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Abstract

Background: Local structures of target mMRNAs play a significant role in determining the efficacies
of antisense oligonucleotides (ODNs), but some structure-based target site selection methods are
limited by uncertainties in RNA secondary structure prediction. If all the predicted structures of a
given mRNA within a certain energy limit could be used simultaneously, target site selection would
obviously be improved in both reliability and efficiency. In this study, some key problems in ODN
target selection on the basis of multiple predicted target mRNA structures are systematically
discussed.

Results: Two methods were considered for merging topologically different RNA structures into
integrated representations. Several parameters were derived to characterize local target site
structures. Statistical analysis on a dataset with 448 ODNs against 28 different mRNAs revealed 9
features quantitatively associated with efficacy. Features of structural consistency seemed to be
more highly correlated with efficacy than indices of the proportion of bases in single-stranded or
double-stranded regions. The local structures of the target site 5' and 3' termini were also shown
to be important in target selection. Neural network efficacy predictors using these features, defined
on integrated structures as inputs, performed well in "minus-one-gene" cross-validation
experiments.

Conclusion: Topologically different target mRNA structures can be merged into integrated
representations and then used in computer-aided ODN design. The results of this paper imply that
some features characterizing multiple predicted target site structures can be used to predict ODN

efficacy.
Background knockout techniques in respect of cost, time and resource
Antisense oligonucleotides (ODNs) have served as power-  requirements, and have therefore been widely used for

ful tools during the post-genome era. They provide an  determining gene function, validating drug targets and
important approach to sequence-specific knockdown of  elucidating pathways [1,2]. ODNs also have potential as
gene expression, offering significant advantages over gene  novel therapeutic agents for various diseases; several anti-
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sense compounds have been evaluated in clinical trials
with promising results [3].

However, even with careful design, only a small propor-
tion of ODNSs against a given RNA effectively suppress the
target gene in living cells [4]. It is commonly accepted that
the identification of accessible sites in the target RNA is of
great importance in designing ODNs. Various experimen-
tal approaches to the identification of promising local tar-
get sites have been described in recent years [5-10]. There
has also been much interest in computational approaches
to ODN design, which have advantages over experimental
methods in terms of throughput, cost and efficiency. Sev-
eral approaches to efficacy prediction have been proposed
for rational selection of ODN target sites [11-14].

Among the factors that influence the activity of a given
ODN, the local secondary structures of the target mRNA
are very significant in determining in vitro efficiency [5,15-
17] and are therefore particularly important in current
ODN design strategies [18-20]. Local target site structures
have also been used as the basis of rational design for
other kinds of nucleic acids drugs such as antisense RNAs
[21], catalytic RNAs [22] and ribozymes [23]. However,
the term "structure" in these studies refers to "single com-
putational predicted structure", not the real structure of
the target mRNA; RNA secondary structure is difficult to
determine experimentally.

Many RNA secondary structure prediction algorithms
have been proposed during the past 20 years. Since the
thermodynamically most stable structure of a molecule is
generally the one with the minimum free energy (MFE),
the initial aim of these prediction methods is to determine
the MFE structure [24]. Several MFE structure searching
algorithms have been described and are widely used in
related research [25,26], especially in ODN target selec-
tion. However, partly because of the relatively low relia-
bility of individual target mRNA structure predictions,
researchers have often drawn inconsistent conclusions
about favorable local structure motifs. The results
obtained by Lima et al. [18] and Thierry et al. [19] indi-
cated that single-stranded hairpin loops in RNA were the
best target sites, whereas the studies by Laptev et al. [20]
suggested that ODNs targeted to sequences predicted to
form clustered double-stranded structures in RNA tran-
scripts had the best potential.

It is also possible to consider conformations close to the
energy minimum, and algorithms for calculating subopti-
mal structures within certain energy limits have been pro-
posed [27,28]. The popular RNA secondary structure
prediction program MFold now provides results over a
range of free energies, mitigating the uncertainty of MFE
prediction. Although multiple predicted structures are
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apparently more reliable, the MFE structure of the target
mRNA is still used as the only structural basis in some
ODN research. The main difficulty may lie in how to use
these foldings simultaneously, since they can be topolog-
ically very different.

Studies on ensembles of target structures in ODNs design
date back to Jaroszewski et al. [29], who considered the 30
lowest-energy computer-simulated structures of rabbit S
globin mRNA qualitatively. In some thermodynamic
models, multiple predicted target structures have been
merged into the form of free energy [30,31]. The earliest
work on computational ODN design based on the origi-
nal forms of multiple predicted target mRNA structures
was perhaps that of Patzel et al. [17]. Five structures with
low energy were predicted and aligned for a given
sequence stretch, and ODN sequences were chosen if
potentially favourable local structural elements occurred
in all five. In vitro experiments showed that this theoretical
protocol increased the statistical probability of identifying
local target sites accessible to ODN sequences [17,32].
Another way to explore the original forms of optimal and
suboptimal mRNA structures simultaneously, which is
probably more straightforward, is to merge them into a
single-stranded probability profile (SSPP), P = {p;}, 1 <i
< n, where p; is the probability that base i is single-
stranded. Actually, algorithms for predicting single-
stranded regions in RNA secondary structures have long
been of interest, since such regions play many important
roles in RNA-RNA, RNA -DNA and RNA-protein interac-
tions [33]. The SFold web server [34] can now directly out-
put the SSPP of an RNA molecule instead of definite
individual structures. Ding and Lawrence [33] presented a
method for predicting accessible sites in the SSPP of rabbit
f-globin mRNA, obtained by summing statistical samples
of probable secondary structures. Their results showed a
significant correlation between the predicted hybridiza-
tion potential and the degree of inhibition of in vitro trans-
lation. Some researchers regard this method as the most
successful [11,12].

The original RNA structural information is used in essen-
tially different ways in the two methods described above.
In the method based on structure alignment, favorable
structural elements are identified by base pairing patterns,
which can be illustrated as graphs. The role of secondary
structures in this method is similar to its role in earlier
studies of ODN design based on the target mRNA MFE
structure. The success of this method relies mainly on the
greatly increased reliability of structural elements. How-
ever, in the method based on SSPP, the RNA structures
resemble a special time series rather than molecular
"structures" in the usual sense. Base pairing patterns, or
topological features, can hardly be explored in SSPP. The
common ground between these two methods is the
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Table I: Summary of antisense target genes and their predicted structures used in this study

Accession Description No. structures No. ODNs
X62295 Rattus mRNA for vascular type-| angiotensin Il receptor. 50 36
XM_051583 Homo sapiens v-raf-1 murine leukemia viral oncogene homolog | (RAFI), mRNA 50 31
M14758 Homo sapiens P-glycoprotein (PGY 1) mRNA 50 22
NM_004996 Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), member | (ABCCI), transcript 50 14
variant |, mRNA
M24283 Human intercellular adhesion molecule-1 (ICAM-1) 50 66
X52479 Human PKC alpha mRNA for protein kinase C alpha 37 19
NM_001078 Homo sapiens vascular cell adhesion molecule | (VCAMI), transcript variant |, mRNA 50 35
XM_057446 Homo sapiens selectin E (endothelial adhesion molecule 1) (SELE), mRNA. 50 I
M30640 Human endothelial leukocyte adhesion molecule | (ELAMI) mRNA, complete cds 50 4
NM_000877 Homo sapiens interleukin | receptor, type | (ILIR1), mRNA. 50 20
M31585 Mouse (clone lambda-c5e) intercellular adhesion molecule | (ICAM-1) mRNA, complete cds 39 8
BC036531 Homo sapiens collagen, type |, alpha |, mMRNA (cDNA clone MGC:33668 IMAGE:5264710) 50 19
NM_010784 Mus musculus midkine (Mdk), mMRNA 17 4
M15077 P.pyralis (firefly) luciferase gene, complete cds 39 8
X03484 Human mRNA for raf oncogene 50 20
X14805 Mus musculus mRNA for DNA methyltransferase | 50 8
BC005976 Homo sapiens ras homolog gene family, member A, mMRNA 23 13
M10843 Rabbit beta-globin mMRNA 26 24
U45880 Human X-linked inhibitor of apotosis protein XIAP mRNA 36 6
AF015950 Human telomerase reverse transcriptase mRNA 50 5
NR_001566 Homo sapiens telomerase RNA component (TERC) on chromosome 3 23 5
M34309 Human epidermal growth factor receptor (HER3) mRNA, complete cds. 50 22
NM_004507 Homo sapiens HUSI checkpoint homolog (S. pombe) (HUSI), mRNA. 33 I
AJ278710 Escherichia coli 23S rRNA gene, strain K12 DSM 30083T 50 7
X03363 Human c-erb-B-2 mRNA 50 3
M10988 Human tumor necrosis factor (TNF) mRNA 26 4
NM_000791 Homo sapiens dihydrofolate reductase (DHFR), mRNA. 50 7
NM_001168 Homo sapiens baculoviral IAP repeat-containing 5 (survivin) (BIRC5), mRNA 29 5
NM_013642 Mus musculus dual specificity phosphatase | (Duspl), mRNA 37 8
AF025846 Co-reporter vector pRL-TK, complete sequence 50 4
emphasis on the role of single-stranded regions in deter-  Results
mining target accessibility. In the SSPP of rabbit S-globin  Dataset

mRNA, Ding and Lawrence found a significant correlation
between the peak value of SSPP and the degree of inhibi-
tion of translation. The "well-chacterized" single-stranded
regions were revealed by high probability peaks in the
profile [33], while in the systematic alignment of multiple
predicted target mRNA secondary structures, large (>10
nt) consecutive sequence stretches not involved in base
pairing were regarded as favorable structural motifs [17].
Since these two methods were only evaluated on a single
target mRNA, further research is needed on a broad range
of target genes.

The purpose of this article is to systematically explore the
methods for computational selection of ODN target sites
based on features defined in multiple predicted structures
of the target mRNA. In our approach, the predicted mRNA
structures were first merged into integrated representa-
tions. Efficacy-associated features were then screened
from a set of features defined on these representations.
The potential of neural networks for predicting efficacy on
the basis of these features was also validated.

Three ODN databases have been reported: ODNBase [35],
AOdb [12] and an unnamed database with experimental
data from Isis Pharmaceuticals [36]. We have also devel-
oped a database named AOBase [37] (NAR molecular
biology database collection entry number 781) for both
the selection and design of ODNs. Currently, it stores 705
ODNs from the published literature tested against tran-
scripts of 54 different target genes. Since no homogeneous
database is publicly available, we perforce used a hetero-
geneous collection of measurements made by different
researchers using different experimental techniques as our
dataset. Four hundred and forty-eight ODNs against 28
different mRNAs were collected from AOBase to construct
this dataset; 54.2% of them had been tested at protein
level and the others at mRNA level. The data selection cri-
teria were similar to those used in other ODN efficacy pre-
diction studies [11-13]: (a) at least 4 ODNs were tested
under the same experimental conditions; (b) ODN effica-
cies were presented as percentages of the control target
gene expression level; (c) virus targets were excluded; (d)
ODN: s targeting to the translational initiation site were
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Two representations of multiple predicted structures of rabbit -globin mRNA (G101-G130). (a) Single-stranded probability

profile; (b) 'SUP' representation.

excluded, since regions surrounding the initiation codon
are generally considered to be free of secondary structure
[38]. To keep in line with most of the research on drug
design, the ODN efficacies in our dataset were trans-
formed into [100%-(% of control expression)].

RNA folding calculation times have been greatly reduced
in recent years because of faster computers and improved
algorithms. The MFold web server [39] can now fold 6000
bases for a batch job, which meets the need of full-length
mRNA structure prediction in most cases and is therefore
used in this study. Because the number of predicted sub-
optimal RNA secondary structures increases exponentially
as the folding energy increases [40], only structures within
5 percent of the computed minimum free energy were
taken into consideration. The upper bound on the
number of simultaneously predicted structures was set to
50 to avoid the high computational cost of long RNA
sequences. These settings were the default settings of the
MFold web server. Table 1 is a brief summary of the data-
set.

Integrating multiple predicted target mRNA secondary
structures

In this study, two methods were used to represent the
multiple predicted local structures of target sites syntheti-
cally. All the predicted local structures were first merged
into an SSPP, which is easily calculated from the ss-count
file in the MFold output. For a more illustrative represen-
tation of the multiple predicted structures, the SSPP was
further transformed to a "single-stranded/pair/uncertain”
sequence (SUP representation) S = {s;}, where s; = 'S' if
base i is single-stranded, s; = 'P' if base i is paired with
another base, and s; = "'U' if it is uncertain whether base i is
single-stranded. The thresholds suggested by Ding and
Lawrence [33] were used to map SSPP {p,} into the SUP
representation {s;}, giving

,S,, pi > 0.5
S;=4'U, 052p;>0.2 (1)
P, p; £0.2
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Parameter Definition
fns Number of bases in single-stranded region
fap Number of bases in double-stranded region
fos Percentage of bases in single-stranded region to the length of ODN
fep Percentage of bases in double-stranded region to the length of ODN
fes Maximum length of consecutive subsequence in single-stranded region
fep Maximum length of consecutive subsequence in base pairing
fss Maximum length of consecutive subsequence in single-stranded region counting from 5' terminal
fsp Maximum length of consecutive subsequence in base pairing counting from 5' terminal
fas Maximum length of consecutive subsequence in single-stranded region counting from 3' terminal
fap Maximum length of consecutive subsequence in base pairing counting from 3' terminal
fsc

n-1

1, x=y=+"UU

=
Structure consistency, fSC = —1 2 E(S;,S;_1). where E(x,y)=40, x= u’, ory="U"
n p—

i=1

-1 xzy,x#'S,yz'P’

SUP representation loses a lot of structural information in
comparison to graphical illustration or dot-parenthesis
notation of RNA secondary structure and therefore cannot
be used to explore the whole RNA structure. However, for
RNA local structural analysis, especially of very RNA short
regions, SUP gives a competent simplified representation.
Figure 1 illustrates part of these two representations (101-
130 nt) of rabbit fglobin mRNA structure.

Selection of efficacy-associated features

The first important step in computational design based on
multiple predicted mRNA structures is to find the efficacy-
associated features in the SSPP and SUP representations of
the target sites. Since the data structures of these two linear
representations of multiple predicted structures are very
different from graphical illustrations of RNA molecules,
the topological features known to be correlated with effi-
cacy must be redefined. However, new representations
also afford opportunities to discover novel efficacy-associ-
ated features.

A set of features characterizing the local multiply-pre-
dicted target mRNA secondary structures was derived.
Seven of these features were defined on the SSPP represen-
tation (listed in Table 2) while the other eleven were
defined on the SUP sequence representation (listed in
Table 3). The size of the local target, n, in the definition of
features is equal to the length of the ODN.

The mean of all single stranded probabilities within a
given target site, f, ., indicates the probability that the
target site is single-stranded. The maximum value, f,,,,.
has also been used for this purpose [33]. fiupus can be
viewed as a relative peak value compared to the mean. The
other statistics, fg fpear fwaver A0 faifferences describe the

structural consistency of the target site.

Numerical features defined on the SUP sequence are
directly derived from research results and from empirical
rules about target site selection based on local structure.
Features fyg, fap fpss and fpp, give an overall description of
target structure, while fss, fsp f35 and f;p emphasize the
local structure of the target site termini. Factors f-gand f.p
are derived to confirm whether the occurrence of consec-
utive subsequences in single-stranded or helical regions is
correlated with efficacy, as explored by Patzel et al. [17].

Table 2: Parameters derived from the SSPP representation

Parameter Definition

fmean n

1
Mean, fmean = ;sz

i=1

frms 1 n 2
Root mean square, frms = ZZ( pi — fmean )
i=1
frnox Maximum, fax = ‘Mmax {pl}
i=1,-n
ﬁmpulse f
Impulse factor, fimpulse = fm_ax
mean
fpeak f
Peak factor, fpeak = -
frms
fWGVE f
Wave factor, fwaye ==
f mean
f:iiﬁ'erence

1 n-1
Mean of difference, fdifference = E 2 | pi —Pin |
i=1
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Parameter Pearson Correlation Spearman Correlation Kendall Correlation
frnean -0.086 -0.055 -0.087
frms -0.150%* -0.100%* -0.147+*
frnax -0.099* -0.113%* -0.155%*
fimputse 0.040 0.039 0.060
foeak 0.124+ 0.083** 0.125%*
frave -0.030 -0.017 -0.025
difference -0.094* -0.034 -0.051
fns -0.087 -0.057 -0.082
fap -0.045 -0.043 -0.061
fes -0.073 -0.050 -0.075
fep -0.040 -0.040 -0.057
fes -0.062 -0.037 -0.053
fep -0.012 -0.012 -0.019
fss 0.031 0.012 0.016
fsp -0.009 -0.039 -0.055
fas -0.050 -0.011 -0.016
fap -0.036 -0.030 -0.039
fsc -0.064 -0.045 -0.066

**, Correlation is significant at the 0.01 level
*, Correlation is significant at the 0.05 level

Absolute numbers of bases appear in the definitions of
eight features defined on the SUP representation, viz. fy,

fapr fes fepr fssi fspr f3s and fp. Since the ODN lengths in
the dataset are not uniform, it is necessary to determine

whether these features are bound up with or limited by
the size of local target. Figure 2(a) shows the distribution
of ODN lengths in the dataset, which range from 10 nt to
22 nt. Most of the ODNs were 20 nt long. The dataset was
divided into groups according to ODN length. The mean
values of these features were calculated for each group and
are shown in Figure 2(b), which indicates no obvious rela-
tionships between these features and target size.

Two types of indices, efficiency prediction potential and
classification potency, were used to measure the suitabil-
ity of these parameters for rational ODN design. The effi-
cacy prediction potential was evaluated by calculating the
correlation between the features and efficacy, using Pear-
son linear correlation, Spearman rank correlation and
Kendall rank correlation. The classification potency was
evaluated by exploring the performance of Fisher linear
discriminators, using the feature as the single independ-
ent variable. The performance was measured as specificity

T . Tp .
Sp = —— and sensitivity S, = . Two different

T, +F, T, +F,
efficacy threshold values, 50% and 75%, were used to dis-
tinguish between positive and negative cases in our data-
set, since these indices depend on threshold. Features
matching at least one of the following two criteria were
selected as efficacy-associated: (a) statistically significant

correlation (p < 0.05) with efficacy; and (b) high specifi-
city (20.7) or high sensitivity (=0.7) in distinguishing
between active and inactive ODNSs.

The correlation between parameters and efficacy is pre-
sented in Table 4. Only four features defined on SSPP, i.e.
rmsr Fnars Tpeare A0 fifferencer cOTTelated strongly with efficacy.
Table 5 compares the Fisher discrimination results for
each parameter and different thresholds, indicating that
frms' fmax' fpeuk' fdlfference' fPP' fCS' fCP' fSS and fSS can be used to
distinguish between active and inactive ODNs according
to our criteria.

The most noteworthy finding is that ODN efficacy seems
not to rely greatly on the degree of single-strandedness in
its target site, as suggested in previous publications [18-
20], since f,,,.. fns and fpg show neither sufficient correla-
tion with efficacy nor good performance in identifying
active ODNs. The lengths of consecutive single-stranded
regions in the target site, which are characterized by f,
prove useful for identifying active ODNs. This result is
partly consistent with the conclusion drawn by Patzel et al
[17]. In contrast to the conclusion of Ding and Lawrence
[33], although f,,,, is revealed to be efficacy-associated, the
peak value of the target site SSPP correlates negatively
with efficacy.

The helical region in the target site appears to be more
important, as suggested by Laptev [20], because features
fpp and fp satisfy our selection criteria for ODN classifica-
tion. From the analysis, it is obvious that the structural
consistency features, fou foosr a0d fiifrronc are more
important in target site selection. But this should not be
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The distribution of ODN length and length-limited features. (a) The distribution of ODN lengths in the dataset; (b) Mean val-

ues of some features of ODNs with different lengths.

interpreted as implying simple correspondences between
structural consistency and efficacy.

ODN efficacy may be closely associated with the local
structures of the 5' and 3' termini of the target sites. Fisher
classifiers using factors fs¢ and f;4 gave high specificity or
sensitivity in ODN discrimination.

Although some features are efficacy-associated, the rela-
tionship between structural factors and efficacy is highly
complex. No single feature has been found to correlate
highly with efficacy, and no feature is reliable on its own
for distinguishing active from inactive ODNs. Two feature
sets defined on the SSPP and SUP representations of the
target site are selected as inputs of efficacy-predicting neu-
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Table 5: Performance of Fisher linear discriminators for each
parameter

Parameter Threshold = 50% Threshold = 75%
Se S Se S

frnean 0.56 0.53 0.65 0.51
frms 0.58 0.54 0.50 0.54
frnax 0.33 0.73 0.60 0.72
Fimpuise 0.37 0.67 0.48 0.38
foeak 0.50 0.6l 0.56 0.59
frave 0.42 0.58 0.63 0.43
faifference 0.52 0.50 0.52 0.50
fNs 0.56 0.50 0.56 0.48
fap 0.44 0.51 0.52 0.49
fes 0.54 0.52 0.58 0.51
fop 0.49 0.45 0.70 0.54
fes 0.56 0.47 0.73 0.45
fep 0.43 0.63 0.74 0.40
fss 0.31 071 0.73 0.30
fsp 0.33 0.63 0.58 037
fas 0.29 0.73 0.65 0.29
fap 0.34 0.64 0.50 037
fsc 0.50 0.50 0.60 0.52

. high specificity (= 0.7) or high sensitivity (= 0.7)

ral networks: Fggpp = {frmsf fmax' fpeak' fdifference} and Fgup =

{fPP’ fCS’ fCP’ fSS/ f3S}'

Efficacy predicting using neural networks

To assess the ability of selected features to predict efficacy,
two neural network models were constructed, one for fea-
tures defined on the SSPP and the other for features
derived from the SUP sequence representation of the tar-
get structure.

Previous studies have shown that cross-validation is
important for estimating accuracy [11-14]. Since ODNs
always have similar properties if they are near each other
on the same gene or are measured in the same study, the
network training process should be completely independ-
ent of the test data [12,13]. In this research, cross-valida-
tion was done by the "minus-one-gene" (-gene) [13]
approach. ODNs targeting to 8 mRNAs (listed in Table 6)

Table 6: Dataset for cross-validation experiments

http://www.biomedcentral.com/1471-2105/7/122

were selected alternately from the dataset for testing,
while the remainder, assayed in the same studies, were
used as the training set. The test mRNA selection criteria
were: (a) more than 15 different target sites were tested;
(b) the efficacy of at least one ODN was greater than 75%.

Sixteen neural networks for efficacy prediction were tested
in our cross-validation experiments. The network group
Ngspp (NgspplnNggpp8) took Fggpp as inputs, and the Ngp
group (Ngpl~Ngp8) took Fgp as the input parameter
set. The outputs of all these networks met the condition of
convergence within 100 training cycles.

Several methods have been used to measure the accuracy
of ODN predictors [11-14]. To obtain rounded assess-
ments for the aforementioned neural networks, two dif-
ferent types of indices were computed: (1) specificity Sp,

T, +T,

———— caleu-
T,+T,+F,+F,

sensitivity S, and accuracy Acc =
lated using fixed threshold values, as mentioned above in

the account of feature selection; (2) the receiver operating
characteristics (ROC) curve [41], which is a plot of S, ver-

sus 1 - Spat different thresholds. The ROC area was calcu-

lated as a quantitative indicator of the ability of the
network to classify. The cutoff efficacy value used to dis-
tinguish positive from negative ODNs in the cross-valida-
tion test was 75%.

The performances of the neural networks are listed in
Table 7. The specificities, Sp, of all the networks in these
two groups are greater than the related sensitivities, S,.
This performance is beneficial for ODN design, since users
will only be interested in candidates with high predicted
efficacy in practical applications [14]. The ROC curves of
the 16 networks tested on ODNs targeting to 8 different
mRNAs are shown in Figure 3. The best ROC curve areas
were obtained in cross-validation experiment 7 (network
Ngepp?7 and Ng;p7), which used the data from Matveeva et
al. [6] as test set. The average ROC area for Ng;pis 0.77.
The average for Ng;pis 0.73, which is little lower.

Networks Accession of test gene

Number in train set Number in test set

Ngspp! and Ngpl X62295 412 36
Nqspp2 and Ngp2 XM_051583 417 31
Nqgpp3 and Ngp3 M14758 426 22
Nqgppd and Ng 4 M24283 356 66
Nggpp5 and Ngp5 NM_001078 379 35
Ngpp6 and Ngp6 NM_000877 428 20
Nqgpp? and Ng 7 X03484 428 20
Nqspp8 and Ng 8 M10843 424 24
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Table 7: The performances of two groups of networks in cross-validation experiments

Networks Se Sp Acc ROC area Networks Se Sp Acc ROC area
Nispp ! 0.50 0.97 0.92 0.91 Ngp! 0 0.94 0.83 0.60
Nypp2 0.33 0.96 0.90 0.75 Nyyp2 0 0.93 0.84 0.69
Nyepp3 0 0.93 0.59 0.71 Nqyp3 0 | 0.64 0.65
Nqoppd 0 | 0.88 0.66 Nqypd 0.5 0.86 0.82 0.66
Nyppd 0 | 0.71 0.69 N5 0 | 0.71 0.74
Nqoppb 0 0.94 0.85 0.8l Nqyp6 0 | 0.9 0.89
Nyopp? 0 | 0.70 0.98 Nqyp/ 0.17 0.93 0.70 0.89
N8 0 | 0.58 0.63 N,,,8 0.40 0.86 0.67 0.71

@
c
o

. high specificity (= 0.7) or high sensitivity (> 0.7)

Discussion

Compared with most other bioinformatics research prob-
lems, studies on computer-aided ODN design are far from
"data rich". Moreover, the data collected from the pub-
lished literature are variable owing to the diversity of
experimental methods. To provide a more reliable basis
for feature-mining and predictor development, one focus
of future work will be on enlargement of the dataset. A
large dataset with quality control will make the analysis
and cross-validation of grouped homogeneous subsets
possible, and therefore make the ODN design systems
more reliable.

Another "data poor" limitation in our study and related
research [6,17,29] is that not all possible target RNA struc-
tures are taken into account. As pointed out by Mathews,
an ideal way to integrate the predicted RNA structures
would be to compute a partition function, which sums the
contributions of all structures weighted by their Boltz-
mann probabilities [44]. However, the determination of a
partition function has O(N3) computational complexity
[45], so this method is practicable only for short RNA
sequences. Several studies have been done on the estima-
tion of partition function with lower computational cost
[44,46-48]. The Vienna RNA secondary structure predic-
tion server [49] can now compute the partition function
of RNA up to 5000 bases for batch jobs. One implication
of this study that warrants further investigation is ODN
design using the partition function of the target mRNA,
which is based on more reliable structural information.

The factors influencing the potential of an ODN are com-
plex and so far poorly understood. Although this paper
focuses on the relationship between ODN efficacy and tar-
get site structure, we do not ignore other factors that have
been shown to influence efficacy, such as chemical prop-
erties, DNA-RNA duplex stability, sequence motifs, meta-
bolic properties of target mRNA, etc. [4]. We do believe
that as more factors are considered in ODN efficacy pre-
diction, the more reliable the target site selection
becomes.

Conclusion

This paper presents a method, based on multiple pre-
dicted target mRNA structures, for reducing the uncer-
tainty of structure prediction in ODN design. Several
efficacy-associated features characterizing the integrated
structure of the target site have been discovered. The struc-
tural consistency features of the target seem to be corre-
lated with efficacy. In contrast, some features of favorable
ODN targets reported in previous research, which empha-
sized single-stranded regions, were found to correlate
weakly with efficacy. In addition, the local structures of
the 5' and 3' termini were shown to be important in target
site selection.

Neural network efficacy predictors using features defined
on integrated structures as inputs have been shown to per-
form well, implying that these features can also be used
for other forms of efficacy prediction such as Bayesian sta-
tistics (BS), multiple linear regression (MLR), decision
tree (DT) and support vector machine (SVM).

Methods

After preliminary experiments, feed-forward network
architecture with a hidden layer containing 20 nodes was
applied to each network. The input neurons used a loga-
rithmic sigmoid (tan-sigmoid) activation function; the
output neurons used a hyperbolic tangent sigmoid (log-
sigmoid) activation function. The weights and bias values
of the networks were updated according to the Levenberg-
Marquardt optimization algorithm [42], which appears to
be the fastest method for training a moderate-size feed-
forward neural network [43]. Matlab® Neural Network
Toolbox 4.0.3 was used for all neural network implemen-
tation.
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Figure 3

ROC curves for efficacy-predicting neural networks. ROC curves are shown for networks (a) Nggpp | and Ngpl; (b) Nggpp2 and
NScLIJF;\Zl; (CZ; Nsspp3 and Ngp3; (d) Nygpp# and Nyypd; (€) NssppS and Ngyp5; (f) Nssppé and Ngyp6; (g) Nsspp? and Ngyp7; (h) Nisspp8
and Ngyp©-
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