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Abstract
Background: In this short article, we discuss a simple method for assessing sample size
requirements in microarray experiments.

Results: Our method starts with the output from a permutation-based analysis for a set of pilot
data, e.g. from the SAM package. Then for a given hypothesized mean difference and various
samples sizes, we estimate the false discovery rate and false negative rate of a list of genes; these
are also interpretable as per gene power and type I error. We also discuss application of our
method to other kinds of response variables, for example survival outcomes.

Conclusion: Our method seems to be useful for sample size assessment in microarray
experiments.

Background
Assessment of sample sizes for microarray data is a tricky
exercise. The data are complex, as are the biological ques-
tions that one might try to answer from such data. What
assumptions should one make, and what quantities
should be provided as output?

There have been a number of recent papers that address
this problem. The authors in [2] utilize an ANOVA model
and provides power calculations for various alternative
models. In [4] a decision-theoretic approach is used and a
hierarchical Bayes model. The authors in [8] examine the
roles of technical and biological variability, in determin-
ing sample size. In [5] it is assumed that the genes are
independent and have equal variance, and false discovery
rates and sensitivities are reported. The ssize package [7]
also assumes that the genes are independent, but uses
pilot data to estimate the variance. It focuses on power
and type I error. The proposal of [6] assumes independ-

ence of genes; the convenient (but unrealistic) case of
equal correlation among all genes is also considered.

All of these approaches may have shortcomings, namely
the assumption of equal variances or independence of
genes (or both). These assumptions are often violated in
real microarray data and can have a real impact on sample
size calculations.

We avoid these assumptions in our proposal. We start
with the output from a permutation-based analysis for a
set of pilot data. From this we estimate the standard devi-
ation of each gene, and the overall null distribution of the
genes. Then for a given hypothesized mean difference, we
estimate the false discovery rate (FDR) and false negative
rate (FNR) of a list of genes. Many authors now favor the
FDR over the family-wise error rate (FWER) as the appro-
priate error measure for microarray studies. The latter is
the probability of at least one false positive call, given that
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we expect many false positive calls among thousands of
genes, the FWER does not seem to be as relevant.

Since the calculation is based on the gene scores from per-
mutations of the data, the correlation in the genes is
accounted for. Use of the permutation distribution avoids
parametric assumptions about the distribution of individ-
ual genes. And by working with the scores rather than the
raw data, we avoid the difficult task of simulating new
data from a population having a complicated (and
unknown) correlation structure.

We provide interpretation of our results both in terms of
FDR and FNR, and in terms power and type I error. Our
proposal is implemented in the current version of the
SAM package [1].

Our main focus is on microarray experiments for deter-
mining which genes are differentially expressed across two
different experimental conditions, like treatment versus
control. However our approach is also applicable to other
settings, for example studies that correlate survival time
with gene expression.

We learned of the proposal in [3] from a referee; it was
unknown to us at the time that this paper was written. The
resampling-based approach in that paper is very close to
the one described here. Some differences are a) by shifting
the test-statistics rather than the data, our method is appli-
cable beyond the two-sample problem to general settings
like survival data, and b) we report not only false discov-
ery rates but also false negative rates in our assessment of
sample sizes.

The proposed method
First we need some definitions. Table 1 summarizes the
outcomes of m hypothesis tests on a set of m genes.

We have FDR = V/R and FNR = T/(m - R), power = S/m1
and type 1 error = V/m0. For simplicity, for assessing sam-
ple sizes we choose our rule so that the number of genes
called significant (R) is the same as the number of non-
null genes in the population (m1). This implies that 1 -
power = FDR and type I error = FNR. Hence conveniently,
the FDR can be interpreted as one minus the power per
gene, and similarly for the FNR.

Here are the details of the calculation for the two-class
unpaired case (below we indicate changes necessary for
other data types). Let xij be the expression for gene i in
sample j; Cj is the set of indices for the nj samples in group
j, for j = 1 or 2. The two-sample unpaired t-statistic is

where

Note that this is the gene score used in the SAM method;
see the Remark below regarding the exchangeability con-
stant. If σi is the true within-group standard deviation for
gene i (assumed to be the same for each group), then si 

2

estimates

Hence a shift of δ units in one gene for each sample in
group 2 causes an average increase in the score di of

 (we assume that the proportion of

samples in groups 1 and 2 remains the same as we vary the
sample size).

Starting with some pilot data, this suggests the following
procedure for assessing sample sizes:

1. Estimate the null distribution of the scores, and the per
gene standard deviation σi, by randomly permuting the
class labels and recomputing the gene scores for the per-
muted data.

2. For k (the number of truly changed genes) running
from (say) 10 to m/2, do the following:

• Sample a set of m scores from the permutation distribu-
tion of the scores

• Add  in class 2 to a randomly cho-

sen set of k of these scores.
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Table 1: Possible outcomes from m hypothesis tests of a set of genes. The rows represent the true state of the population and the 
columns are the result a data-based decision rule.

Called Not Significant Called Significant Total

Null U V m0
Non-null T S m1

Total m – R R m
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Results for simulated dataFigure 1
Results for simulated data. The genes are generated independently. Each panel shows the estimated FDR and FNR (solid red 
and green curves) as well as the 10 and 90th percentiles, using the proposed method (remember that in our setup FDR = 1-
power and FNR = type I error). A horizontal line is drawn at 0.05. The quantity on the horizontal axis – number of genes – 
refers to both the hypothesized number of truly non-null genes, and the number of genes called significant. We see that the 
FDR is probably too high for the pilot data sample size of 20, but improves considerably when the sample size is doubled to 40.

10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

Number of genes

F
D

R
, 1

−
P

ow
er

F
N

R
, T

yp
e 

1 
er

ro
r

Sample size= 20

10 20 50 100 200 500
0.

0
0.

2
0.

4
0.

6
0.

8

Number of genes

F
D

R
, 1

−
P

ow
er

F
N

R
, T

yp
e 

1 
er

ro
r

Sample size= 40

10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

Number of genes

F
D

R
, 1

−
P

ow
er

F
N

R
, T

yp
e 

1 
er

ro
r

Sample size= 60

10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

Number of genes

F
D

R
, 1

−
P

ow
er

F
N

R
, T

yp
e 

1 
er

ro
r

Sample size= 100

Results for mean difference= 1



BMC Bioinformatics 2006, 7:106 http://www.biomedcentral.com/1471-2105/7/106
• Find the cutpoint c equal to the kth largest score in abso-
lute value

Results for first simulation studyFigure 2
Results for first simulation study. Here the FDR and FNR are estimated by direct simulation from underlying model.
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• Estimate the FDR and FNR of the rule |di| > c. This is
straight forward since we know which genes are truly non-
null (they are the ones that were incremented above).

3. Repeat Step 2 B times and report the median result for
each k. We also report the 10th and 90th percentiles of the
FDR across the B permutations.

In our examples we use a relatively small number of repe-
titions (B = 20); this makes the procedure fast and gives
sufficiently accurate estimates. For the two-sample prob-
lem, we typically require pilot data with at least 4 or 5
samples per class.

The results of this process provide information on how
the FDR and FNR will improve if the sample size were to
be increased. To get an idea of what values of the mean

difference δ are appropriate or reasonable, one can look at

the values  among the significant genes in the

pilot data.

This approach can be easily applied to other designs and
other types of response parameters. For paired data, we
take n1= n2= n/2 (remember n is the total sample size).

and all of the above recipe remains the same. For one class

data var = /n.

For survival data and Cox's proportional hazards model,
the analogue of the mean difference between groups is the
numerator of the partial likelihood score statistic, which
we denote by ri. Hence we define the gene-specific vari-

ance  via the relation var (ri) = /n, and we interpret

the shift parameter δ relative to ri. The units of ri are not

very interpretable, however, so we use of pilot data as a
guide. That is for example, if in our pilot data the genes

that we call significant have |ri| > 100, we can set δ = 100

in our sample size assessment.

Remark
In the SAM approach, the denominator si in the score (1)
is replaced by si + s0, where s0 is an exchangeability con-
stant. It shrinks the scores of genes with expression near 0
(having s0 ≈ 0).

An example
We generated some pilot data in two classes: there were a
total of 1000 genes and 20 samples, with 10 samples in
each of class. Each measurement was standard Gaussian
(i.e. there was no difference between the groups in the

x xi i2 1−

σ i
2

σ i
2 σ i

2

Results for second simulated example (correlated genes)Figure 3
Results for second simulated example (correlated genes).
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pilot data). We ran a SAM permutation analysis, assuming
the data are in a log base 2 scale and specifying a mean dif-
ference of Iog2 2 = 1.0. This corresponds to a mean differ-
ence of 2 fold for class 1 versus class 2. The results are
shown in Figure 1.

Remember that the quantity on the horizontal axis –
number of genes – refers to both the hypothesized
number of truly non-null genes, and the number of genes
called significant.

We see that, depending on the number of genes truly
changed at 2-fold, the sample size should be increased to
60 or 100, in order to get the FDR down to 10% or 5%.
The false negative rate is consistently low throughout,
when n = 60 or 100.

Does our approach provide accurate estimates of FDR and
FNR? For the setup of the previous example, we estimated
FDR and FNR directly from repeated simulations of data
from the underlying model. The results are shown in Fig-
ure 2.

Note the similarity between Figures 1 and 2. Of course
with real data, the second method – generating data from
the underlying model – would not be available, since the
underlying model is unknown.

Figure 3 shows a second example. Here there are 20 sam-
ples, and 10 blocks of 100 genes, with genes having pair-
wise correlation 0.5 in in each block. The mean structure
is the same as in the previous example. We see that the
FDR and FNR curves are similar to those in Figure 1, but
the 10% and 90% curves are much wider. With less cer-
tainty in the estimate, it would be advisable to take a large
sample size to ensure a reasonably low FDR. This illus-
trates the importance of preserving the correlation struc-
ture of the genes, i.e. it is not safe to make the (unrealistic)
assumption of independence between the genes.

Discussion
We have presented a simple method for assessing sample
sizes, that starts with a permutation-based analysis for
some pilot data. The method gives reasonably accurate
estimates of false discovery rates and false negative rates,
as a function of the total number of samples. Our pro-
posal is implemented in the SAM package- the Excel add-
in and the R package samr [1].
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