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Abstract

Background: In bio-systems, genes, proteins and compounds are related to each other, thus
forming complex networks. Although each organism has its individual network, some organisms
contain common sub-networks based on function. Given a certain sub-network, the distribution of
organisms common to it represents the diversity of its function.

Results: We extracted such "common" sub-networks, defined as "phylogenetic network
modules," using phylogenetic profiles and cluster analysis. The enzymes in the same "phylogenetic
network module” have similar phylogenetic profiles and related functions. These modules are
shown to be phylogenetic building blocks. Furthermore, the network of the modules illustrated
hierarchical feature as well as the network of enzymes involved in the metabolism.

Conclusion: We conclude that phylogenetic network modules are evolutionary conserved
functional units in the metabolic network. We claim that our concept of phylogenetic modules

provides a more accurate understanding of the evolution of biological networks.

Background

Bio-systems are constructed by various relationships
between genes, compounds and proteins. These elements
are intertwined, thus forming a complex network. Such
genetic or physical associations contribute to the compli-
cated cellular functions.

In order to characterize whole networks or to find
unknown interactions between elements (gene/com-
pound/protein), many research groups have applied the
integration of qualitatively different interactions. For
example, Rison et al attempted to find unknown func-
tions of genes using genome location, sequence similarity,
and relative position in the metabolic network [1], and
Yamanishi et al similarly attempted to apply a kernel
method [2]. Such integrative methods infer common fea-

tures and new categories of genes. Classically, such new
categories were determined manually using expert knowl-
edge. The KEGG metabolic pathway [3] is one such exam-
ple. On the other hand, recent studies have attempted to
define new categories automatically using comprehensive
data sets such as microarray data and metabolic networks
[4]. Such analyses can classify elements by globally assess-
ing many relationships. Many research groups advocate
various functional categories of genes and proteins, such
as transcriptional clusters [5,6], protein complexes [7],
metabolic network [3,8], and others [9,10].

From the perspective of graph theory, it is suggested that
networks composed of genes and proteins should have
modularity. Ravasz et al suggested a hierarchical network
model incorporating modularity in the metabolic net-
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work [11]. Following this work, studies were attempted
using the modularity in various networks and topological
features [12]. However, these topological investigations
were not based on phylogeny; Snel et al pointed out prob-
lems in which they found conflicts between evolution and
function [13].

In order to resolve these conflicts, the main purpose of our
research is the extraction of the phylogenetic primary
units of the metabolic network for understanding the evo-
lutionary process. To our knowledge, we were the first to
attempt to extract evolution-based enzyme modules. In
our previous work, we attempted to extract phylogenetic
units using prokaryotic genomes [14]. Here, we expanded
the analysis by adding eukaryotic data, and by considering
the topological properties of the network of phylogenetic
units.

The metabolic network was considered not only to be
composed of several particular categories, but also to be a
large network consisting of chemical compounds con-
nected by enzymes. For example, KEGG/PATHWAY is a
collection of manually drawn pathway maps. However,
we can regard all of these pathway maps as a "metabolic
network." Our analysis is based on the KEGG/PATHWAY
database, which integrates the metabolic network from
many organisms. Therefore, in this paper, we use the term
"metabolic network" to refer to this integrated metabolic
network. Therefore, some parts of the metabolic network
are found only in particular organisms, and the number of
organisms varies depending on the sub-networks. The
phylogenetic profile is very useful to deal with such diver-
sity of enzymes. The phylogenetic profile of an enzyme is
the string that encodes the presence or absence of the
enzyme in the fully sequenced genome [15].

Using the enzyme connectivity in the metabolic network
and the similarity between the phylogenetic profiles of the
enzymes, we extracted enzyme modules and define them
as "phylogenetic network modules." The enzymes in the
same phylogenetic network module have similar phyloge-
netic profiles and are located close to one another in the
metabolic network. In other words, these enzymes behave
in a similar way in the evolutionary process of the meta-
bolic network. Furthermore, we found a hierarchy of phy-
logenetic network modules. The method overview is
summarized in Figure 1. Our result fits the concept of the
network model of Ravasz et al [11]. Our phylogenetic net-
work modules are based on the simultaneous behaviour
of multiple enzymes in the evolutionary process of the
metabolic network. This allows for the detailed under-
standing of metabolic network evolution.
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Results

Pathway distance and the similarity of phylogenetic
profiles

Figure 2-A illustrates the negative correlation between
pathway distance and the similarity of phylogenetic pro-
files (white points). We use the Jaccard coefficient (JC) as
the similarity score of phylogenetic profiles of enzymes,
and pathway distance is defined as the smallest number of
steps between two enzymes in the metabolic network. The
figure shows that the longer the pathway distance, the
smaller the average similarity. In fact, two adjacent
enzymes in the network have the highest average similar-
ity score. We generated randomly relabeled networks 100
times, and plotted their average for comparison (see
Method section). Contrary to the actual metabolic net-
work, no pattern was observed in the JC average of rela-
beled networks (black points in Fig. 2-A). The JC average
of relabeled networks is constant approximately 0.14,
which is equal to the average similarity score when com-
paring all profiles against each other. We also performed
the same analysis using correlation coefficient (CC) as a
different similarity measure, which resulted in a similar
trend to that of JC (see additional file 1).

Distribution of the number of enzymes included in a
module

The white points in Figure 2-B indicate the frequency of
the "phylogenetic network modules" according to their
sizes (the number of enzymes). The horizontal axis repre-
sents the number of enzymes in a module, and the vertical
axis represents its frequency. In total, 1179 modules were
extracted, but over 900 modules contain only one
enzyme. There are a few large modules, and many small
modules. Similar results were obtained using different dis-
tance measures such as correlation coefficient and Ham-
ming distance (data not shown).

Furthermore, in order to prove that the enzymes form
module structures in the metabolic network, we com-
pared the frequency with the average of 100 randomly
relabeled networks, shown as the black points in Figure 2-
B. The difference of slope indicates that larger modules
tend to appear more frequently in actual networks; that is,
they hardly appear in the average of relabeled networks.
This implies that enzymes with similar phylogenetic pro-
files tend to aggregate in the network, and that phyloge-
netic module structures are indeed present in the
metabolic network.

Comparing modules with the categories in the KEGG/
PATHWAY database

KEGG/PATHWAY is a collection of manually drawn dia-
grams called the KEGG reference pathway diagrams
(maps), each corresponding to a known network of func-
tional significance. These diagrams are drawn manually
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Constructing phylogenetic
profiles of enzymes.

Complete linkage  clustering
analysis using the Jaccard
coefficient as the similarity between
phylogenetic profiles.

Superimposing enzyme connectivity
in the metabolic network.

Re-clustring in each cluster
according to enzyme connectivity.
Extraction of “phylogenetic network
modules.”

Constructing the network of the
“phylogenetic network modules”

Overview of extracting the phylogenetic network modules. Black dots represent enzymes, and lines between the dots
represent enzyme connectivity in the metabolic network (common metabolites in the enzyme reactions). Circles with solid
line are the enzymes cluster from the result of complete linkage clustering. Circles with doted line are the phylogenetic net-

work module.
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Figure 2

A: Relationship between the average of the Jaccard
coefficient (JC) and the pathway distance, B: The dis-
tribution of the number of enzymes in a "phyloge-
netic network module". A: This figure indicates the
transition of the JC average according to pathway distance.
Pathway distance is defined as the smallest number of steps
between two enzymes in the metabolic network. The white
and black circles correspond to an actual network and the
average of relabeled networks, respectively. The obvious dif-
ference appears in the area where pathway distance is less
than 5 steps. B: This figure shows the difference between the
actual and the average of relabeled networks in terms of the
number of enzymes in a module. White dots correspond to
the actual modules, and the black ones correspond to the
modules generated from relabeled networks. The equations
in the upper portion give the slope of the line fitted by the
least-squares method.

representing particular functions of biological processes.
We mapped our phylogenetic network modules onto
these diagrams.

http://www.biomedcentral.com/1471-2105/7/130

The upper portion of Figure 3 illustrates an example of
mapping phylogenetic network modules onto a diagram
(Lysine biosynthesis). Gray colored enzymes are con-
tained in the organisms in the KEGG database. Enzymes
surrounded by a solid line represent a part of a particular
phylogenetic network module, each corresponding to dif-
ferent phylogenetic and functional features.

Module 1 is contained in many organisms, spreading to
several amino acid biosynthesis pathways such as histi-
dine metabolism (lower part of Figure 3). Module 2 is spe-
cialized to prokaryotes, so it links to the prokaryote-
specific Peptidoglycan biosynthesis pathway. Module 3 is
also contained in relatively many organisms, and module
4 is specialized for eukaryotes. Almost all of the diagrams
in KEGG/PATHWAY include multiple phylogenetic net-
work modules, and some modules spread to many dia-
grams. In fact, the lysine biosynthesis pathway contains
several modules, and module 1 and 2 spread to other dia-
grams. Thus, using our phylogenetic network modules, we
could detect phylogenetic relationships between known
functional categories (across pathways).

Global network of phylogenetic network modules

Figure 4 illustrates the largest component of our global
module network which includes 1130 of the 1179 mod-
ules. This is the reconstruction of a whole metabolic net-
work by our phylogenetic network modules, so each node
corresponds to a module, and each edge corresponds to
the relationship between them. The size of a node indi-
cates the number of enzymes included in the module, and
its color indicates the number of organisms associated
with the module.

Three features are conspicuous in this figure. The first is a
large central module. All of the modules seem to gather
around the largest red module as a network core. The big
module contains 51 enzymes that spread to a large part of
nucleotide metabolism, and a part of amino acid metabo-
lism. Furthermore, this is contained in almost all organ-
isms so that it is not surprising that the module constructs
a core of the metabolic network. This module connects
other modules with each other and sustains the whole
network. Additionally, relatively large modules are also
observed in parts of the metabolic network: some glycan
related pathway diagrams for eukaryotes and a part of
peptidoglycan biosynthesis for bacteria.

As a second feature, modules also aggregate. In Figure 4,
some of the modules tend to assemble together into clus-
ters. The dotted circles in the figure indicate the locations
of what we call "super-modules," which are modules that
are relatively aggregated. The relationship between mod-
ules in this figure is based on the connectivity of existing
enzymes in the metabolic network, so the "super-mod-
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Figure 3

Example of the network module. This figure shows the lysine biosynthesis pathway. Enzymes surrounded by the solid lines
represent parts of particular modules. The other gray colored enzymes correspond to singleton modules, which are those that
contain only one enzyme. Lysine biosynthesis includes multiple modules, which also spread to the other map categories.

ules" represent modules of related functions even though
some spread to multiple pathway diagrams (only repre-
sentative diagrams are annotated in Figure 4). For exam-

ple, the super module structure just above the network
core (the biggest red module) in Figure 4 is composed of
many diagrams of Amino acid metabolism, and it con-
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Amino Acid Metabolism
(Cystein metabolism)

Amino Acid Metabolism
(Valine,leucine and isoleucine biosynthesis)

(Ubiquinone biosynthesis)
%, (Oxidative phosphorylation)

Biodegradation of Xenobiotics
(Benzoate degradation via CoA ligation)

The number of organisms

59 30 2

Lipid Metabolism

The largest component of the module network. Each node and edge represents an individual module and reaction on
the network. The size and the color of the node correspond to the number of enzymes and the number of organisms included
in the module, respectively. The dotted circles indicate the locations where modules relatively aggregate. Modules pointed out
by the red arrows are obvious linkers, which seem to play a role in connecting modules.

tains many links to other modules. Basically, the enzymes
in this super-module are highly conserved and are closely
related to those in the network core. Thus, we claim that
enzymes in these modules use many metabolites synthe-
sized in the core structure and that they also supply many
metabolites to the other modules. The third feature is that
"linker" modules are scattered around the network. As a
topological feature, they have relatively low clustering
coefficients compared to the other modules with the same
degree (see Methods section). Therefore they do not
belong to any particular module cluster, and instead, link
module clusters to each other. We found 30 linker mod-
ules by the criterion defined in the Methods section. Bio-
logically, linker modules tend to be intermediates for the

input and output compounds of functional modules. For
example, the linker module indicated by the right arrow
in Figure 4 connects Amino Acid Metabolism, Lipid
Metabolism, as well as a few others. This module is com-
posed of three enzymes (3-hydoroxyacyl-CoA dehydroge-
nase, acyl-CoA dehydorogenase and enoyl-CoA hydrase)
that catalyze reactions between acetoacetyl-CoA and crot-
onyl-CoA. This reaction chain produces acetyl-CoA in
Amino Acid Metabolism and consumes it in Lipid Metab-
olism, thus linking these two pathways together. As
another example, the module indicated by the left arrow
in Figure 4 contains three enzymes, glucose-6-phosphate
isomerase, phosphoglucomutase and glucose-6-phos-
phate 1-dehydrogenase. Although these enzymes play
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roles in Glycolysis, they connect compounds to other Car-
bohydrate Metabolism pathways such as Aminosugars
metabolism and Fructose and mannose metabolism.

Discussion

Functionally related phylogenetic module

Known functional modules do not completely coincide
with evolutionary modules. Snel et al. investigated
whether known functional modules are also evolutionary
modules and suggested that all the members of the same
functional module do not have co-evolutionary tenden-
cies [13]. This means that evolutionary modules are not in
complete agreement with functional modules.

Basically, we agree with Snel's opinion because of the dif-
ference of enzyme distributions in the phylogenetic net-
work modules due to the addition of enzyme connectivity
in the metabolic network. Before adding information of
enzyme connectivity, enzyme clusters were constructed
using only the similarity between phylogenetic profiles
(Fig. 1B). After that, enzymes were re-clustered within
each cluster using connectivity in the metabolic network
(Fig. 1C,D,E). We call these sub-clusters phylogenetic net-
work modules. Obviously, the number of enzymes in a
phylogenetic network module was less than those in the
original clusters. It is clear that enzyme connectivity in the
metabolic network subdivides the enzyme clusters. This
explains precisely the conflict between functional mod-
ules and phylogenetic modules. By definition, the phylo-
genetic network modules are the evolutionarily conserved
and functionally related enzyme modules in the meta-
bolic pathway. As a result, we claim that the phylogenetic
network module is the basic functional unit in the meta-
bolic pathway.

Modularity and hierarchy in the evolutionary process of
the metabolic network

Historically, there have been many analyses of network
evolution [16], which has led to advanced theories on net-
work evolution. Two major assumptions are generally
thought to be the main contenders. One is a retrograde
model [17], and the other is a patchwork model [18]. In
the retrograde model, network evolves "backwards" from
a key metabolite. This model expands the network due to
the acquirement of new enzymes, which synthesize a mol-
ecule used up in the environment from other molecules.
On the other hand, in the patchwork model, network evo-
lution is based on the concept that enzymes exhibit broad
substrate specificity and catalyze multiple reactions. Such
enzymes with broad specificity form reaction chains to a
key metabolite. The important thing is that those two
models are not mutually exclusive, and they are reviewed
in [19].

http://www.biomedcentral.com/1471-2105/7/130

In any case, these evolutionary models are based on the
relationship between enzymes and substrates (metabo-
lites). In this paper, phylogenetic network module corre-
sponds to one function which is a group of chemical
reactions catalyzing metabolites into others. Correspond-
ingly, we consider the enzyme module as an extended
enzyme function in these models. We claim that the con-
cept of representing multiple nodes as a single node, the
enzyme module in this case, is important for understand-
ing the evolutionary process of metabolic network. A sim-
ilar concept for the network integrating other types of
relations was proposed in [20]. Our methodology is based
on this concept, and our results support the utility of it.

It is well known that the metabolic network is a hierarchi-
cal network. When a particular network has a hierarchical
feature, its plot (where the vertical axis is the clustering
coefficient (C(k)) and the horizontal axis is the node's
degree) gives a power-law distribution (y=-1) [11]. In this
paper, we constructed a network of phylogenetic network
modules, which we plotted. Interestingly, it had just such
modular and hierarchical features as illustrated in Figure
5. This indicates that our notion of evolutionarily and
functionally conserved modules explains the hierarchical
features suggested by Ravasz et al [11], who illustrated the
hierarchical structure of the metabolic network using top-
ological properties. Our result suggests that the relation-
ship between enzymes based on the similarity of

® @ [ J Y=_1
®
°
O o1l ,
°
C(n) =053
0015 10 100 1000
K
Figure 5

Topological feature of the module network. This plot
illustrates the dependence of the clustering coefficient on the
node's degree. The horizontal axis is node's degree, and ver-
tical axis is the average of clustering coefficient of the nodes
which have same degree. Clustering coefficient of node i is
defined as C;= 2n/k(ki-1), where n; denotes the number of
links connecting the k; neighbors of node i to each other.
Black dots represent the binning node according to the C(k)
average in each power of 2.
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phylogenetic profiles is one of the factors forming the
hierarchical structure.

Future direction and perspective on network modularity
We hierarchically clustered enzymes to extract phyloge-
netic network modules. According to this method,
enzymes are allocated to a particular module. However,
there are some cases where enzymes could belong to mul-
tiple functional modules. For example, there are many
enzymes catalyzing reactions related with pyruvate or
acetyle-CoA. These enzymes have numerous relationships
to other enzymes in the metabolic network. In such cases,
the phylogenetic relationships between them are compli-
cated, and enzyme allocation to a particular module is dif-
ficult. While these enzymes play an important role, it is
difficult to divide into a particular module. Given this
problem, it may be important to somehow allow enzyme
redundancy in the modules, or remove these enzymes
from the network. In a module network, linker modules
correspond to this case. These modules have a characteris-
tic feature of connecting many modules (module groups),
so it will be difficult to determine particular module
groups for linker modules.

Although our work focused on enzymes, the components
of the metabolic network consist of both enzymes and
chemical compounds. There have been a few attempts to
investigate the relationships between chemical com-
pounds and phylogeny. Hattori et al defined the similarity
between compounds in the metabolic network, and gen-
erated clusters according to this similarity measure [21].
They also attempted to compare these clusters with
operon like structures. However, since the operon data
they used was very limited, it was insufficient to attempt
phylogenetic analysis. Our phylogenetic network mod-
ules are suitable for the analysis, and comprehensive anal-
ysis of chemical structures and their evolution is our next
research focus.

Conclusion

We extracted "phylogenetic network modules" from the
metabolic network. We claim that these modules are the
evolutionary building blocks as well as the basic func-
tional units of the metabolic network. Furthermore, we
showed that the module network has the hierarchical
character, which is also conserved in the enzyme network
of metabolism.

Barabasi et al illustrated the hierarchical structure of the
metabolic network using topological property. Our result
suggests that the relationship between enzymes based on
the similarity of phylogenetic profiles is one of the factors
forming the hierarchical structure. Other biological sys-
tems, such as protein-protein interaction networks, have
been reported to have the similar topological property.

http://www.biomedcentral.com/1471-2105/7/130

Thus, the phylogenetic relationship may be a foundation
of network evolution including other biological systems.

Methods

Construction of the phylogenetic profiles and the network
of enzymes

A phylogenetic profile is a bit string that encodes the
absence (0) or presence (1) of an enzyme in fully
sequenced genomes. We utilized KEGG Orthology (KO)
for constructing the phylogenetic profiles. KO is a data-
base of ortholog groups that are defined manually accord-
ing to the similarity of amino acid sequences, as well as
bidirectional best hit information in pairwise genome
comparison, and annotated functions of genes in KEGG
pathways [3]. Therefore, some proteins with low sequence
similarity may be put into the same ortholog group (the
same node in the KEGG pathway). In this study, we used
KO entries for enzyme genes annotated in the KEGG/
PATHWAY database. Phylogenetic profiles were calcu-
lated using the KO entries constructed from 174 fully
sequenced genomes. To reduce the effect of bias in the
organism distribution, these 174 genomes were merged
into 59 taxa (11 eukaryotes, 36 bacteria and 12 archaea)
according to the NCBI taxonomy [22]. That is, logical OR
was applied on the phylogenetic profiles of the organisms
of the same taxa. As a result, we obtained 1672 phyloge-
netic profiles consisting of 59 bits.

The KEGG/PATHWAY database stores metabolic and reg-
ulatory pathway information with their functional classi-
fication as XML files [3]. The pathway information (the
network of enzymes) is described as a collection of binary
relationships of enzymes. The binary relationship is
defined when the two enzymes are adjacently located on
the pathway diagram. We extracted the binary relation-
ships of the enzymes from the KEGG/PATHWAY database
and treated them as a network or a graph of enzymes. All
the data is accessible from the KEGG website [23].

Similarity measure between phylogenetic profiles
Similarity measures between phylogenetic profiles are
required in cluster analysis. We adopted the Jaccard coef-
ficient (JC) [24] and the correlation coefficient (CC) as the
similarity measures of phylogenetic profiles. The Jaccard
coefficient between profile A and B is defined as A n B/A
U B. A N B is the number of organisms which include
enzyme A and B, and A U B is the number of organisms
which include either enzyme A or B. The correlation coef-
ficient used was Pearson's product moment correlation
coefficient using a phylogenetic profile as a vector.

Pathway distance and the corresponding average of
Jaccard coefficient

Pathway distance is defined as the smallest number of
steps between two enzymes in the metabolic network. We
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calculated the pathway distance of all against all enzymes
in KEGG/PATHWAY and further calculated the JC average
for each pathway distance. We also generated 100 rela-
beled enzyme networks as a control. In this paper, we
define a relabeled network as one where the phylogenetic
profiles are randomly re-assigned to enzymes in the net-
work with the topology unchanged. The JC average of
each pathway distance was calculated for each relabeled
network. The average was then taken of all the JC averages
of each relabeled network.

Extraction of the "phylogenetic network module"

An overview of the extraction of the "phylogenetic net-
work module" is illustrated in Figure 1. We performed a
complete linkage clustering of the enzymes (KO entries)
in our dataset (Fig. 1B) based on their phylogenetic profile
similarities. To determine the threshold of this clustering,
we utilized the distribution of all-against-all similarities
between the phylogenetic profiles of enzymes. From the
distribution, we estimated the top 1, 2.5 and 5 percentile
points of the similarities as the significant point (each JC
corresponds to 0.76, 0.64 and 0.51 respectively, see addi-
tional files 2-3). After that, by linking the enzymes accord-
ing to their connection in the metabolic pathway (Fig.
1C), some "phylogenetic network modules" were
extracted in each cluster (Fig. 1D). That is, each group of
linked enzymes within each cluster was extracted as a sin-
gle module. There was no difference in the distribution
shape of the module sizes for different significant points.
All figures in this paper are based on the 5 percentile
point. The same operations were applied to the 100 rela-
beled networks, and their distribution of the average
number of enzymes per module was obtained.

Network of modules

Finally, we constructed a network of modules, where each
node represents a module, and each edge represents the
chemical compounds between the enzymes contained in
the corresponding modules (Fig. 1E). To infer the struc-
ture of the module network, we investigated the relation-
ship between each node's degree and its clustering
coefficient. The degree of node i is the number of con-
nected nodes. The clustering coefficient of node i is
defined as C;= 2n,/k; (k-1), where n;denotes the number of
links connecting the k; neighbors of node i to each other.

Based on the clustering coefficient and the degree, linker
modules were selected. These linker modules tend to have
high degree and relatively low clustering coefficients com-
pared with other modules of the same degree. We defined
the condition of the linker as having degree > 35, and the
deviation of the clustering coefficient of the same degree
being < -0.1.
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