
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Choosing the best heuristic for seeded alignment of DNA sequences
Yanni Sun* and Jeremy Buhler

Address: Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA

Email: Yanni Sun* - yanni@cse.wustl.edu; Jeremy Buhler - jbuhler@cse.wustl.edu

* Corresponding author

Abstract
Background: Seeded alignment is an important component of algorithms for fast, large-scale
DNA similarity search. A good seed matching heuristic can reduce the execution time of genomic-
scale sequence comparison without degrading sensitivity. Recently, many types of seed have been
proposed to improve on the performance of traditional contiguous seeds as used in, e.g., NCBI
BLASTN. Choosing among these seed types, particularly those that use information besides the
presence or absence of matching residue pairs, requires practical guidance based on a rigorous
comparison, including assessment of sensitivity, specificity, and computational efficiency. This work
performs such a comparison, focusing on alignments in DNA outside widely studied coding regions.

Results: We compare seeds of several types, including those allowing transition mutations rather
than matches at fixed positions, those allowing transitions at arbitrary positions ("BLASTZ" seeds),
and those using a more general scoring matrix. For each seed type, we use an extended version of
our Mandala seed design software to choose seeds with optimized sensitivity for various levels of
specificity. Our results show that, on a test set biased toward alignments of noncoding DNA,
transition information significantly improves seed performance, while finer distinctions between
different types of mismatches do not. BLASTZ seeds perform especially well. These results depend
on properties of our test set that are not shared by EST-based test sets with a strong bias toward
coding DNA.

Conclusion: Practical seed design requires careful attention to the properties of the alignments
being sought. For noncoding DNA sequences, seeds that use transition information, especially
BLASTZ-style seeds, are particularly useful. The Mandala seed design software can be found at
http://www.cse.wustl.edu/~yanni/mandala/.

Background
Seed design for DNA sequence alignment
Comparing nucleic acid sequences is one of the most
important tasks in computational biology. Although
many sequence alignment algorithms have been
designed, the rapid increase in size of genome databases
continues to present alignment algorithms with the chal-

lenge of finding good alignments (i.e. those with high
scores) efficiently.

Seeded alignment is the dominant technique for large-
scale genomic sequence comparisons, and BLASTN [1] is
the most popular implementation of it. In BLASTN, exact
matches of w contiguous residues between sequences are
identified and then extended into alignments by dynamic

Published: 13 March 2006

BMC Bioinformatics2006, 7:133 doi:10.1186/1471-2105-7-133

Received: 10 December 2004
Accepted: 13 March 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/133

© 2006Sun and Buhler; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/133
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16533404
http://www.cse.wustl.edu/~yanni/mandala/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
programming. More recent work extends BLASTN's con-
tiguous match heuristic to find more general patterns of
conservation, which are commonly called seeds. Seeds
have been used not only for large-scale local alignment
but also as anchor points in whole-genome and multiple
sequence alignment algorithms [2,3].

It has been shown [4] that seed design is important to the
sensitivity and specificity of seeded alignment. To
improve on traditional contiguous seeds used in, e.g.,
BLASTN [1], spaced seeds were proposed, initially as part of
the FLASH indexed search tool [5]. A spaced seed span-
ning s bases requires matching bases at only a subset of
the positions {0,1, ..., s - 1}. PatternHunter [4] used a care-
fully designed spaced seed based on a simple i.i.d. align-
ment model to increase sensitivity. Mandala [6] built a
DFA to evaluate the sensitivity of spaced seeds under a
κth-order Markov model; a more accurate hidden Markov
model was used in [7]. Algorithms for multi-seed design
are described in [8-11]. All of the seeds mentioned above
distinguish only between matched and mismatched resi-
due pairs. In this paper, we call them basic seeds.

The BLASTZ alignment program [12] adopted the optimal
spaced seed designed by PatternHunter. In order to
increase sensitivity, they allowed a transition mutation (A-
G, G-A, C-T, or T-C) at any one of the inspected positions
in PatternHunter's seed. We generalize this definition to
arbitrary seeds allowing transition mutations at fixed
positions, which we call transition seeds.

In BLASTP [1], a protein alignment contains a seed match
if the sum of scores of three consecutive amino acid pairs
starting from some offset in the alignment exceeds a spec-
ified threshold. The individual score of each residue pair
comes from a scoring matrix M modeling the rate of evo-
lutionary change. We apply BLASTP-like seeds to DNA
sequence comparison by computing the sum of the scores
in the positions inspected by a basic seed. These seeds are
called score seeds. Score seeds can also implement the inex-
act seeds used in BLAT [13] and CHAOS [3].

Score seeds are a special type of vector seed [14] using only
binary vectors. [14] observed that most vector seeds that
empirically worked well had binary seed vectors. Thus, we
do not focus on a general vector seed's performance in this
work. We note that transition seeds could also be repre-
sented by vector seeds with a carefully designed seed vec-
tor and threshold.

Motivation for our work
Although none of the above seed types is novel, there is an
absence of practical guidance to picking good seeds due to
a lack of detailed performance comparison among basic,
transition, and score seeds. The purpose of this work is to

compare the above-mentioned seed types in a common
experimental framework, and to derive practical guidance
for choosing an appropriate seed heuristic for seeded
alignment in genomic DNA.

A comparison of seeds must consider both sensitivity to
biologically meaningful alignments and specificity, which
affects the computational cost of using a seed. Less strin-
gent seeds, e.g. seeds that allow transition mutations as
well as matches, are likely to yield better sensitivity, but at
a significant cost in specificity. Although some recent
works on multiple simultaneous seed design [8-11] have
been aware of this tradeoff, they do not perform system-
atic evaluations to judge whether less stringent seeds con-
fer a net benefit to seeded alignment, that is, whether they
are consistently more sensitive for given specificity. This
work summarizes both sensitivity and specificity of seeds
using receiver operating characterstic (ROC) curves. We
also consider, where appropriate, other issues affecting
the computational cost of seeds.

As part of our work, we must design seeds; that is, we must
choose particular seeds or sets of seeds that maximize per-
formance among many seeds or sets of the same type.
Seed design requires efficient computation of seed sensi-
tivity and, at times, specificity. Methods for efficiently
computing the sensitivity of a basic seed have been
reported in several papers [4,6,7]. An efficient algorithm
was used to compute sensitivity of score seeds in [14].
YASS [15] computed the sensitivity of a single transition
seed. In this work, we extend our Mandala seed design
software [6] to compute the sensitivities of transition
seeds and score seeds. We also develop methods to esti-
mate a seed's specificity where direct measurement of this
quantity is computationally prohibitive. Previous work
[4,14] computed seed specificity based on a simple i.i.d.
background sequence model. To ensure a biologically
more appropriate comparison, we compute specificity
based on a more informative Markov sequence model.

To evaluate a seed's sensitivity, we use a set of alignments
representing the type of sequence similarity to be found.
While many previous papers [7,10,14] have focused on
designing seeds for coding DNA regions, we are also inter-
ested in designing seeds for noncoding DNA alignment
because comparative analysis between noncoding regions
discloses important information about genome evolution
and functional features [12,16] and is the basis of modern
whole-genome alignment tools [17,18]. We therefore
focus our study on seed performance in alignments biased
strongly toward noncoding DNA, though we also con-
sider the extent to which results in these alignments gen-
eralize to a more traditional coding-heavy test set.
Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
The remainder of this work is organized as follows. After
describing our methods, we present experimental results
on the relative sensitivities and computational costs of dif-
ferent types of seed. We conclude by identifying lessons
drawn from our experiments and indicate directions for
future work.

Formal definitions of seeds

A basic seed π is defined to be an ordered list of indices {x1

... xw} with x1 = 0. Two sequences S and T exhibit a seed

match at offsets i and j if, for 1 ≤ k ≤ w, S[i + xk] = T[j + xk].

The number of inspected positions w is the weight of π,
while the distance s = xw + 1 is its span. For a position j with

0 ≤ j ≤ s, if j {x1 ... xw}, then yi is a "don't care position"

that could be a match or mismatch.

A transition seed πz with span s is defined to be a pair of

ordered lists of distinct indices: (X = {x1 ... xw}, Z = {z1 ...

zm}) with x1 = 0 or z1 = 0, w ≤ s and m ≤ s. Two sequences

S and T exhibit a transition seed match at offsets i and j if

two conditions are satisfied: 1) For 1 ≤ k ≤ w, S[i + xk] = T[j

+ xk]; 2) For 1 ≤ k ≤ m, either S[i + zk] = T[j + zk], or the two

residues are both purines or both pyrimidines. We call
each xi a match position and each zi a transition position. For

any position yi, if yi <s, yi X and yi Z, it is a "don't care

position" that could be a match, a transition, or a transver-
sion. The number of inspected match positions w is the

match weight of πz. The number of transition positions m

is the transition weight of πz. The span of a transition seed

is max(xw, zm) + 1.

A score seed is defined by a pair <π, T>, where π is a basic
seed and T is a score threshold. Let π = {x1 ... xw} with x1 =
0. Two sequences S and T exhibit a score seed match at off-
sets i and j if, for 1 ≤ k ≤ w, ∑k Ci+xk,j+xk ≥ T. Here, Ci+xk,j+xk
is the score for the residue pair (S[i + xk], T[j + xk]). The
individual score of every pair comes from a scoring matrix
M. The weight w and span s of a score seed are defined by
its underlying basic seed π.

A set of multiple simultaneous seeds Π = {π1 ... πn} con-
tains n seeds of the same type. A seed set Π matches an
alignment if at least one component seed from Π matches
this alignment. Based on this definition, the transition
seed used in BLASTZ alignment [12] is actually a set of 12
transition seeds, each with w = 11 and m = 1. The seeds dif-
fer from each other in only one position. We call this set a
BLASTZ seed, which is a special case of multiple transition
seeds. Because multiple score seed design is a somewhat
different problem from regular seed design [19], we will
focus only on sets of transition seeds.

Methods
Seed sensitivity and specificity
A seed's sensitivity is the probability that a biologically
meaningful alignment contains a match to the seed. In
our experiments, a seed's sensitivity is measured by the
fraction of a set of known alignments that contain the
match to a specified seed.

Because seed design requires evaluating the sensitivities of
hundreds or thousands of candidate seeds, we need a
more efficient way to estimate sensitivity in order to
search for optimal seeds or seed sets. The Mandala seed
design software [6] contains efficient estimation proce-
dures for basic seeds. For this work, we have extended
Mandala to compute the sensitivity of a seed in a probabi-

listic alignment model that includes information
other than simply the distribution of matches and mis-
matches. These extensions use Mandala's DFA-based sen-
sitivity evaluator. For a transition seed, we create a three-
symbol DFA whose size is at most s3s - w - m2m, where s, w,
and m are the seed's span, match weight, and transition
weight respectively. If the number of different values in a
score matrix M is D, a D-symbol DFA can be built to eval-
uate the sensitivity of a score seed. When dynamic pro-
gramming becomes expensive, i.e. for seeds with large
span but small weight (e.g., s = 22, w = 9), we resort to
Monte Carlo methods to estimate sensitivity, as described
in [6].

The false positive rate (fp rate) of a seed, which is comple-
mentary to its specificity, is the probability that a seed

∉

∉ ∉ 

Table 1: Comparison of estimated fp rates vs. the actual ones for score seeds and transition seeds. Entries show the distributions of the
percent differences between estimated and actual fp rates for single score seeds with w = 11 and 12 and single transition seeds with w
= 9 and 10 and m = 2.

0–10% 10–15% 15–20% 20–25%

score seed w11 0.8 0.2 0 0
transi-nl-w9-m2 0.02 0.88 0.1 0
score seed w12 0 1 0 0
transi-n1-w1O-m2 0 0 0.8 0.2
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
match occurs at some position purely by chance. For sin-
gle basic and transition seeds with moderate weights, we
can efficiently compute fp rates directly by counting seed
matches between pairs of unrelated sequences. This com-
putation is effectively the same as using the seed to per-
form a similarity search, which can be done efficiently in
practice. However, this direct counting approach becomes
computationally quite expensive for sets of seeds, as we
must make certain not to count hits to two seeds in a set
as two distinct hits to the set.

Our current implementation of hit counting for score
seeds is also computationally expensive, which poses a
problem for designing such seeds. Setting a score seed's
threshold T to obtain a target fp rate requires evaluation
of multiple thresholds, and computing the fp rates for
these thresholds by direct counting proved burdensome
in practice. These considerations led us to seek more effi-
cient, though slightly less accurate, computational strate-
gies to estimate fp rates for score seeds and sets of
transition seeds.

We estimate fp rates using a probabilistic model b that

characterizes alignments between a pair of unrelated, ran-

dom sequences. Alignments in model b arise from two

independent sequences, each of which is modeled by a
kth-order Markov process. The alignment model can be
computed from the two underlying sequence models by
multiplying their corresponding terms as follows:

Pr((c1,c2)|(x1,y1) ... (xk, yk))

= Pr(c1|x1 ... xk) × Pr(c2|y1 ... yk).

The next section shows how this model is used to estimate
false positive rates.

Computation of fp rates

Efficient computation of false positive rates, particularly
for score seeds, is computationally nontrivial. Here, we
describe a dynamic programming algorithm, inspired by
Altschul's computation of sum score frequencies in NCBI
BLAST [1], that computes fp rates for score seeds when

b takes the form of kth-order Markov model with k > 0.

The same algorithm can be simplified to compute fp rates
for other types of seed. We then extend our computation
to deal with sets of seeds. Finally, we quantify how well
our estimates of seeds' fp rates approximate the actual
rates using a sample of randomly chosen seeds of several
types.

Fp rate for a score seed

The fp rate of a score seed <π,T> is the probability that, at
a fixed position in a pair of unrelated sequences, the total

score of the positions (x1, ..., xw)inspected by π is at least

T. Let be the sequence alphabet; alignments of unre-

lated sequences are described by a | |2-symbol kth-order

Markov model b. For any residue pair b ∈ 2, its score

M[b] is given by a substitution matrix M.

The following algorithm computes the probability that, at
any fixed offset in the alignment, the total score across all
positions inspected by π is at least T. Let δ be a residue pair
string of length k. For each position j from 0 to s (the span
of π), define Pj(θ, δ·b) to be the probability that the total








 

Derivation of blocks in which to search for HSPsFigure 1
Derivation of blocks in which to search for HSPs.
Blocks (dotted squares) are created along the maximum-
weight chain (dashed thin lines) of gapped local alignments
(thick black lines).

Table 2: Score matrix Mnc

A C G T

A 71 -108 -31 -125
C -108 84 -109 -32
G -31 -109 84 -108
T -125 -32 -108 71
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
score of the inspected positions up to j is θ, and that the
last k + 1 residue pairs ending at position j form the string
δ·b. According to this definition, the residue pair at posi-
tion j is b. The fp rate we want to compute is ∑θ≥T ∑δ·b∈K
Ps(θ, δ·b), where K is the set of all the residue pair strings
of length min(k + 1, s).

It remains to compute Pj(θ, δ·b) We first define low to be
the smallest score in the matrix M and high to be the larg-
est such score. Let δ·b be a residue pair string with length
k' = min(k + 1, j). If j ∈ {x1 ... xw} we have

Otherwise,

The probability Pr[b|δ] is given by the model . Equa-
tions (1) and (2) give the general case of the recurrence;

for j <k + 1, δ·b is a residue pair string of length j, and there

is no prior residue 60 on the right-hand side. We initialize

the recurrence by computing P1(θ, b) directly for all resi-

due pairs b ∈ 2.

We need to calculate Pj(θ, δ·b) for 0 ≤ j ≤ s. For each j, sup-

pose the number of matching positions up to j is π(j).

Then θ is bounded by the closed interval [π(j)·iow,

π(j)·high]. Thus, the fp rate of the score seed with weight
w and span s under a kth-order Markov model can be com-

puted in time Θ(w(high - low)(| |2)k+1s). The actual com-
putational cost can be decreased substantially by

observing that Pj(θ, δ·b) is zero for many values of θ, since

the different score values in score matrix M are not succes-
sive integers. In addition, for a specified threshold T, the

lowest possible score sum θ at position j is T - (w -

π(j))·high. Thus, we only need to compute Pj(θ, δ·b) with

θ bounded by the closed interval [max(T - (w - π(j))·high,

π(j)·iow), π(j)·high].

Fp rate for multiple simultaneous seeds
We may compute the fp rate of a set of basic or transition
seeds using the inclusion-exclusion method. Let Π = {π1 ...
πn} be a set of basic seeds or transition seeds. We are inter-
ested in the probability that at least one seed from Π yields
a match. If more than one seed hits at the same position,
only one hit is counted in the total number of seed hits.
The inclusion-exclusion method is used to calculate the
false positive rate fpΠ as follows:

where fpπ is the fp rate for seed π, and the combined seed
πi + πj matches at a given position if and only if both πi and
πj match at that position. For basic seeds, πi + πj is actually
the union of all the inspected positions of πi and πj. For a
transition seed πi = (Xi, Zi) with span si and a transition
seed πj = (Xj, Zj) with span sj, πi + πj is a transition seed with
span max(si, sj). Each position k, 0 ≤ k ≤ max(si, sj), is a
match position if k ∈ Xi or k ∈ Xj. Otherwise, it is a transi-
tion position if k ∈ Zi or k ∈ Zj. k is a "don't care" if neither
of the previous two conditions is satisfied. For example,
the union of two transition seeds ({0,1, 3,4, 8}, {2, 7})
and ({0,1, 2, 5}, {4}) is ({0,1, 2, 3,4, 5, 8}, {7}).

The inclusion-exclusion method can be combined with a
hashing strategy to estimate the fp rate for multiple simul-
taneous seeds without using a background Markov model.
However, the union of two or more transition seeds usu-
ally has a large weight (e.g., w = 18), which still incurs a
large cost for direct counting. In this case, we can use the

P b b bj
b

(,) Pr[|] (,).θ δ δ θ − Μ δ⋅ = × ⋅ ()
∈
∑ P bj-1

2

]

0

0 1


[

P b b bj
b

(,) Pr[|] (,).θ δ δ θ δ−⋅ = × ⋅ ()
∈
∑ Pj 1

2
0

0 2








fp fp fp fp
i i j i j k

i i j i j k
Π = − + ()∑ ∑ ∑+ + +π π π π π π

, , ,

… 3

Comparison of transition seeds designed for noncoding HSPsFigure 2
Comparison of transition seeds designed for noncod-
ing HSPs. Each ROC curve shows seeds with the same
transition weight m but different match weights w. The curve
corresponding to BLASTZ seed starts with a seed with w =
11 and m = 1. All the other curves start with a seed with w +
m/2 = 11. For each curve, the subsequent points decrease w
by 1 while holding m constant. Each point represents a locally
optimal set of seeds.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1e-05 2e-05 3e-05 4e-05 5e-05

S
en

si
tiv

ity

False positive rate

One transition seed,m=2
One transition seed,m=0

Two transition seeds,m=2
BLASTZ seed

Four transition seeds,m=2
Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
first term of Equation (3) to estimate the seed set's fp rate,
since the remaining the terms are much smaller than it.

Comparison of predicted vs. actual fp rates
We used the predicted fp rate to design a score threshold
for a score seed. In addition, in order to estimate the error
introduced by only using the first term in Equation (3)
when computing the actual fp rate for a set of transition
seeds, we evaluate each other term in Equation (3) using
the theory prediction. Thus, we need to quantify how well
our model-based estimates predict score seeds and transi-
tion seeds' actual fp rate in real DNA. We randomly gen-
erated 100 samples of each type of transition seed with w
+ m = 12 and 11 and then counted the seed matches on
randomly chosen pairs of human and mouse genomic
DNA sequences, with a typical length of 10 megabases.
We compared the measured and estimated false positive
rates for our sampled seeds on these pairs of sequences.

A similar comparison was conducted for score seeds under
the score matrix Mnc described below in the Results sec-
tion. Since direct counting for a score seed may take hours
to complete in our implementation, the error distribution
for these seeds reflects only 10 random underlying basic
seeds, rather than 100.

Table 1 illustrates the observed differences, measured in
percentage of actual fp rate, between our actual and esti-
mated fp rates for two types of transition seeds and score
seeds. The estimated fp rates are typically within 20% of
the actual rates. For score seeds, the difference was typi-
cally within 15%. In exchange for the stated limits on
accuracy, we obtained a greater than 600× speedup for
transition seeds over direct counting in the rate at which
we could evaluate fp rates.

Searching for an optimal set of transition seeds
As part of our comparative analysis, we wish to evaluate
sets of simultaneous transition seeds. We therefore modi-
fied Mandala to find sets of such seeds with maximal sen-
sitivity for a fixed weight. It has been shown that finding
an optimal set of seeds is NP-hard [9]. For this reason,
most existing works rely either on exhaustive search [4],
local search techniques [6], approximations [10] or other
heuristics [11,20] to find globally or locally optimal seeds.
It is not practical to exhaustively search for an optimal
transition seed with a big span. Thus we extend the local
search strategy for basic seed design [6] to seek a locally
optimal set of transition seeds with maximal span smax.

Let a transition seed πz = {{x1 ... xw}, {z1 ... zm}} be the cur-

rent seed. The local neighborhood of πz is the set of all

seeds that differ from πz in exactly one of the choices

x1 ... xw or z1 ... zm. Let Y = {0 ... smax - 1} - πz be the set of all

"don't care" positions. To generate a seed , one of three

operations is allowed: swapping some match position xi

with some transition position zj, swapping some xi with

some "don't care" position yk ∈ Y, or swapping some zj

with some yk. The only restriction is that position 0 cannot

be a "don't care". Using this neighborhood structure and
the probability calculations described above for transition
seeds, we employ hill climbing with random restarts in
seed space to find a near-optimal seed. To design a set of

simultaneous transition seeds ΠZ, we extend the neigh-

borhood definition to encompass all sets in which

′π z

′π z

′Πz

Table 3: Cost of hashing strategies with three classes of seed. L:
size of query sequence; w: total seed weight. By using efficient
coding, only one entry is needed at each offset for a single
transition seed.

1 BLASTZ seed 4 transition seeds
with m = 2

hash tables (lookups) 1 4
entries per hash table wL L

Comparison of score seeds designed for noncoding HSPsFigure 3
Comparison of score seeds designed for noncoding
HSPs. Comparison of score seeds using different score
matrices (M0, Mz and Mnc). The leftmost seed on each ROC
curve has weight 12, while subsequent seeds decrease w by
one. Score thresholds were chosen to produce similar fp
rates for seeds of the same weight. Curves corresponding to
score seeds under Mnc and Mz nearly coincide.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5e-06 1e-05 1.5e-05 2e-05

S
en

si
tiv

ity

False positive rate

score matrix M0
score matrix Mz

score matrix Mnc
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
one transition seed differs from the correspond-

ing πzi ∈ ΠZ in a single position.

Construction of test alignment set
We need a set of alignments on which to evaluate seed
sensitivity. Many previous papers [4,7,9,10,14] have
derived alignments from abundant sources of coding
DNA, such as ESTs. In this work, however, we also wish to
investigate the ability of seeds to detect alignments in
noncoding DNA, in particular in regions of long-range
noncoding sequence orthology in eukaryotes. We there-
fore constructed a test set, based on alignments of two
mammalian genomes, that is biased against inclusion of
alignments involving coding DNA.

Ideally, existing seeded alignment tools should not be
directly applied to extract alignments for our test set, since
any seed used by these tools would have perfect sensitivity
to these alignments and would therefore introduce a
strong bias. For example, Brejova et al. observed that their
direct use of BLASTP made all the alignments in their
training set contain the default BLASTP seed [14]. How-
ever, direct application of the Smith-Waterman algorithm
[21] to sample alignments from noncoding regions
between a pair of large genomes is not computationally
feasible. We therefore combine seed heuristics and
dynamic programming such that rigorous, seed-free

dynamic programming is only applied on small sequence
blocks.

Our construction procedure is as follows. It takes as input
a pair of genomes and produces a set of ungapped local
alignments, or high-scoring segment pairs (HSPs).

1. Extract orthologous pairs of regions from the human
and mouse genomes according to a provided synteny
table from the UCSC Genome Browser [13,22].

2. Remove from these regions any DNA annotated as cod-
ing for protein, according to the Twinscan gene structure
predictor [23] and the known genes. Also, remove low-
complexity DNA and known interspersed repeats.

3. Apply a seeded alignment tool on every pair of orthol-
ogous regions to extract gapped local alignments between
them. We use a Karlin-Altschul E-value of 1.0 to keep
more potential HSPs.

4. From the gapped local alignments for each region pair,
chain together a subset of alignments whose total score is
maximized under the following constraints: 1) Between
any two alignments in the subset, one alignment's starting
indices in two sequences cannot be smaller than another
alignment's ending indices. 2) All the alignments in the
subset must have the same orientation. This subset can be
obtained using, e.g., the longest increasing subsequence
algorithm given in [24].

5. Create small blocks (200 K × 200 K) within each pair of
regions that cover the optimal chain obtained in step 4. To
avoid missing HSPs at block boundaries, adjacent blocks
overlap slightly.

6. For every block created in step 5, apply an ungapped
version of the SIM algorithm [25] to extract all HSPs in the
block with E-value ≤ 0.001.

Fig. 1 illustrates a set of blocks created by the above pro-
cedure.

Results
In this section, we compare the sensitivities and fp rates of
different types of seed on sets of DNA sequence align-
ments. We work principally with our set of noncoding-
biased alignments, described in the previous section, but
we also measure performance on a set of EST-derived
alignments, which has a stronger coding bias.

The experimental framework and data sources are
described in detail in Appendix 1. All the seeds tested
below were designed by the Mandala software using a

Markov alignment model inferred from the test set.

′ ∈ ′π zi zΠ



Comparison of transition seeds on EST sequence alignmentFigure 4
Comparison of transition seeds on EST sequence
alignment. Each ROC curve shows seeds with the same
transition weight m but different match weights w. Each
curve starts with a seed with w + m = 11 and then decreases
w while holding m constant. Each point represents a locally
optimal set of seeds. A ROC curve for single basic seeds is
also plotted for a comparison.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05 3.5e-05 4e-05

S
en

si
tiv

ity

False positive rate

BLASTZ seed
One transition seed,m=2
One transition seed,m=3

Two transition seeds,m=2
One basic seed
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
Although Mandala does not guarantee global optimality
of the seeds it chooses, the seeds are locally near-optimal
given their design constraints.

We illustrate the behaviors of different seed types using
ROC curves to facilitate comparing the sensitivities of dif-
ferent seeds at the same fp rate (or vice versa). We report
empirically measured sensitivities and fp rates for all seed
types. However, as described above, we only used the first
term of Equation (3) to compute the fp rates for transition
seed sets, since a fully empirical rate computation proved
computationally difficult. Fortunately, for the seed sets
studied here, each component seed tends to inspect differ-
ent groups of positions [8], and so their union has a much
larger weight than any individual seed. Hence, the first
term of Equation (3) indeed dominates. By estimating
each term of Equation (3) using the dynamic program-
ming method, we estimate that this simplification intro-
duces at most 10% error in our fp rates for transition seed
sets.

Performance of transition seeds on noncoding test set
We first investigated how the transition weight m and the
set size n affect the performance of transition seeds.
According to our definitions of w and m for transition
seeds, a transition position allows twice as many base
pairs as a match position. Thus, the transition seeds with
same value of w+m/2 have comparable specificity. We first

designed experiments to investigate the sensitivity/specif-
icity tradeoff by increasing m while keeping w + m/2
unchanged. Secondly, we did experiments using multiple
transition seeds.

Fig. 2 compares the performance of two types of single
transition seeds with m = 0 (basic seeds) and m = 2, as well
as two transition seeds, four transition seeds, and one
BLASTZ seed. On our test set, increasing the number n of
simultaneous transition seeds used significantly improves
seed performance, with the ROC curves for larger n dom-
inating those for smaller n. These results are consistent
with those observed for basic seeds in previous work (e.g.,
[6]). Comparison between single transition seeds with m
= 0 and m = 2 shows that increasing m for fixed n + m/2
also improves seed performance.

The BLASTZ seed tested in Fig. 2 introduces only a single
transition; however, the position of that transition is not
fixed, in contrast to the other seeds tested in this experi-
ment. Our results indicate that allowing such "freedom of
movement" is highly effective: the single BLASTZ seed per-
formed at least as well as a pair of seeds with fixed transi-
tions, and its performance approaches that of four such
seeds. Moreover, as we discuss below, there are algorith-
mic reasons to prefer the BLASTZ seed in practice.

Performance of score seeds on noncoding test set
Recall that a score seed is a pair <π, T>, where π is a basic
seed and T is a score threshold. The score of a residue pair
comes from a score matrix M. In this section, we investi-
gate the impact of the matrix M on the performance of a
score seed and attempt to evaluate which properties of
alignments this matrix should capture to optimize its sen-
sitivity/specificity tradeoff.

Design of score matrices
In similarity search, the matrix M distinguishes the align-
ments being sought based on their unusual residue com-
position. We constructed matrices that captured three
increasingly refined models of this composition, to quan-
tify which signals were most important to score seed per-
formance.

First, we designed our own symmetric score matrix Mnc,

based on the log-likelihood ratio methodology described

in [26,27]. Suppose model describes the distribution
of residue pairs for an alignment. For each ordered pair of

residues i and j, is the frequency of the pair (i,j)

in model . Let



Pr (,) i j



P  
(,) Pr(,) Pr(,).i j i j j i= + ()4

Comparison of score seeds on EST sequence alignmentFigure 5
Comparison of score seeds on EST sequence align-
ment. Comparison of score seeds on EST sequence align-
ment using different score matrices (M0, Mz). The leftmost
seed on each ROC curve has weight 11, while subsequent
seeds decrease w by one. Score thresholds were chosen to
produce similar fp rates for seeds of the same weight.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05

S
en

si
tiv

ity

False positive rate

score matrix M0
score matrix Mz
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
Suppose further that b describes the distribution of

pairs in a random alignment, and define

A score matrix can be formed from the LLR(i,j) values by
multiplying them by a suitably large constant and round-
ing the results to integers. Our matrix Mnc was derived
using probabilities estimated from our test alignments
and the underlying sequences; it is given in Table 2.

We then designed two simplified matrices that used more
limited information about the alignments to be found.
Matrix M0, which follows the existing practice of NCBI
BLASTN, uses only the overall probability of residue
matches to recognize meaningful alignments; that is, all
its diagonal entries are the same, as are all its off-diagonal
entries. Matrix Mz elaborates on M0 by assigning separate
scores to matches, transitions, and transversions, but does
not distinguish between all residue pairs as does the full
Mnc.

Impact of score matrices on score seed performance
We compared the performance, on our noncoding test set,
of score seeds based on the matrices Mnc, Mz, and M0. We
used a common, optimized basic seed π as the underlying
seed for all score seeds with a given weight. Although π
was not optimized individually based on different matri-
ces, experiments showed that doing so did not improve
performance vs. using a single common seed for all matri-
ces.

The specificity of a score seed is determined in part by its
score threshold. The thresholds for seeds under Mz were
set such that at most one transition and no transversion
was allowed among the inspected positions; hence, these
score seeds behave equivalently to BLASTZ seeds. The
thresholds for seeds using M0 and Mnc were set so as to
obtain roughly comparable fp rates to the corresponding
seeds using Mz. These choices resulted in score seeds with
practically useful fp rates.

Fig. 3 gives the results of our comparison. Score seeds
based on the matrix Mz, which distinguishes transitions
from transversions, dominated seeds based on M0, exhib-

iting superior sensitivity at comparable specificity.
Because the underlying basic seeds were unchanged, the
increase in performance is attributable to the extra infor-
mation in matrix Mz. In contrast, score seeds using the full
matrix Mnc exhibited performance indistinguishable from
that of seeds using Mz.

We infer that, with respect to our test set and choices of
threshold, the extra information captured by the more
complex Mnc does not yield extra benefits for score seed
design, vs. simply using the transition/transversion dis-
tinction encoded in Mz. While we might observe different
results with substantially less stringent score thresholds,
these thresholds would likely result in fp rates too high for
the resulting score seeds to be useful in practice.

Comparison to coding-biased DNA – EST sequence
alignments
Our results thus far have been obtained using a data set
biased against alignments of coding sequences. To test
whether these results apply to a data set with the opposite
bias, we repeated the experiments of the last two sections
on a set of alignments between human and mouse
expressed sequence tags (EST). These alignments are by
definition of transcribed DNA and contain a large propor-
tion of coding DNA.

Fig. 4 reports results from the comparison of basic, transi-
tion, and BLASTZ seeds, while Fig. 5 reports results for the
comparison of score seeds. In contrast to our previous
results, we found that BLASTZ and transition seeds con-
ferred no benefit over the same number of basic seeds, and
that the Mz matrix did not improve on the simpler M0
matrix. Hence, our seeds appeared to behave qualitatively
differently on coding DNA alignments.

To explain the different results for our two alignment sets,
we must look to the statistical properties of their constitu-
ent HSPs. Firstly, EST alignments were better conserved
overall (77%) than noncoding alignments (74%), blunt-
ing the advantage of any seed design that relies on infor-
mation at non-matching positions. Second, among all
non-matching positions in the EST alignments, 62% were
transversions, vs. 38% transitions. The corresponding
numbers for the noncoding test set were 40% transver-
sions and 60% transitions. Hence, we expect that seed
design strategies intended to exploit the higher frequency
of transitions in conserved regions will fail for the EST
alignment set, in which this signal is absent! These obser-
vations agree with and generalize those of [15] for a single
transition seed.

Computational costs of BLASTZ vs. transition seeds
The initial stage of seeded alignment search tools usually
relies on a hashing strategy to detect all seed matches. For



LLR i j P i j P i j(,) log[(,)/ (,)].= () b
5

Table 4: Locally optimal single BLASTZ seeds for noncoding
HSPs. A transition is allowed in any one of the inspected
positions listed for a seed.

(m + w) Seed

12 {0,1,2,4,5,9,11,12,15,16,17,18}
11 {0,1,2,3,7,10,11,13,15,16,17}
10 {0,1,2,5,6,8,12,13,14,15}
9 {0,1,2,6,7,9,10,12,13}
Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
a basic seed, a query of size L (L <<> 4w for DNA) generates
a hash table containing Θ(L) entries, corresponding to the
sets of residues inspected by the seed at each position of
the query. A search using n simultaneous basic seeds need
n such hash tables. As n increases, the storage for these
tables, as well as the cost of checking several tables when
searching at each position of a database, may become pro-
hibitively large.

A neighborhood strategy may be used to build hash tables
for score seeds. For every offset in L, besides the original
table entry extracted from the query, an entry is also cre-
ated for each string that initiates a seed match with the
query. All the strings that initiate a seed match with a
given string constitute a neighborhood of that string.
BLASTP's hash lookup stage provides one example of this
well-known strategy. If the average neighborhood size for
a single query offset is k, the number of entries in the hash
table is Θ(kL). Dynamic programming can be used to esti-
mate the average neighborhood size based on the weight
w of a score seed, the score matrix M, and the score thresh-
old T. BLASTZ seeds can be accommodated as a special
case of this neighborhood strategy.

A neighborhood strategy can also be used to build hash
tables for transition seeds. However, a more space- and
time-efficient indexing method exists for seeds with tran-
sitions in fixed positions. By using an encoding of nucle-
otides for which A/T and C/G differ in the same bit
position (e.g., A-00, C-01, G-10 and T-11), we can avoid
neighborhood generation altogether for these seeds.

Table 3 compares the numbers and asymptotic sizes of
hash tables for specific cases of each seed type with the
best performance on our noncoding data set. For each
seed type, we consider the hashing strategy for it as out-
lined above.

In a high-performance DNA similarity search application,
much time is spent simply hashing the query. Profiling
NCBI BLASTN during a search of the human genome
against a moderately large (25 kb) query sequence shows
that roughly half the search is spent finding seed matches.
Hence, a performance comparison between a search using
several hash tables and one using a single, denser table
will favor the latter, provided one approach does not gen-
erate vastly more false positive seed matches than the
other. In the case of one BLASTZ seed (one table) vs. four
transition seeds (four tables), we found above that these
two designs have roughly comparable false positive rates;
hence, a comparison of computational cost will favor the
BLASTZ seed.

Discussion and Conclusion
Seed design is an important aspect of seeded alignment. A
good seed should exhibit a good tradeoff between sensi-
tivity and specificity on the sequence alignments of inter-
est, as well as being compatible with an overall efficient
search implementation. In this work, we have evaluated
the relative performance of different types of seed – basic,
transition, BLASTZ, and score – on sets of alignments
biased both toward and against conserved coding DNA.
Our results should help to guide designers of seeded align-
ment tools in navigating the large space of possible search
heuristics.

We draw from our results several qualitative observations
for designing seeds for use in genomic DNA comparisons.

1. To detect alignments in primarily noncoding regions,
allowing transitions in a seed, rather than just matches
and mismatches, significantly improves a seed's perform-
ance.

2. When transitions represent an important signal, allow-
ing them to occur at any position of the seed, rather than
fixing them, confers a substantial cost/sensitivity advan-
tage.

3. Using a score seed with a matrix that distinguishes
almost every base pair, such as Mnc, appears to confer no
benefit over a BLASTZ seed in finding noncoding align-
ments.

4. When transitions are not an important signal for recog-
nizing alignments, the above results do not apply. In par-
ticular, alignments of ESTs, which are biased in favor of
coding DNA, do not appear to exhibit this signal.

Overall, our work emphasizes the importance of design-
ing a seeded alignment strategy to fit the search objective,
using appropriate design tools and representative test sets
of alignments. For DNA, knowing the relative frequencies
of transitions and transversions is particularly important
to the design process.

As part of this work, we have extended our Mandala seed
design software to design transition and BLASTZ-style
seeds. Table 4 gives optimized BLASTZ seeds for several
common search weights as produced by our software.

Seeded alignment heuristics are important not only for
database search applications, such as BLAST, but also for
whole-genome and multiple sequence alignment tools.
Currently, pairwise seeded alignment is used to construct
anchors [2,3] around which to build larger or multiple
alignments. Alternatively, one could use seed-like heuris-
tics to recognize significant similarities in three or more
Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
sequences at once, using the results to build a more accu-
rate set of anchors. Designing such heuristics is an inter-
esting problem for future work.

Authors' contributions
JB designed the original Mandala software, and both
authors contributed significantly to its implementation.
YS is responsible for the experiments and extensions
described in this paper. All authors read and approved the
final manuscript.

Appendix 1: Experimental framework
We derived our noncoding-biased test set from align-
ments between the human and mouse genomes. Both
genomes (builds hg16 and mm4), along with synteny and
known gene tables, were downloaded from the UCSC
Genome Browser [13,22]. Seed performance was com-
pared on alignments between annotated synteny blocks in
these genomes. We removed interspersed repeats, low
complexity DNA, and Twinscan-annotated coding DNA
from these regions before comparison. About 1.4 million
ungapped HSPs (high-scoring segment pairs) were
extracted by the procedure described in the Methods sec-
tion. HSP lengths ranged from 26 to 1164 base pairs with
an average of 83. Percent identities ranged from 50% to
100% with an average of 74%.

To obtain coding-biased alignments, we followed a proce-
dure similar to that used in [9], using human and mouse
EST sequences from NCBI GenBank. To maintain a tracta-
ble problem size, we used two sets of ESTs, released in
March 2005, that contain all new or revised human and
mouse EST sequences within 30 days before the release
date. There are 16065 human EST sequences and 4228
mouse EST sequences in these two sets. We applied an
ungapped version of the SIM program to derive all the
ungapped alignments with a score threshold 16 between
all pairs of human EST sequences and mouse EST
sequences under a scoring system with +1/-1 for match/
mismatch. About 2.5 million HSPs with average length 35
base pairs were derived, with an average identity of 77%.

From our HSPs on noncoding regions, we trained a first-

order Markov alignment model . For coding HSPs, it is
more appropriate to use a nonstationary Markov model or
HMM [7,14] so that the codon structure can be incorpo-
rated into the model. However, since our current seed
design tool Mandala does not yet support nonstationary
Markov models for transition seeds, we simply trained a
third-order Markov model on EST alignments. The back-
ground model used to estimate fp rates was computed by
combining two third-order Markov sequence models
trained on the human and mouse genomes, respectively.

Acknowledgements
We thank our anonymous referees for many helpful suggestions to improve
the manuscript. This work was supported by NSF CAREER Grant DBI-
0237903.

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local

alignment search tool. Journal of Molecular Biology 1990,
215:403-410.

2. Batzoglou S, Pachter L, Mesirov JP, Berger B, Lander ES: Human and
Mouse Gene Structure: Comparative Analysis and Applica-
tion to Exon Prediction. Genome Research 2000, 10:950-958.

3. Brudno M, Chapman M, Gottgens B, Batzoglou S, Morgenstern B:
Fast and sensitive multiple alignment of large genomic
sequences. BMC Bioinformatics 2003, 4:.

4. Ma B, Tromp J, Li M: PatternHunter: faster and more sensitive
homology search. Bioinformatics 2002, 18(3):440-445.

5. Califano A, Rigoutsos I: FLASH: a fast look-up algorithm for
string homology. Proceedings of the First International Conference on
Intelligent Systems for Molecular Biology (ISMB '93) 1993:56-64.

6. Buhler J, Keich U, Sun Y: Designing seeds for similarity search in
genomic DNA. In Proceedings of the seventh annual international con-
ference on Computational molecular biology ACM Press; 2003:67-75.

7. Brejova B, Brown DG, Vinar T: Optimal Spaced Seeds for Hid-
den Markov Models, with Application to Homologous Cod-
ing Regions. In Combinatorial Pattern Matching, 14th Annual
Symposium (CPM), Volume 2676 of Lecture Notes in Computer Science
Edited by: Baeza-Yates R, Chavez E, Crochemore M. Morelia, Micho-
acan, Mexico: Springer; 2003:42-54.

8. Sun Y, Buhler J: Designing multiple simultaneous seeds for
DNA similarity search. In Proceedings of the eighth annual interna-
tional conference on Computational molecular biology(RECOMB '04) ACM
Press; 2004:76-84.

9. Li M, Ma B, Kisman D, Tromp J: PatternHunter II: Highly Sensi-
tive and Fast Homology Search. Journal of Bioinformatics and Com-
putational Biology 2004, 2(3):417-439. [Early version in GIW 2003.]

10. Xu J, Brown DG, Li M, Ma B: Optimizing multiple spaced seeds
for homology search. In Combinatorial Pattern Matching, 15th
Annual Symposium (CPM 2004), Volume 3109 of Lecture Notes in Com-
puter Science Springer; 2004:47-58.

11. Kucherov G, Noe L, Roytberg M: Multiseed Lossless Filtration.
IEEE/ACM Transactions on Computational Biology and Bioinformatics
2005, 2:51-61.

12. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC,
Haussler D, Miller W: Human-mouse alignments with
BLASTZ. Genome Research 2003, 13:103-107.

13. Kent WJ: BLAT-the BLAST-like Alignment Tool. Genome
Research 2002, 12:656-664.

14. Brejova B, Brown DG, Vinar T: Vector seeds: an extension to
spaced seeds allows substantial improvements in sensitivity
and specificity. In Algorithms and Bioinformatics: 3rd International
Workshop (WABI), Volume 2812 of Lecture Notes in Bioinformatics Edited
by: Benson G, Page R. Budapest, Hungary: Springer; 2003:39-54.

15. Noe L, Kucherov G: Improved hit criteria for DNA local align-
ment. BMC Bioinformatics 2004, 5:.

16. Jareborg N, Birney E, Durbin R: Comparative Analysis of Non-
coding Regions of 77 Orthologous Mouse and Human Gene
Pairs. Genome Research 1999, 9:815-824.

17. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Program NCS,
Green ED, Sidow A, Batzoglou S: LAGAN and Multi-LAGAN:
Efficient Tools for Large-Scale Multiple Alignment of
Genomic DNA. Genome Research 2003, 13(4):721-731.

18. Bray N, Pachter L: MAVID: Constrained ancestral alignment of
multiple sequences. Genome Research 2004, 14:693-699.

19. Brown DG: Multiple Vector Seeds for Protein Alignment. In
Algorithms in Bioinformatics, 4th International Workshop (WABI), Volume
3240 of Lecture Notes in Bioinformatics Edited by: Jonassen I, Kim J. Ber-
gen, Norway: Springer; 2004:170-181.

20. Choi KP, Zhang L: Sensitivity analysis and efficient method for
identifying optimal spaced seeds. Journal of Computer and System
Sciences 2004, 68:22-40.

21. Smith TF, Waterman MS: Identification of Common Molecular
Subsequences. Journal of Molecular Biology 1981, 147:195-197.



Page 11 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14693042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14693042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14693042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238

BMC Bioinformatics 2006, 7:133 http://www.biomedcentral.com/1471-2105/7/133
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

22. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D: The human genome browser at UCSC. Genome
Research 2002, 12:996-1006.

23. Korf I, Flicek P, Duan D, Brent MR: Integrating genomic homol-
ogy into gene structure prediction. Bioinformatics 2001, 17(17
Suppl):S140-8.

24. Gusfield D: Algorithms on Strings, Trees, and Sequences. Computer Sci-
ence and Computational Biology UK: Cambridge University Press; 1997.

25. Huang X, Miller W: A time-efficient, linear-space local similar-
ity algorithm. Advances in Applied Mathematics 1991, 12:337-357.

26. Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary
change in proteins. Atlas of Protein Sequence and Structure 1978,
5:345-352.

27. States DJ, Gish W, Altschul SF: Improved sensitivity of nucleic
acid database searches using application-specific scoring
matrices. Methods 1991, 3:66-70.
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473003
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Seed design for DNA sequence alignment
	Motivation for our work
	Formal definitions of seeds

	Methods
	Seed sensitivity and specificity
	Computation of fp rates
	Fp rate for a score seed
	Fp rate for multiple simultaneous seeds
	Comparison of predicted vs. actual fp rates

	Searching for an optimal set of transition seeds
	Construction of test alignment set

	Results
	Performance of transition seeds on noncoding test set
	Performance of score seeds on noncoding test set
	Design of score matrices
	Impact of score matrices on score seed performance

	Comparison to coding-biased DNA - EST sequence alignments
	Computational costs of BLASTZ vs. transition seeds

	Discussion and Conclusion
	Authors' contributions
	Appendix 1: Experimental framework
	Acknowledgements
	References

