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Abstract

Background: Many vital biological processes, including transcription and splicing, require a
combination of short, degenerate sequence patterns, or motifs, adjacent to defined sequence
features. Although these motifs occur frequently by chance, they only have biological meaning
within a specific context. Identifying transcripts that contain meaningful combinations of patterns is
thus an important problem, which existing tools address poorly.

Results: Here we present a new approach, Fast-FIND (Fast-Fully Indexed Nucleotide Database),
that uses a relational database to support rapid indexed searches for arbitrary combinations of
patterns defined either by sequence or composition. Fast-FIND is easy to implement, takes less
than a second to search the entire Drosophila genome sequence for arbitrary patterns adjacent to
sites of alternative polyadenylation, and is sufficiently fast to allow sensitivity analysis on the
patterns. We have applied this approach to identify transcripts that contain combinations of
sequence motifs for RNA-binding proteins that may regulate alternative polyadenylation.

Conclusion: Fast-FIND provides an efficient way to identify transcripts that are potentially
regulated via alternative polyadenylation. We have used it to generate hypotheses about
interactions between specific polyadenylation factors, which we will test experimentally.

Background

DNA- and RNA-binding proteins are essential for the reg-
ulation of gene expression at many levels. They control
many biological processes in all organisms by altering
gene expression at the levels of transcription, pre-mRNA
splicing, mRNA export, stability, localization, and transla-
tion. Although some proteins bind specific sequences,
others bind short or degenerate patterns, also called
motifs, that occur frequently in the genome by chance.

These patterns can even be defined by base composition
rather than by an exact sequence.

Proteins that bind frequently-occurring sites cannot indi-
vidually be highly specific, but such proteins can achieve
specificity by cooperation in complexes clustered near reg-
ulatory sequences. This combinatorial control is the rule
rather than the exception in higher eukaryotes for critical
processes including transcription [1] and splicing [2], and
has also been observed in bacterial transcription [3].
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Building up regulatory complexes in this way, rather than
using individual gene- or transcript-specific factors, con-
fers many advantages. These advantages include tissue-
specific fine-tuning of biological responses through inter-
actions with different combinations of proteins, increased
evolutionary stability by mitigating deleterious effects of
changes in an individual pattern, and repeated recogni-
tion of sequences by dynamic multi-protein complexes
such as the spliceosome [4].

Unfortunately, this combinatorial flexibility substantially
complicates computational searches for patterns involved
in function, because most occurrences of most patterns
are not biologically meaningful. Although there are many
well-established approaches for defining and searching
for patterns in strings, these techniques typically either
require a linear scan of the sequence or cannot deal with
compositionally-defined patterns. Examples of the former
type include regular expressions (reviewed in [5]) and
weight matrices (reviewed in [6]); examples of the latter
include suffix trees and suffix arrays (reviewed in [7]).
Because the patterns for nucleic acid binding proteins are
often poorly defined, it is critical to avoid a linear-time
search, and to be able to conveniently locate multiple pat-
terns near regions of biological interest. In this paper, we
present Fast-FIND (Fast-Fully Indexed Nucleotide Data-
base), a new algorithm that addresses this class of prob-
lem by indexing sequences in a relational database.

As an example of the application of Fast-FIND to the study
of combinatorial regulation, we searched for patterns
potentially involved in alternative polyadenylation. Poly-
adenylation, or addition of a poly(A) tail at the 3' end of
a cleaved mRNA, is required for the synthesis of almost all
mRNAs in higher eukaryotes [8,9]. The polyadenylation
machinery recognizes a combination of two patterns: a
conserved AAUAAA consensus polyadenylation signal
located between 10 and 30 nucleotides upstream of the
cleavage site, and a relatively flexible GU-rich enhancer
element located between 20 and 40 nucleotides down-
stream of the cleavage site [10,11].

Alternative polyadenylation, in which the transcripts from
a single gene have alternative 3' ends, is an important but
poorly-studied process. Although both tissue-specific and
disease-specific differences in alternative polyadenylation
patterns have been reported [9,10,12-14], and many tran-
scripts in different organisms have alternative 3' ends
(50% in human, 31% in mouse, 28% in rat and 25% in
Arabidopsis) [15], little is known about how this important
process of gene regulation occurs. We chose to study alter-
native polyadenylation in Drosophila because this model
organism can be conveniently manipulated by genetic
techniques to confirm predictions from genome-wide
sequence analysis.

http://www.biomedcentral.com/1471-2105/7/1

Implementation

Databases and programming

We downloaded sequences for Drosophila complementary
DNAs (cDNAs) [16] and expressed sequence tags (ESTs)
[17] in FASTA format. All source code for Fast-FIND, writ-
ten in Python, is available from the authors upon request.

We implemented Fast-FIND in a relational database
because relational database management systems
(RDBMS) automatically provide solutions to many prob-
lems that would need to be considered if using custom
data structures and code to support searches. These solu-
tions include a standard, declarative language for per-
forming queries (SQL), efficient indexing mechanisms
and caching strategies, support for concurrent access by
multiple users, and scalability to multiple processors and/
or distributed systems [18].

Fast-FIND consists of two phases: a one-time, O(N) index-
ing phase, which generates and populates the database
tables, and an O(log N) search phase, in which arbitrary
queries can be evaluated. We now describe these phases in
detail.

Fast-FIND indexing phase

Overview

During the Fast-FIND indexing phase, we analyze each
sequence using overlapping 32-base sliding windows. We
pack the bases in each window into a bitvector (an array
of 1's and 0's, which allows us to perform efficient com-
parisons of strings by treating them as numbers) and store
them in the database. We also use overlapping, variable-
sized sliding windows to calculate the composition of
each 3- to 20-base substring within the sequence. This
indexing produces two ancillary tables. One table con-
tains the bitvector and position of each 32 base window,
while the other contains a window size, a pointer to the
window composition, and the window position in the
longer sequence. The bitvector table is used for exact
matching, and the composition table is used for composi-
tionally defined patterns.

Sequence indexing

For each unambiguous position N in the sequence we
compute and store an 8-byte integer from the 32 base win-
dow, [N:N+32] for exact matching (Figure 1a), which we
associate with the identifier of the matching sequence and
the position where the match occurred. To save both com-
putation time and space, we use a bitvector encoding
scheme that packs non-degenerate sequences into 2 bits
per base: the first bit indicates purines (AG) or pyrimi-
dines (UC), and the second indicates weak (AU) or strong
(GC) H-bonding for base pairing. This type of 2-bit
encoding has been widely used elsewhere (see for exam-
ple, [19]). Each base maps to a specific bit pattern: A maps
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a) Generate 32 Base Anchors

sequences
integers using a binary mapping of:
A=00,G=01,T=10,C =11
- Compute location of each anchor
- Store in Database:

- Anchor table (Unique)

tables

- Sliding window for cDNA, EST, and genomic

- Convert character sequences into 8 byte

- Many to many relation between anchor table
and cDNA, EST, and genomic sequence

e.g.
Computation of bit patterns

for 3-base overlapping anchors
TATCATTGTTAGC

TAT: 100010 = 34, position =0
ATC: 001011 = 11, position = 1
TCA: 101100 = 44, position = 2
etfc...

Sequences

- Compute frequency of each base
- Compute location of each composition

- Store in Database:
- Composition table

sequence tables

b) Compute 3-20 Base Compositions for

- One to many relation from composition to

e.g.
Computation of base
composiitions for 3-base anchors

TAT:2 Tand 1 A;
ATC:1T, 1A, and1C;
TCA: 1T, 1C, and 1A;
etc...

Figure |

|_> Database

Relational

Fast-FIND indexing phase. Summary of the strategies for generating and storing (a) bitvectors for 32-base windows and (b)

compositions of 3—20 base windows for each sequence.

to 00, G to 01, U/T to 10, and C to 11. We excluded the
few records in our data set that contained degenerate
bases, accounting for less than 0.01% of the data.

Composition indexing

For each unambiguous position N in the sequence we
compute and store the base composition of all 3- to 20-
base windows [N:N+y], where y is the length of the win-
dow (Figure 1b). We thus calculate and store the location

and composition of all sliding windows from 3 to 20
bases in length within each sequence; all biologically rel-
evant protein-binding sites in RNA that we are aware of
fall within this range.

Fast-FIND search phase

Overview

Fast-FIND supports composition and exact searches by
numerical range operations on the composition and
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a) Motif Compositions
- Look in composition table to find matching composition locations

b) Exact Matches c) Degenerate Patterns

- Use bit mask on anchor table - Expand degenerate pattern
- Use bit mask on anchor table

- Combine results

d) Bit masking for 3-base patterns and 12-base anchors

S1  TATCATTGTTAG }12-base overlapping
S2 ATCATTGTTAGC J anchors

23 0 (bit positions)
S1 100010110010100110100001 = X1 (9120161)

100010000000000000000000 = L1 (8912896)

TAT 100010111111111111111111 = U1 (9175039)

S2 001011001010011010000111 = X2 (2926215)

0019011000000000000000000 = L2 (2883584)
ATC
001011111111111111111111 = U2 (3145727)

Figure 2

Searches for different types of patterns. Searching for sequence patterns based on (a) base composition, (b) exact
matches, and (c) degenerate base patterns. (d) A simplified example of the bit masking approach for 3-base patterns and 12-
base windows. Calculate the integer X| for the string S| as the sum of 2bit-Pos, where bit-pos refers to bit positions (0 to 23)
for each bit set to |. Each bitvector is followed by its corresponding decimal value (in parentheses). Similarly, calculate integer
values for the overlapping string S2 and for the upper (Ul and U2) and lower (L1 and L2) bounds for two search patterns (TAT
and ATC). The bit patterns for windows S| and S2 are shown using the notation for bases in Figure la. The bit patterns for the
search patterns, TAT and ATC, are indicated by an underline, and the remaining positions are masked with a value of either 0
or | for the lower and upper integer limits (as shown for SI), respectively. X1 is between LI and Ul, but not between L2 and
U2. Similarly, X2 is between L2 and U2, but not between LI and Ul. This example demonstrates that S| begins with TAT but
not ATC, and S2 begins with ATC but not TAT.
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Region of interest
(near alternative poly(A) sites)

0
DNA -1004:—>end
W —— 1st EST set
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EE N — 2nd EST set
B R —

Figure 3

Identifying regions of interest through cDNA/EST
matches. The region of interest located between 100 nucle-
otides upstream of the 3' end of the first EST set through the
3' end of the second EST set was indexed.

sequence indexes respectively. It supports inexact searches
(searches for a pattern defined using [UPAC degenerate
symbols) using application logic rather than within the
database.

Composition searches

To find a pattern of specified length and composition, we
use range operations to look up all possible counts of each
of the four bases that could match the pattern, and join
these compositions to the table containing the locations
of the windows that match them. This design allows us to
rapidly locate arbitrarily degenerate patterns with a speci-
fied range of compositions.

Exact pattern searches

To find exact patterns up to 32 bases (for a simplified
example, see Figure 2), we search the sequence index for
windows that contain the pattern as a prefix. Instead of
storing all window sizes up to 32 bases (as for the compo-
sition index), we use bit masking to simulate the effect of
storing smaller windows. Because we store each window
as an 8-byte integer (64 bits for the 32 bases), we can per-
form searches by finding all windows where the § bits in
a given pattern (where S is a positive integer < 64) exactly
matched the first T bits of the window. To examine the
first T bits of a 64-bit window we need to mask out the
remaining (64-T) bits. Since 2”n > (2”n-1 + 2”n-2 + ... +
2/70), we can generate a mask of all 0's for bit positions <
64-T-1 for the lower bound, L, and a mask of all 1's for bit
positions < 64-T-1 for the upper bound, U. Thus, the first
T bits in an integer between L and U will match the S bits
of the given pattern. However, if there is a position Y in
the first T bits of a window that differs from the corre-
sponding position in the S bits of the given pattern, the
computed search integer for the given pattern will be
2A((64-T-1) +Y) > U or 2A((64-T-1) +Y) < L. Thus, by sim-
ply searching for a bounded range of integers, we can

http://www.biomedcentral.com/1471-2105/7/1

immediately find the location of any S/2 base pattern in
the sequences.

Degenerate pattern searches

We support searches using patterns containing any of the
IUPAC degenerate bases using two methods, depending
on the level of degeneracy. In the first method, we gener-
ate all possible sequences that match the pattern, and then
combining the search results of exact matching from each
sequence. Although this technique is exponential (O(4N))
in the number of unspecified positions, five degenerate
bases (1024 combinations) are sufficient to identify
essentially all well-characterized binding sites for RNA-
binding proteins [20,21] and imposes little computa-
tional burden in practice. In the second method, we use a
different encoding scheme in which each position is rep-
resented by four bits, indicating presence/absence of each
base in the degenerate symbol, and perform masked
searches. This latter method requires a linear table scan,
making it O(N) in the number of indexed windows, but is
useful for highly degenerate searches and for searches
against sequences containing ambiguous bases.

Applying Fast-FIND to alternative polyadenylation in
Drosophila

Overview

To apply Fast-FIND to the study of alternative polyade-
nylation, we needed to identify alternatively polyade-
nylated transcripts. Rather than wusing annotated
polyadenylation sites, which are unreliable, we identified
alternative polyadenylation by fully indexing the Dro-
sophila cDNA and EST libraries downloaded from NCBI
and identifying cDNAs that contained both 3' and inter-
nal matches to ESTs annotated as "3prime" or "complete".
We then defined the region of interest for alternative poly-
adenylation as the region from 100 bases upstream of the
first internal match to a ¢cDNA through the end of the
sequence (Figure 3). Finally, we constructed search tables
containing only this region of interest to reduce the table
sizes, increasing performance.

Mapping cDNAs and ESTs onto the genome

We used BLAT [22] to map cDNAs and ESTs onto the
genome, which also provided information about which
ESTs matched which cDNAs (because both matched the
same positions on the genome).

Identifying candidates for alternative polyadenylation

We defined cDNAs with alternative 3' ends as candidates
for alternative polyadenylation. These candidates were
identified by ensuring that at least two sets of ESTs anno-
tated as "3prime" or "complete" matched somewhere on
the same cDNA. The 'region of interest' for alternative
polyadenylation is defined as the region within a candi-
date ¢cDNA sequence that begins 100 nucleotides
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upstream of the end of the first EST set through the end of
the cDNA (Figure 3). Sequences within this region were
further indexed to support pattern searches as described
above.

Properties of the alternative polyadenylation database

The relational database took ~2 hours to build on a 2.4
GHz Pentium 4 Dell Optiplex, a one-time investment
because incremental updates can be used to add new data
as necessary, and required ~2 GB (for both tables and
indexes) of disk space. For comparison, the original EST
library was 165 MB and the original cDNA library was 20
MB. From the matches between Drosophila cDNAs and
ESTs, we determined the subset of cDNAs that showed evi-
dence of potential alternative polyadenylation. ~12% of
the EST sequences matched the 3' ends of the correspond-
ing mRNAs, the remainder matching the 5' ends. We iden-
tified ~470 candidate cDNAs for further indexing. These
restrictions minimize potential concerns about multi-
gene families and avoid artifacts from contaminants in the
EST libraries [23]. As a positive control for the method,
vimar shows two alternatively polyadenylated transcripts
for which the 3'ends in the database are supported by
experimental analysis [24]. As expected, queries for
sequences from only the region of interest specifically
identify this candidate using Fast-FIND.

Confirming the significance of motif co-occurrence

To test whether pairs of binding sites were correlated in
abundance, we used the G test to determine whether tran-
scripts that contained one site were more likely to contain
the other. The G test is a test for association similar to the
familiar chi-squared test widely used in genetics, but is
more accurate for small sample sizes [25]. To confirm the
G test results, we performed Monte Carlo simulations of
the sequences using three Markov models: (a) first-order
Markov model using the full set of regions of interest as a
training set; (b) fifth-order Markov model using the full
set of regions of interest as a training set; and (c) permut-
ing the nucleotides in each sequence independently. The
first two of these models preserve the single-base and five-
base 'word' frequencies respectively, while the third
model accounts for compositional heterogeneity between
the sequences. For each model, we made 1000 random
sets of sequences of the same length as the actual
sequences, recalculated the G statistic using each random
set, and compared the value of the G statistic in the actual
set to that in each random set. The empirical P-value was
estimated as the fraction of random sets with lower G
scores than the actual set. This analysis corrects for any
error due to biases in the length or composition of the
alternatively polyadenylated transcripts. As an additional
control, we verified that the counts and locations of
motifs identified by Fast-FIND were identical to those
found by using Python's built-in string-matching facility.

http://www.biomedcentral.com/1471-2105/7/1

Web interface

We have set up a web form allowing searches of arbitrary
combinatorial patterns against the portions of the Dro-
sophila cDNAs relevant for alternative end formation and
retrieval of relevant sequences at [26].

Results

Performance characteristics for arbitrary pattern searches
We tested the effects of several variables on the time taken
to search for patterns in the database within regions of
interest for alternative polyadenylation. The time taken to
perform an exact search was independent of the size of the
pattern; it took <0.02 seconds for patterns expanding to 1
to 64 sequences, containing 6, 10, 15, or 20 nucleotides
and 0, 1, 2, or 3 degenerate nucleotides. In addition, for a
compositionally defined pattern (T> 15, G<2, (C+A) =
0, length = 17), there were 154 possible matching
sequences: this search identified 5 cDNAs, and took 0.02
seconds. Thus, Fast-FIND provides an efficient tool to
search for arbitrary user defined pattern(s) (Table 1).

Identification of cDNAs containing binding sites for RNA-
binding proteins

In eukaryotes, binding sites and biologically relevant tar-
gets are known for very few of the several hundred known
RNA-binding proteins [21,27]. We tested whether several
well-characterized RNA-binding proteins were signifi-
cantly associated with one another near alternative polya-
denylation sites. For this analysis, we used several RNA-
binding proteins for which binding sites have been iden-
tified by iterative selection amplification or biochemi-
cally: Sex-lethal (SXL) [28,29], RBP1 [30], P-element
somatic inhibitor (PSI) [31], Rbp9 [32], and hnRNP H/
H'/F family [33]. The binding sites for SXL and CstF64 are
both defined by base composition rather than by exact
sequence [28,29,34], highlighting the necessity for both
composition- and sequence-based searches. The similari-
ties between the U-rich binding sites for RBP1 (and SXL)
and a subset of the GU-rich polyadenylation enhancers or
CstF64 binding sites suggested to us that they might affect
alternative polyadenylation [9,12,13]. SXL regulates spe-
cific 5' and 3' splice sites by blocking the binding of a spe-
cific splicing factor, U2AF, [35]. Thus it might similarly
regulate alternative polyadenylation by binding to and
blocking certain GU-rich polyadenylation enhancers, thus
activating an alternative polyadenylation site.

Searching for SXL-regulated polyadenylation: a natural
compositionally-defined site

If an RNA-binding protein such as SXL affects alternative
polyadenylation, we would expect to find its consensus
binding site close to the first 3' end of alternatively polya-
denylated transcripts from the same gene. We used Fast-
FIND to search for cDNAs meeting these criteria.
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Table I: Candidates with desired binding sites adjacent to alternative polyadenylation sites. Identification of cDNAs with potential
alternative 3' ends and various patterns — base composition, degenerate, and combinatorial patterns — located between 100
nucleotides upstream of the 3’ end of the first EST set through the 3' end of the second EST set. # and ** cDNAs were used as
examples for the alignment shown in Figure 4.

Number of cDNAs with potential alternative 3' ends and search patterns

Search pattern Number of Patterns Number of cDNAs

A. Base composition

CstFé64; U> = 4, G< =4, A+C = 0 ;length = 163 276
8

SXL; U>=15,G< =2, A+C =0;length =17 154 5

SXLI; U> =8, G+tA+C =0 ;length = 8 | 27
SXL2; U> = 10, G< =2, A+C = 0 ;length = 79 25
12

B. Degenerate motifs

hnRNP F/H/H' (core); GGGA [ 232
hnRNP F/H/H'; GGGGA | 78
Rbpl; DCADCUUA 9 47
PSI; RCYYCUURYRC 12 8
Rbp9; UUUNUUUU 4 11
C. Combinatorial motifs
CstF64 + SXL 25,102 5#
CstFé64 + hnRNP F/H/H' (core) 163 178*
CstF64 + hnRNP F/H/H' 163 59k
SXL + hnRNP F/H/H' (core) 154 gk
PSI + hnRNP F/H/H' (core) 12 gk

# Since both SXL and CstF64 sites are GU rich, these motifs are not expected to be statistically independent. However, all three Monte Carlo
analyses showed that the association was significant (P < 0.001) even when accounting for composition, indicating that SXL sites are more likely to
also be CstF64 sites than chance predicts.

*and ** Associations are statistically significant by the G test:

(*G=69.8,P=33x 1017, df = |; and **G = | 1.6, P = 0.00033, df = |). However, these associations were not significant in the Monte Carlo.
¥k Associations not individually significant by the G test, but significant (<0.01) in all three Monte Carlo tests.

Associations of various other combinations of SXL, Rbpl, PSI, and Rbp9 motifs in cDNAs are not statistically significant.

Table 1 shows the number of cDNAs that had both multi-  than chance would predict. Specifically, for each pair of
ple 3' ends and SXL-binding sites. We used a range of dif-  binding sites, we used the G test to determine whether
ferent pattern definitions for the SXL site, ranging from 8  transcripts that contained one site were more likely to
to 17 nucleotides, which differ in binding affinity for SXL.  contain the other. The G test is a test for association simi-
Five cDNAs both showed support for alternative polyade-  lar to the familiar chi-squared test widely used in genetics,
nylation and contained the pattern that most closely  but is more accurate for small sample sizes [25].
approximates the natural SXL-binding site found in tra, a

known SXL target (T=15, G<2, (C+A)=0,length=17)  Although the initial G tests indicated that the RNA-bind-
[36]. Thus, we have identified cDNAs containing potential ~ ing patterns for CstF64 and the hnRNP H/H'/F family
SXL-binding sites that are promising candidates for regu-  members are significantly associated in the alternatively
lation via alternative polyadenylation. One of these candi- ~ polyadenylated regions of Drosophila cDNAs (Table 1), the
dates, which we independently confirmed by a separate =~ Monte Carlo analysis did not confirm the significance of

analysis using BLAST to assign alternatively polyade-  these associations. In contrast, associations between SXL
nylated regions and regular expressions to find a subset of ~ and CstF64, SXL and the hnRNP core, and PSI and the
the SXL patterns, is displayed in Figure 4A. hnRNP core were marginally statistically significant in the

G test but were highly significant (P < 0.005) in all three
Searching for combinatorial patterns of degenerate binding sites Monte Carlo simulations, even when heterogeneity in
In natural situations, genes are typically regulated by com-  composition and overlap between the sites were

binations of binding sites rather than by single binding  accounted for. One cDNA that provides an example of
sites [1-4]. We tested whether the binding sites for several = potential regulation by the hnRNP H/H'/F family of RNA-
well-characterized RNA-binding proteins occurred in the  binding proteins is shown in Figure 4B.

same alternative polyadenylation region more frequently
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Figure 4

A schematic of potential candidates for alternative
polyadenylation. Arrowheads show 3' ends, asterisks show
the consensus polyadenylation signal, and potential SXL,
hnRNP H/H'/F, and CstFé4 sites are indicated.

Discussion

We have used Fast-FIND to identify genes that are prom-
ising candidates for regulation by alternative polyadenyla-
tion. We have demonstrated that Fast-FIND can be used to
rapidly search for both individual and multiple patterns
within defined regions of sequence that are biologically
important, and that the queries are sufficiently fast to sup-
port the analyses of many different variations on pattern,
which is important when knowledge about the pattern is
limited.

The two proteins that we found to be associated near alter-
native polyadenylation sites, CstF64 and the hnRNP H/
H'/F, have previously been linked to polyadenylation site
choice [37-40]. They are not known to interact in the cell,
and, in this context, it is interesting that their sites are not
significantly co-located, although each is significantly co-
located with other RNA-binding proteins, including SXL.
The other proteins we examined have not been implicated
in polyadenylation regulation, but may act as cofactors
with CstF64 or hnRNP H/H'/F. We have thus used our
new tool to generate novel hypotheses about specific bio-
logical interactions that we now plan to test experimen-
tally. Our identification of alternatively polyadenylated
mRNAs that contain specific combinations of binding
sites thus opens up possibilities for new studies of both
gene function and the molecular mechanisms by which
polyadenylation site choice regulates genes. Most impor-
tantly, because each of the individual short, degenerate
binding sites occurs frequently, identification of such can-
didates would not have been possible without using asso-
ciations between the different sites.

http://www.biomedcentral.com/1471-2105/7/1

Fast-FIND offers several advantages over other solutions
to the pattern-matching problem. First, except for the one-
time investment of computational resources during the
indexing phase (database updates are incremental, requir-
ing minimal additional CPU time), the indexed approach
eliminates the linear scan for every new pattern. Conse-
quently, many different combinations of search patterns
can be evaluated until an experimentally manageable
number of potential cDNAs is identified for further anal-
ysis. Second, Fast-FIND allows searches for combinatorial
patterns. This capability is particularly important because
most eukaryotic genes are regulated by a combination of
multiple sequence patterns rather than by a single pattern.
Third, Fast-FIND is uniquely suited to finding short pat-
terns defined by composition. Because each window has
only one composition, and because the compositions are
inherently ordered according to the number of each base
they contain, we can store the composition for each win-
dow in the database and then search for all windows
within any arbitrary range of compositions rapidly. In
contrast, it is impossible to precalculate matches for all
possible regular expressions or for all possible weight
matrices, making it difficult to avoid a new O(N) linear
scan through the sequence when searching for a new pat-
tern. Finally, Fast-FIND is easily implemented using
standard database software, making it easily accessible to
a broad audience.

The indexing approach used in Fast-FIND is not appropri-
ate for all applications. The database tables take up much
more space than the original sequences, limiting its use
for extremely large data sets. Generalized suffix trees and
suffix arrays provide better performance in a smaller space
in cases where the entire data structure can fit into main
memory and concurrent access by multiple users is not
required. Weight matrices are more suitable for highly
degenerate sequences, where the O(N) in the number of
possible matching patterns can become larger than a lin-
ear scan that is O(N) in the length of the sequence to be
searched. The specific indexing scheme we used for this
analysis does not handle degenerate bases, although we
provide this capability by using a different bitvector
scheme, which degrades the search performance to a lin-
ear scan (data not shown). However, even taking these
limitations into account, Fast-FIND is useful for a wide
range of biologically important problems.

Conclusion

Fast-FIND provides a versatile tool for searching for exact
and compositionally defined search patterns. We have
applied this approach to analyzing the role of RNA-bind-
ing proteins with known binding sites in regulating alter-
native polyadenylation in Drosophila, and have found
several mRNAs that are plausible targets for known RNA-
binding proteins. Although the database we created is
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Drosophila-specific, the general approach described here
can easily be extended to the analysis of combinatorial
regulation in other species and in other contexts, includ-
ing the control of transcription, splicing, mRNA stability,
and translation.

Availability and requirements

The Fast-FIND interface is available at http://bmf.colo
rado.edu/fastfind/. The software is available under the
GPL by request to the authors.
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