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Abstract
Background: The identification of mentions of gene or gene products in biomedical texts is a
critical step in the development of text mining applications in biosciences. The complexity and
ambiguity of gene nomenclature makes this a very difficult task.

Methods: Here we present a novel approach based on a combination of carefully designed rules
and several lexicons of biological concepts, implemented in the Text Detective system. Text
Detective is able to normalize the results of gene mentions found by offering the appropriate
database reference.

Results: In BioCreAtIvE evaluation, Text Detective achieved results of 84% precision, 71% recall
for task 1A, and 79% precision, 71% recall for mouse genes in task 1B.

Introduction
Correctly identifying the entities and concepts that are
mentioned in a text is a mandatory step for systems
attempting accurate information retrieval and, especially,
information extraction tasks. In the biomedical domain,
important entities are genes and proteins, chemical com-
pounds, drugs, diseases, pathways, etc. Adequate recogni-
tion of these concepts is often a difficult task, because
biomedical nomenclature is often imprecise and ambigu-
ous [1-3].

The worst case is undoubtedly that of gene name recogni-
tion. Gene names present the following difficulties for
their detection:

• They can be mentioned as "full names" (such as "insu-
lin" or "mitogen-activated protein kinase ") or symbols
(abbreviations such as INS for "insulin" or MAPK for
"mitogen-activated protein kinase". Symbols are often,

but not always, acronyms). It is advisable to treat sepa-
rately mentions of symbols and of full names, since the
problems they present are different.

• Aliases: A given gene can have multiple names. For
instance, the gene for the human fibroblast growth factor
receptor has at least 11 different names. It is important to
count on comprehensive lexicons or list of names. This is
a problem both for symbols and for gene names.

• Homonyms: A given name can designate different
genes. For instance, the name "PAP" can be associated
with (is an alias of) at least five different human genes
(pancreatitis-associated protein, development-differentia-
tion enhancing factor 1, mitochondrial ribosomal protein
S30, poly(A) polymerase alpha, and platelet growth factor
associated protein 1). This creates an ambiguity problem,
and external (expert) information on the characteristics of
each of these genes is needed to disambiguate the
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mention. Since by definition a full name characterizes
completely a gene mention, this is a problem only for
symbols.

• Acronyms: A given name can stand for multiple mean-
ings. For instance, the name "SCT", that stands for "secre-
tin" gene, can also correspond to more than 20 other
meanings, with "stem cell transplant" the most frequent
one. For many genes, this impairs substantially the preci-
sion of the detection. This is a very serious problem affect-
ing uniquely to symbols.

• Orthography: There may be small variations in the way
of writing the gene names, such as the presence or absence
of hyphens between words, as in "IL-2" compared with
"IL2" or "IL 2". This can result in differences in the
number of words of the gene name, which can impair the
efficacy of the detection. This is a problem both for full
names and symbols.

Also, for biomedical applications, it is often not enough
to identify a gene mention in the text. It is also necessary
to find a correspondence with some database identifica-
tion for the gene, so that we can use its associated DNA
sequence, for instance, thus eliminating any possible
uncertainty about the identity of the gene. This constitutes
a normalization step that is often ignored when discuss-
ing gene name recognition.

The factors above make gene name recognition a rather
difficult task, that has been attempted mainly by three dif-
ferent approaches: Support vector machines [4-6], Hidden
Markov models [7,8], and rule-based systems [9,10]. We
have tried a rule-based approach, which allows us to
encode a high amount of external knowledge (mainly
compiled from databases) about the individual genes.

The system we are presenting is named "Text Detective",
and it is capable of annotating a wide range of biological
entities, such as genes, proteins, chemical compounds,
drugs, diseases, biological processes and pathways, etc
(see figure 1). We will only discuss here the gene annota-
tion machinery, and the performance of the system in Bio-
CreAtIvE evaluation of automatic systems for gene
annotation [11].

Implementation
Text tagging
As we have already mentioned, gene names can be found
in two different ways: as full names (a functional descrip-
tion of the gene, such as "tumor necrosis factor" or "janus
kinase"), and as gene symbols (an abbreviation or acro-
nym, such as "TNF" or "JNK"). Since as we have discussed,
the associated problems are different, we used different

approaches for detecting each of the cases. But there are
some initial steps common to both procedures.

The first common step is to parse (split in sentences,
remove punctuation, etc) and tokenize the document.
Then, every sentence in the document is processed
independently.

Text Detective is then able to tag every word in the sen-
tence according to biologically relevant categories. These
categories are:

• CENTRAL: also known as "core terms", they are words
that are very informative of the possible function of the
protein associated to the gene. They are, for instance,
words such as "kinase", "receptor", "transporter", etc. The
presence of these words is (almost) always indicative of a
gene name. They are tagged by a combination of rules
(such as presence of suffixes such as "ase") and hand-
crafted lexicons (list of words such as "receptor")

• CHEMICAL: These are chemical compounds, tagged by
a set of rules (prefixes, suffixes and substrings) that follow
carefully the chemical nomenclature. For instance, pre-
fixes such as "hydroxy" or "bis", suffixes such as "one" or
"amine", or substrings such as "chlor" or "oxo" can indi-
cate that the word is part of a chemical name. A confi-
dence level can be assigned according to the number of
matched rules. Also a lexicon is used here, both to include
chemical names that do not match the rules (with approx-
imately 10000 entries, especially drug names such as
"prozac" or "aspirin"), or to exclude non-chemical words
that do match the rules (almost 9000 words, such as
"chloroplast" or "examine"). Several sources of data were
used, especially UMLS lexicon [12] and FDA listings of
approved drugs (for instance, see [13])

• TYPE: Words such as "alpha", "a1", "c", "12", "TNF",
that define the exact identity of the gene (distinguishing
between "interferon alpha" and "interferon gamma", for
instance). Words containing numbers, letters, greek let-
ters, roman numerals, capital letters and combinations of
these belong to this category. As a consequence, gene sym-
bols (such as "TNFalpha") are also tagged as "type".

• LOCATION: Cellular, sub-cellular and tissue locations,
such as "liver", "intestinal", "lymphocyte", "membrane",
"mitochondrial", etc. They are tagged using a hand-crafted
lexicon (containing more than 800 entries), starting from
Gene Ontology [14] and UMLS [11] lexicons.

• BIOWORD: Biological relevant words that do not fall in
the previous categories. We use a comparison of two dif-
ferent corpora (a biological one, and a non-biological
one) for knowing if a word falls in this category. A word is
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a bioword if its frequency is much higher in the biological
corpus than in the non-biological one. Since using this

method there are some words loosely associated with
biology (such as "flight", "method", etc) that can be rec-

The system Text Detective is capable of annotating a wide range of biological entities, such as genes and proteins, diseases, chemical compounds, drugs, organisms etcFigure 1
The system Text Detective is capable of annotating a wide range of biological entities, such as genes and proteins, diseases, 
chemical compounds, drugs, organisms etc.
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ognized as biowords just by chance, the procedure is also
refined using a Poisson statistics [15] to take into account
clustering of words in the articles. The idea is that "rele-
vant", content words, will be statistically clustered, that is,
they will be cited in the same article more times than what
will be expected by chance. The distribution of non-con-
tent words will show no clustering. In this way it is possi-
ble to select as biowords just content words over-
represented in biological articles.

The rest of the words are tagged as "OTHER".

Notice that this is NOT a syntactic part-of-speech tagging,
rather we try to recognize the role of the word in a possible
gene mention.

An example of a tagged sentence follows:

Decay -> BIOWORD

accelerating -> BIOWORD

factor -> CENTRAL

(DAF) -> TYPE

is -> OTHER

a -> OTHER

complement -> BIOWORD

regulator -> CENTRAL

that -> OTHER

dissociates -> OTHER

autologous -> BIOWORD

C3 -> TYPE

convertases -> CENTRAL

which -> OTHER

assemble -> OTHER

on -> OTHER

self -> OTHER

cell -> LOCATION

surfaces -> BIOWORD

The tagging procedure can lead to some mistakes, espe-
cially in the "bioword" and "chemical" category (the first
one because it is loosely defined, the second one because
many rules and exceptions exist). Nevertheless, we esti-
mate that errors are less than 10% in all categories.

Once all words are tagged, Text Detective attempts to dis-
cover gene mentions both as full names ("tumor necrosis
factor alpha", "interleukin 1") or gene symbols ("TNFal-
pha", "IL 1"). The procedure is different for both
instances.

Identification of full names
In order to discover full names, the system extracts chains
of words that can represent a gene mention. These chains
are selected only if they fulfil several criteria. For instance,
No "OTHER" words are allowed, and the presence of a
"CENTRAL" word is needed. The resulting chains of words
are possible gene mentions. For the example above, the
possible gene mentions selected would be:

Mention 1: Decay accelerating factor DAF (Bioword, Bio-
word, Central, Type)

Mention 2: Complement regulator (Bioword, Central)

Mention 3: Autologous C3 convertases (Bioword, Type,
Central)

In subsequent steps, these possible gene mentions are
refined using filtering rules. For instance:

Rule 1: remove any plural at the end of a central word

Rule 2: remove isolated biowords at the beginning of a
gene mention

Rule 3: remove mentions that comprise just one word.

The application of rule 1 turns mention 3 into "Autolo-
gous C3 convertase". Application of rule 2 turns mention
2 into "Regulator", and mention 3 into "C3 convertase".
Application of rule 3 removes mention 2 ("regulator", just
a single word).

Identification of symbols
Gene symbols (TNF, EGR, p53) identification follows a
slightly different procedure. As we said above, gene sym-
bols are recognized as chains of "TYPE" words (one or
more). But as we stated above, multiple meanings (acro-
nyms) can exist for a given symbol, and therefore it is nec-
essary to evaluate the context of the possible symbol in
order to determine if such a mention it is indeed referring
to a true gene.
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Using a set of 940 articles annotated by experts, we have
computed the probabilities of appearance of some words
in the vicinity of gene mentions. These set of words con-
form a scoring matrix (Table 1), that is used to evaluate
the context (the surrounding words) of a given symbol.

, Thus we have the following for the sentence:

"The function of c-fos gene in CC2 cells is partially
inhibited"

The possible gene symbol "c-fos" scores 1.8 (word "func-
tion" at position -2) plus 5.0 (word "gene" at position
+1), total 6.8, while the possible symbol "CC2" scores 0.5
(word "gene" at position -2) plus -5.0 (word "cell" at posi-
tion -1), total -4.5.

The score for the symbol must exceed a minimum score in
order to be declared a valid gene mention. This minimum
score is set up independently for each possible symbol, by
means of what we call "risk factor". Briefly, the risk factor
is a number between 0 and 100 that indicates the proba-
bility that the symbol matches different meanings. In
other words, it indicates the ambiguity of the symbol. As
the symbol is more ambiguous, the risk factor is higher.

The risk factor is calculated combining several pieces of
information. For a given symbol, all sentences in which it
appears are extracted and word usage in these sentences is
examined, comparing it with the word usage of sentences
containing true genes. This is called "word usage informa-
tion". Also, when the symbol is found between parenthe-
ses, it is very likely that the preceding words inform us
about the meaning of the symbol (as in the sentence "we
performed Stem Cell Transplant (SCT)."). In these cases,
we look in these preceding words for terms that strongly
indicate the presence of a gene, that is, we look for "CEN-
TRAL" words. This is call "acronym information". Other
criteria, such as the morphology of the symbol (presence
of numbers, a capital letter at the end, etc.), can also be
used. All these pieces of information are combined to
obtain a single value for the risk factor, what in turn is
used to modulate the minimum score needed. Thus,

"SCT" is a symbol with high risk (word usage is often dif-
ferent from that of genes, and acronym information indi-
cates that the symbol can match many meanings not
related to genes), and therefore minimum score is set
high. On the contrary, symbol "BRCA1" has a very low
risk (word usage matches that of genes, and acronym
information indicated that the symbol is always related to
a instance of a gene), and therefore minimum score
needed is very low.

Additionally, if we have a list of gene names (that can be
compiled from different databases, such as HUGO, Swiss-
Prot LocusLink, etc.), we could make use of the functional
information available for a given gene. It is possible to
extract some terms that are informative and specific for
the function of a given gene (Figure 2). For selecting these
terms, the criteria followed is that they have low frequency
in the full corpus and are not present for many genes. The
final result is a set of keywords for each gene. Now, if the
article is mentioning a given gene, the text will be scanned
looking for its particular keywords. If they are found, they
will add a score based on the informative content of the
keyword. This additional score will complement that
obtained by means of context evaluation.

After this step, we will have a set of possible gene names
mentioned in the article as gene symbols. This result is

Table 1: Some entries in the context matrix. Scores are derived from the ratio between frequency of the given word in the given 
position with respect to the gene (position +1 means immediately after the gene name, position +2 means two words behind, etc.) and 
the total frequency of the word.

WORD POSITION

-3 -2 -1 +1 +2 +3
gene 0 0.5 5.0 5.0 0.5 0
function 0 1.8 0 2.1 0 0
cell 0 0 -2.5 -5.0 0 0

Example of a functional annotation extracted from SwissProt, for the gene of human rhodopsinFigure 2
Example of a functional annotation extracted from SwissProt, 
for the gene of human rhodopsin. In bold letters, the key-
words that can be extracted from this text. These keywords 
are selected because their frequency is low in the full corpus 
and also because they are relatively specific (They do not 
appear in more than 25 genes).

Visual pigments are the light-absorbing molecules that mediate vision. 
They consist of an apoprotein, opsin, covalently linked to cis-retinal.
Defects in RHO are one of the causes of autosomal dominant retinitis 
pigmentosa.
Tissue specificity: Rod shaped photoreceptor cells which mediates vision 
in a dim light. 
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combined with the identification of full names to yield
the final set of genes annotated for the article.

Matching with a list of gene names
In order to identify the exact gene reference, we must
match the gene mention we have found (full names or
gene symbols) with a list (lexicon) of possible genes (full
names or gene symbols), that can be extracted from
different databases (HUGO, MGI, SGD, SwissProt, etc.).
An example of such a lexicon can be found in figure 3.
This allows the complete identification of a gene mention,
so that it is possible, for instance, to retrieve the associated
DNA sequence. This can be seen as a normalization step.

Again, the procedure that Text Detective uses is different
for full names and for gene symbols. For full names, we
have tagged the lexicon, the list of full names, using the
same procedures described above. For instance, the lexi-
con entry "gamma-aminobutiric acid receptor delta" is
tagged as:

gamma-aminobutiric -> CHEMICAL

acid -> CHEMICAL

receptor -> CENTRAL

delta -> TYPE

This is done for all the entries in the lexicon.

A match between the full name found in the article and an
entry in the lexicon is only scored if several criteria are ful-
filled. For instance, all central terms and chemical com-
pounds must be present both in the full name found in
the article and the full name in the lexicon. All types must
be also present. This matching procedure is very flexible,

so that word ordering, dashes, slashes, brackets, etc, do
not influence the result. A match is only scored if just one
gene in the list fulfil all criteria, and then the "official" ref-
erence is returned. In case several genes in the list could
match the gene mention, ambiguity is detected and no
identification is provided.

For instance, suppose that in the article we are analysing,
we have found a mention of "dopamine D3 receptor". In
our lexicon compiled from HUGO database of human
genes, the closest entry refers to gene DRD3, with the full
name "Dopamine D3 receptor precursor". In this case, the
mention and the possible match have in common all
chemicals ("dopamine"), all central words ("receptor")
and all types ("D3"). The only word not in common is a
bioword ("precursor"). Therefore, we score a match and
identify the mention of "Dopamine D3 receptor" with
DRD3.

Now suppose that the article mentions "GDNF neuro-
trophic receptor alpha". The lexicon has three possible
entries matching this mention. They are: GFRA1 ("GDNF
family receptor neurotrophic factor alpha 1"), GFRA2
("GDNF family receptor neurotrophic factor alpha 2"),
and GFRA3 ("GDNF family receptor neurotrophic factor
alpha 3"). In this case, some types are unmatched between
any of the three possible entries and the gene mention
found (the types "1", "2" and "3"). Therefore it is not pos-
sible to choose any of the three, and the mention to
"GDNF neurotrophic receptor alpha" remains
unmatched.

For gene symbols, we try to match all possible gene sym-
bols found in the article with a lexicon of allowed gene
symbols, extracted from different databases (HUGO,
LocusLink, MGI, SGD, SwissProt, etc.). As before, the
matching procedure is flexible. But ambiguity can be
present and a given symbol can stand for different genes
(for instance, gene symbol "PAP" in humans can stand for
five different genes)

To overcome the ambiguity, we use the keywords
extracted for every possible gene, as was explained in the
previous section. In case that several possibilities are avail-
able, the one with more keyword is selected (Table 2).

Finally, the system assembles the information about full
names and gene symbols in one single result, and returns
it as the final output.

Results
The performance of our method was evaluated in our par-
ticipation in BioCreAtIvE challenge. To validate the
results, the measures of precision and recall were used,
defined as:

A single entry for a gene in the lexiconFigure 3
A single entry for a gene in the lexicon. Information is com-
piled from different databases.

Official gene name: FGF1

Possible symbols (HUGO, SwissProt, LocusLink): FGFA, HBGF-1, 
AFGF, ECGF-beta 

Possible full names (HUGO, SwissProt, LocusLink): Fibroblast
Growth Factor 1, Heparin-binding Growth Factor 1 Precursor, 
Acidic Fibroblast Growth Factor, Beta-endothelial Cell Growth 
Factor
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where TP is the number of true positives (the annotations
made that are correct), FP the number of false positives
(the annotations made that are not correct), and FN the
number of false negatives (the genes missed).

Just for the gene identification process (BioCreAtIvE task
1A), the system achieves an average of 84.2% precision,
71.7% recall. Figure 4 shows the results at different levels
of precision and recall. As expected, a trade-off between
precision and recall exists that can be tuned mainly by
modifying the parameters influencing the minimum score
required for accepting a gene mention. Both parts of the
gene identification process (detection of full names and
detection of symbols) achieve very similar results, indicat-
ing that the system is very well balanced. These results are
similar to the ones we obtain by annotating a set of hand-

curated articles of our own (500 articles), but precision
and recall is higher in our tests, mainly due to the different
criteria of "what-is-a-gene" and the very limited context
information provided in BioCreAtIvE evaluation (see dis-
cussion section below).

For estimating the performance of the system including
the matching against lists of gene names (BioCreAtIvE
task 1B), we decided to work only with mouse and yeast,
since names for fly needed of some adaptations to the sys-
tem (some of them, like "sevenless", were not recognized
as symbols using the described tagging rules). Also, detec-
tion of human genes has been attempted in our own tests,
based on 500 articles manually annotated by human
experts. The results can be found in figure 5.

Discussion
Text Detective is a rule-based system for annotating and
normalizing gene mentions in texts, that reaches high pre-
cision and recall for this task. Nevertheless, there are sev-
eral points that must be clarified.

First at all, it is difficult to reach a consensus of what
should be annotated as a gene and what should not. For
example, some users want to consider as gene mentions
instances such as regions or motifs ("HindIII fragments",
"HLH motif", "silent mating type loci"), promoters
("Oct3 promoter"), etc. That was the case in BioCreAtIvE
task 1A evaluation. In our view, these instances are not
genes and the system is not tuned to detect them. There-
fore, the performance of the system may be different
depending on what the user is expecting. This illustrates
also the difficulties in creating Gold Standards for auto-
matic evaluation of systems dealing with gene name
recognition.

Table 2: Example of disambiguation using keywords. The symbol 
ERK can match two different genes: EPHB2 and MAPK1. 
Analysing the article, no keywords can be found for EPHB2, but 
keywords "microtubule-associated" and "map2" are found. 
Therefore, the system assumes that the real identity of ERK is 
MAPK1.

Symbol found Official name Keywords

ERK EPHB2
MAPK1 microtubule-associated; map2

Precision/recall plot for gene identificationFigure 4
Precision/recall plot for gene identification. Results from Bio-
CreAtIvE task 1A data set.
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The performance of the system is dependent on the length
of the text provided. This is because in order to evaluate a
gene/protein mention, the system takes into account all
mentions of the possible gene/protein in the text. The
context of all the instances is evaluated, and global
features are extracted. That means that the results improve
as the text grows, since more information can be used.
Optimal results are achieved when using a complete
PubMed abstract (usually between 10–15 sentences). This
impairs the results of the system in BioCreAtIvE task 1A,
where just one sentence out of context was provided. In
fact, most of the false negatives occur when no context
information could be found.

There are also many instances of difficult cases, in which
the citation to the gene is obscure or complex. For
instance, we found an article where the notation "lpa(1-
3)" was used to refer to lpa1, lpa2 and lpa3. These
instances present a real challenge for an automatic system,
and very sophisticated rules must be devised to deal with
them. We find that this is the case for 20–25% of our false
negatives in our participation in BioCreAtIvE task 1A.

In the normalization step, the system is highly dependent
of the quality of the lexicon (the gene list) provided. In
our experience, these lists require careful examination and
filtering to remove some inconsistent annotations. Also,
as the system relies on keywords extracted from functional
annotations to perform the normalization step, there is a
compromise between the amount of text provided and the
quality and accuracy of it.

Finally, we want to raise our concerns about the measures
used for evaluating the performance of this and similar
systems. We have observed that the precision and recall of
the system is not uniformly distributed for all genes. In
other words, 80% precision does not mean that this and
similar systems make just one error out of five annota-
tions for every gene. Instead, we have observed that errors
concentrate in few, very difficult cases. For instance, when
the gene symbol is a common acronym for many other
meanings (SCT could be the case). Therefore, the scenario
is closer to one in which the systems annotate completely
right 80% of the genes, and fail often for the 20% rem-
nant. If this is true, we may be further from the solution of
the problem than it seems.
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