisy
serum and sporulation datasets for clusterl and cluster2
obtained using FCM and PAM respectively. The upside
and the downside of the figures indicate clustering pat-
terns for original and noisy dataset respectively. FCM clus-
tering of the noisy and original datasets gives similar
expression patterns for clusterl, and similar patterns for
cluster2. The PAM clustering, in contrast, gives different
expression patterns for cluster1 depending on whether the
original data or its noisy counterpart is used, and likewise
for cluster2. In the clustering analysis of the original and
noisy sporulation datasets as shown in Figure 5(b), the
FCM and PAM clusterings show similar expression pat-

terns for each cluster from the original dataset and its
counterpart from the noisy dataset.

From these results, we can see that the FCM clustering
method is slightly superior to the PAM method in extract-
ing expression patterns from datasets with larger varia-
tions across samples, such as the serum dataset, whereas
the FCM and PAM methods show similar performance
when applied to data with smaller variations, such as the
sporulation and yeast datasets. Importantly, FCM cluster-
ing is a little better than the PAM method at handling
noisy datasets. In summary, hard clustering methods per-
form well in particular applications, and are often used for
clustering microarray data. However, these methods can-
not find co-expressed genes under all conditions and in all
samples and do not reflect the multiple ways in which the
expression patterns of genes can be similar when analyz-
ing large amounts of noisy microarray data collected
under various biological conditions.

Conclusion

Microarray technology enables the simultaneous meas-
urement of expression levels of thousands of genes. How-
ever, the vast amounts of data generated in microarray
experiments have led to the need for methods for analyz-
ing such data. Clustering has proved to be an important
tool for this purpose. The first step in most statistical anal-
yses of microarray data is to normalize the data so as to
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remove systematic variations due to non-biological fac-
tors. However, the results of clustering analysis of a nor-
malized dataset may depend on the normalization
procedure used. In the present study, we considered the
effect of data normalization on the results obtained when
clustering analysis was applied to the normalized dataset.
Six datasets were used: three microarray datasets and three
simulated datasets. In particular, we concentrated on the
sensitivity of FCM clustering analysis to data normaliza-
tion and to the value of the fuzzification parameter. To
elucidate the performance of FCM clustering relative to
other methods, we compared the FCM clustering results
with those obtained by applying hard clustering methods
to the same normalized datasets. In these comparisons,
the performance of each method was quantified using the
adjusted Rand index. We found that for all of the datasets
examined, Lowess normalization of the dataset gave supe-
rior cluster robustness and accuracy compared to the two
common data transformations when FCM clustering was
applied to the normalized dataset. Moreover, the Lowess
normalization method gave robust clustering results
when applied to noisy datasets and to datasets containing
overlapping clusters.

FCM clustering is a convenient method to find genes
exhibiting strong associations to given clusters. Besides,
sub-groups of genes can be expected to be contained in
several pathways and thus assigned to several clusters but
still be co-acting under all conditions. Especially, the per-
formance of FCM clustering is similar to that of hard clus-
tering in respect of allocating a gene to a single cluster for
noisy data. The hard clustering forcedly assigns all genes
to a respective cluster, even those for which the variations
in expression do not fit into any global pattern [11]. In
FCM clustering, the genes can belong to more than one
cluster where the genes may only be marginally relevant
for biological significance of the cluster [11]. Therefore,
this method is very useful if we focus on finding genes
showing coherent behaviour within clusters. We also
expect the fuzzy type clustering might be a significant tool
to dissect the several regulatory pathways that control the
gene expression patterns of given genes when handling
complex datasets.

As the related work, Kim et al. [16] presented the compar-
ative results of three fuzzy type clustering such as FCM,
Possibilistic c-means and Fuzzy possibilistic c-means
using a common value of 2 as the fuzzification parameter,
and Belacel et al. [5] compared performance of Fuzzy J-
means and VNS method to that of FCM. They also pro-
posed that the performance of the FCM, without consid-
ering effect of data normalization, is slightly weaker than
those of other fuzzy methods respectively. However,
according to Dembele and Kastner [11], it is not appropri-
ate for fuzzification parameter to be set to a common

http://www.biomedcentral.com/1471-2105/7/134

value of 2 when the fuzzy method is applied to microarray
data cluster analysis. Thus, the work of Kim et al. [16] may
be clear in only a few cases, but it seems to be difficult to
select the best one of three fuzzy methods because the
optimal fuzzification parameter was not used. On the
other hands, as mentioned earlier, microarray data nor-
malization is basically an important step for obtaining
data that are reliable and usable for subsequent analysis.
Our analysis also presented that the choice of different
normalization methods drastically affects the result of the
cluster analysis. In the light of Belacel et al. [5], FCM was
inferior to other methods for some dataset but all the
three methods had similar performance for the dataset
with large variation for each group and for each sample
point. Again, the FCM method is faster method compared
to the other two methods [5]. Also, the performance of
FCM method can be as good as those of Fuzzy J-means or
VNS method when the refined data normalization such as
the Lowess method is used. Besides, the FCM method can
typically be chosen to classify microarray data because a
popular and freely available implementation is available
in the statistical software package R. Moreover, various
other freely available microarray data handling packages
have incorporated this FCM method. In summary, we
would emphasize that the identification of these two fac-
tors that affect cluster results is required when fuzzy clus-
tering methods are used in the microarray data analysis
successfully.

Although in the present work the Lowess normalization
was found to be superior to the other two normalization
methods examined in transforming of data scale and loca-
tion (Table 2), previous studies have described the prob-
lems associated with choosing the parameter values for
the Lowess method [17], and Berger et al. [17] pointed out
that the normalization results obtained using this method
may depend on the parameter values used. In the recent
literature on the normalization of microarray data, Zhao
et al. [18] presented a mixture model based method and
highlighted the importance of normalization in microar-
ray data analysis to find differentially expressed genes
across arrays. To our knowledge, however, the present
study is the first to test the normalization effect in cluster
analysis of microarray data. In future work, we plan to fur-
ther evaluate normalization methods in regard to micro-
array experiment conditions, data formats, and the degree
of variation in detail. The information gained from such a
study should aid in extracting biological information,
such as co-expressed genes with similar expression pat-
terns or genes that act in concert in cells, from microarray
datasets. For example, this approach could be used to
extract biological information that is important for all
lung cancer cells regardless of the cell type.
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Methods

Datasets

Simulated data

Three simulated datasets generated around nine distinct
temporal patterns over ten time points were considered
(Figure 4). The first set (SD1/450) consisted of a total of
450 genes separated into 9 patterns containing 50 genes
each. Independent random variables were added to these
mean expression-ratio values. Two hundred and twenty
five of the total genes were generated from a normal dis-
tribution with mean 0 and standard deviation 1, and the
remaining 225 were generated from an exponential distri-
bution with location -0.2 and scale 0.2. In the second set
(SD2/450), all genes were generated from a normal distri-
bution of mean 0 and standard deviation 1. The first and
second datasets were based on the simulated datasets
reported in [19] and [20] respectively. The third set (SD3/
90) was based on a previously reported simulated dataset
[5]. The mean expressions in each of the nine patterns
used were -6, -4, -2, -1.5, 0, 0.5, 2, 3, and 5 over different
time points, and independent normal variates with mean
0 and standard deviation 1 were added to the nine differ-
ent mean expression levels.

Serum data

The serum dataset used in the present work is described in
[12] and [13]. The expression levels of 8613 genes were
measured over 24 hours at 12 time points (0, 0.25, 0.15,
1,2,4,6,8,12, 16, 20, and 24 hours). We used the 517
genes whose expression varied in response to serum con-
centration in human fibroblasts.

Sporulation data

We used the previously reported gene expression dataset
recorded during yeast sporulation [14], which is publicly
available [21]. This dataset consists of 6118 genes in the
yeast genome measured at seven time points (0, 0.5, 2, 5,
7,9 and 11.5 hours) during the sporulation process. We
used 513 genes that were found to be significantly upreg-
ulated during the process [14].

Yeast data

The yeast dataset used in the present work was that
described in [15], and is available to the public [22]. This
dataset is composed of expression data for 6200 yeast
genes measured at 17 time points in the time period of 0-
160 min. We used a same selection of 2945 genes, as
described in [8].

Clustering algorithm

Hard clustering methods allocate each gene to a single
cluster only. These methods perform well if the bounda-
ries between clusters are well defined. In real situations,
however, clusters may overlap. Such overlaps are espe-
cially likely in gene expression data, because genes may

http://www.biomedcentral.com/1471-2105/7/134

have characteristics typical of more than one gene cluster.
The fuzzy clustering method connects each gene to all
clusters by way of an indicator vector. The elements of the
indicator vector correspond to the degrees of membership
of the gene to the various clusters, where the membership
has a value between 0 and 1. A membership of close to 1
indicates that the gene has a strong association to the clus-
ter, whereas a membership close to 0 indicates a weak
association. The goal of the fuzzy clustering method is to
evolve a partition matrix W(X) of a given dataset, X = {x;,
X,,....X,}, to find ¢ clusters, 2 < ¢ <n, and a ¢-partition of X
exhibiting categorically homogeneous subsets. Here, x;
represents the normalized, expression level of gene i, in
any array. The partition matrix W = (w;,) is of size n x ¢,
where w;, is the membership value of gene i (i = 1,...,n) for
the cluster k (k = 1,...c).

Fuzzy c-means clustering
Fuzzy c-means clustering can be represented as follows

[9]:

n c
o 2
minimize J ., (W, V) = > (wi)" | xi =i I
i=1k=1

where J,,(W,V) represents the objective function defining

the quality of the result obtained for prototypes V and
membership W, and m is the degree of fuzzification in the
clustering. The membership degrees w;, are defined such

C
that 0 <wj, < 1, under the constraint of Z wy, =1 fori =
k=1
1,...n.V = (v, ) is the cluster center or prototype, and ||x;-
v,||?is the Euclidean distance between gene i and the pro-

totype of cluster k. The advantages of the FCM approach
are that it is unsupervized and always converges. The
shortcomings of this approach, however, are that it
searches only for the clustering solution closest to the
starting center, and tends to give low degrees of member-
ship for noisy points.

Data normalization

It is important to remove from microarray data variations
due to non-biological factors [18]. This process, known as
normalization, is important for obtaining reliable data for
subsequent analysis.

Common scale and location transformation

One of the most commonly utilized normalization
approaches is the scale and location transformation,
whereby all data are normalized such that every gene has
a mean expression value of 0 and a standard deviation of
1 across the time point (we called Z-method), another
method is based on the rank order of objects. In this
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method, all data are normalized by subtracting off the
median followed by dividing by the quartile range [20]
(we called R-method).

Lowess-normalization

One of the most commonly used nonlinear correction
methods is locally weighted scatter plot smoothing (Low-
ess), which was first applied to microarray data by Yang et
al. [23]. The main idea of Lowess is to utilize a locally
weighted polynomial regression of the intensity scatter
plot to obtain the calibration factor. Compared to other
methods, the Lowess method is known to be robust across
a wider range of types of datasets.

Validation of clusters
Evaluation of final clusters

We used the adjusted Rand index to evaluate the final
clusters [24]. This measure computes the average value of
agreement between two partitions. Given a set of N genes,
D = {o0,, 0y...05}, suppose U = {u,u,,..uz} and V =
{vy,v,,...,v-} represent two different partitions of the genes

in D. Here, for 1 <i#i <Rand 1 <j #j <C,
Uilui = U].Czlvj = D and N;;is the number of genes that

are in both classes u; and v, and N; and N ; are the num-
bers of genes in classes u; and v; respectively. The adjusted
Rand index is as follows [24,25]:

2 N, &2 _{ZiNi_ CZZJ'N_I,C2J/N G
(1/2)[21'Ni_c2 *21N_1.C2]_[2mi szjN_jCZ]/N G

We would expect a high value of the adjusted Rand index
to indicate good clustering.

adjRand =

Determination of the number of clusters
We used the silhouette index [7] to estimate the number
of clusters [24]. The silhouette width for the i-th gene in

bj(i)—a;(i)
max{a;(i),b;(i)}
is the average distance between the i-th gene and all of the
genes in the j-th cluster, and b;(i) is the smallest average

cluster j is defined as s(i) = , where a;(i)

distance between the i-th gene and all of the genes in the

I-th cluster (1 <j,I <k,j #1). Thus, for a given cluster, a clus-
N;

ter silhouette value of sil; = 25(1’) /Nj characterizes the
i=1

heterogeneity and isolation properties of the cluster,

where N; is the number of genes in the j-th cluster. Thus

the number of clusters that maximizes ave sil is taken as

the optimal number of clusters, c.
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