
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Windows .NET Network Distributed Basic Local Alignment Search
Toolkit (W.ND-BLAST)
Scot E Dowd*1, Joaquin Zaragoza1, Javier R Rodriguez2, Melvin J Oliver2 and
Paxton R Payton2

Address: 1Livestock Issues Research Unit, Agriculture Research Service, USDA, Lubbock, TX, USA and 2Plant Stress and Germplasm Development
Research Unit, Agriculture Research Service, USDA, Lubbock, TX, USA

Email: Scot E Dowd* - sdowd@lbk.ars.usda.gov; Joaquin Zaragoza - jzaragoza@lbk.ars.usda.gov;
Javier R Rodriguez - vrodriguez@lbk.ars.usda.gov; Melvin J Oliver - moliver@lbk.ars.usda.gov; Paxton R Payton - ppayton@lbk.ars.usda.gov

* Corresponding author

Abstract
Background: BLAST is one of the most common and useful tools for Genetic Research. This
paper describes a software application we have termed Windows .NET Distributed Basic Local
Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving
usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to
develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a
comprehensive BLAST result viewer with curation and annotation functionality.

Results: W.ND-BLAST is a comprehensive Windows-based software toolkit that targets
researchers, including those with minimal computer skills, and provides the ability increase the
performance of BLAST by distributing BLAST queries to any number of Windows based machines
across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI)
for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result
exportation. This software also provides several layers of fault tolerance and fault recovery to
prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-
BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12
remote computers of the same performance class. A high throughput BLAST job which took
662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when
distributed to 17 nodes, which included lower performance class machines. Finally, there is a
comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine
components, which provides comprehensive exportation of BLAST hits to text files, annotated
fasta files, tables, or association files.

Conclusion: W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing
their available computing resources for high throughput and comprehensive sequence analyses.
The install package for W.ND-BLAST is freely downloadable from http://liru.ars.usda.gov/
mainbioinformatics.html. With registration the software is free, installation, networking, and usage
instructions are provided as well as a support forum.

Published: 08 April 2005

BMC Bioinformatics 2005, 6:93 doi:10.1186/1471-2105-6-93

Received: 01 November 2004
Accepted: 08 April 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/93

© 2005 Dowd et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15819992
http://www.biomedcentral.com/1471-2105/6/93
http://creativecommons.org/licenses/by/2.0
http://liru.ars.usda.gov/mainbioinformatics.html
http://liru.ars.usda.gov/mainbioinformatics.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
Background
What is BLAST?
Basic Local Alignment Search Tool (BLAST) answers the
question: "What known nucleotide or amino acid
sequence in an existing sequence database is most similar
to an unknown input (query) sequence?" BLAST was orig-
inally intended for comparison of unknown and newly
sequenced genetic sequences against annotated database
sequences to find those sequences with the closest biolog-
ical similarity to the query [1,2]. Many papers describe the
BLAST algorithm and concepts for similarity searching in
detail [1-3].

With the advent of high-throughput sequencing technol-
ogies, there is an ever increasing input of new genetic data,
which typically needs to be evaluated using BLAST. As this
ever increasing volume of new data is analyzed using
BLAST and then annotated the new sequences are subse-
quently added to the public databases, which in turn con-
tinues to increase their size. This is a vicious cycle, in
which new sequence data is generated at increasing rates
and databases are continually increasing in size. The
BLAST search process is therefore becoming an increas-
ingly time-consuming productivity bottleneck in genom-
ics. In example, a typical laboratory workstation (2.4 Ghz
Pentium 4 processor, 1 GB physical memory, 60 GB SATA
hard drive) can search one query sequence (800 bp)
against a local copy of NCBI http://
www.ncbi.nlm.nih.gov nucleotide (nt) database (320
million bp database) in just under 3 minutes. Thus, a typ-

ical high-throughput BLAST search, which involves
10,000 sequences, can take over 20 days to complete on a
single workstation. This is an inordinate amount of time
to wait for results.

There is a growing need to find ways of reducing these
BLAST productivity bottlenecks when evaluating new
sequence data. One of the most logical approaches is to
increase overall BLAST performance by enhancing scala-
bility, user-friendliness, and reliability. There are an
increasing number of commercial and several non-com-
mercial software packages that have been developed
(Table 1). The obvious drawback to commercial products
is a very high price tag. On the other hand, non-commer-
cial and freely available BLAST solutions (Table 1) have
been shown to increase the throughput of large BLAST
jobs, but typically require a high level of computer literacy
and networking skill to enable them to be effectively uti-
lized. As examples, WU-BLAST [3] provides a dramatic
increase in the speed and efficiency of the BLAST algo-
rithm itself, but it is currently unavailable for Windows
environments, does not have distribution capabilities
inherent, and requires someone with above average com-
puter skill to setup, operate and maintain. Similarly, MPI-
BLAST [4], which is arguably the most popular and pow-
erful distributed BLAST implementation available today,
distributes BLAST across Windows, UNIX-based, or heter-
ogeneous networks, yet need for extensive networking
skill, lack of user interfaces, and low fault tolerance can
result in limited utility for the average end-user.

Table 1: BLAST tool comparison

Program Name Reference Increase
BLAST

Performance

Freely
Available

Distributed
BLAST

GUI
Based

GUI BLAST
Results
Viewer

GUI
Database

Formatter

OS
Available1

Fault
Recovery2

NCBI BLAST 1 N/A yes No No No No W,U Low
BLAST++ 5 yes yes No No No No W,U Low
WU-BLAST 3 yes yes No No No No U,O Low
DeCypher
BLAST™

6 yes No No yes No No O High

S-BLAST 7 yes yes yes yes No No W,U High
BeoBLAST 8 yes yes yes No No No U Medium
StarBLAST 9 No No No yes yes yes W Low
mpiBLAST 4 yes yes yes No No No W,U Low
Condor BLAST 10 yes yes yes No No No W,U Medium
Soap-HT-
BLAST

11 yes yes yes yes No No W,U Medium

Paracel 12 yes No yes yes yes No U,O Unknown
W.ND-BLAST 13 yes yes yes yes yes yes W High

1 – W = Microsoft Windows, U = UNIX/LINUX, O = Other
2 – Based on ability to recover from node failure, master failure, and complete failure
This table provides a list of many of the most popular BLAST programs as well as their major features. The primary goal of most BLAST packages is
to increase the performance of the BLAST algorithm. There seems to be a dichotomy between increased performance and user friendliness that has
been encapsulated within W.ND BLAST. W = Windows based, U = Unix/Linux based, O = Other
Page 2 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
Ultimately the high price, lack of user-friendliness, or
other similar factor reduces the utility of most available
technologies for a majority of scientists that could truly
benefit from such high-throughput BLAST tools. Thus,
after evaluating the available free software, we identified
the need within the research community for a comprehen-
sive BLAST toolkit with a high degree of user-friendliness
and functionality. We sought to create a full Windows
toolkit with the following characteristics:

• Utilizes the most common operating system (Windows
2000 and Windows XP)

• Utilizes Local Area Network (LAN) connected Windows
workstations as a distributed environment

• Freely available for non-commercial and academic use.

• Does not require extensive networking, hardware or
software skills to setup and utilize.

• GUI based formatting of custom databases from any
fasta file

• GUI based importing and distribution of existing BLAST
databases (architecture dependent)

• Automatic scanning of LANs for Windows workstations
that are available and ready to run WND-BLAST

• Ability for users at child nodes to cancel computation-
ally intensive BLAST searches without disrupting the
entire job if they happen to require more resources than
are available during searches.

• Ability to BLAST a multi-FASTA file (single file contain-
ing more than one fasta sequence)

• Ability to BLAST a folder containing multiple single fasta
files (single folder with multiple files)

• Automatic creation and management of individual
projects on any workstation in the network.

• Generation and real-time viewing of BLAST log files to
show network performance and progress

• Progress bars for most time consuming functions such as
database formatting and large high throughput BLAST
searches

• Logical formatting and visualization of BLAST search
outputs using any of the fields available (e.g. bit score, hit
def, E-value etc.)

• Exporting of custom annotated FASTA files containing
any of the BLAST output data fields or manually input
data.

• Exporting of fasta files containing any combination of
hits, "no hits", or "false hits".

• Ability to manually and automatically curate BLAST out-
put files

• Indexing of input and output files related to annotation
allowing for rapid database curation and intuitive manip-
ulation and mapping of data along with other
experiments.

• GUI based installation and easy to follow instructions
for setting up required Windows network shares.

• A useful help file.

The solution developed to address all of these issues has
been named W.ND-BLAST, which stands for Windows
.NET Distributed Basic Local Alignment Search Toolkit.

Implementation
Programming language
The package was written using Microsoft Visual Studio
.NET 2003 and C# as the primary programming language.
The software relies on the use of .NET 1.1 framework,
which can be freely downloaded from the Microsoft web-
site http://www.microsoft.com.

Auxiliary programs
W.ND-BLAST has encapsulated the NCBI BLAST software
http://www.ncbi.nlm.nih.gov including blastall, for-
matdb and scoring matrices (i.e. Blosum62, PAM). W.ND-
BLAST only requires a user supplied database and input
sequences for proper execution. W.ND-BLAST has the
ability to execute any of the sub-programs of blastall (i.e.
blastx, tblastx, blastn etc).

W.ND-BLAST Toolkit overview
The W.ND-BLAST toolkit consists of several integrated
software solutions

• Project Control Panel

• Database Engine

• BLAST Engine

• W.ND BLAST Distribution Algorithm

• BLAST Output Viewer
Page 3 of 14
(page number not for citation purposes)

http://www.microsoft.com
http://www.ncbi.nlm.nih.gov

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
• Annotation Engine

Project Control Panel
Considerable attention was put into the design of the
W.ND-BLAST protocol, which is based on creation and
organization of separate BLAST projects. Once the soft-
ware is initiated, the user is presented with a simple
Project Control Panel (PCP) (Figure 1). This control panel
has two options: A) create a new project or B) work on a
previous project. The user creates a new project by enter-
ing the investigators last name, the title of the project, and
a database identifier or date. After the researcher defines
the new job the combined Database and BLAST Engine
(DBE) interface opens and a unique project folder is auto-
matically created for the new project (Figure 2). Alterna-
tively the second option available at the (PCP) is to work
on an existing or previous project. If an existing project is
selected the BLAST Output Viewer (BOV) is opened along
with a list of available subprojects (Figure 3). Subprojects
can represent multiple BLAST outputs of the data against
different or updated databases or sub-queries from the
input sequences.

Database Engine
The Database Engine is a separate part of the previously
mentioned DBE (Figure 2), which allows for creation and
distribution of new databases using a fully functional
database formating (formatdb) interface. The formatdb
interface provides all available parameters with the most
common parameters defaulted. Thus, when formatting a
new database only the location of the fasta file being for-
matted must be identified (using a browse feature) and
the type of fasta file (protein or nucleotide) must be
entered. The database is formatted and entered into the
software appearing as an available database. Any number
or type of database can be created and made available. The
Database Engine also allows for automatic location and
importing of existing databases, which are copied into the
database (DB) directory and added to the available data-
base file. The software also has the ability to scan a com-
puter or specific folder and will find any existing
databases. Following scanning for available workstations
in the next section, the databases can be automatically dis-
tributed to any or all of the worker nodes after formatting
or importing.

BLAST Engine
The BLAST Engine, which is the primary part of the DBE
(Figure 2), provides the option to scan the LAN for avail-
able network workstations (nodes) running the W.ND-
BLAST server. It also provides the alternate option to
BLAST only on the local machine. The software scans and
finds only those LAN workstations that are available and
configured to run WND-BLAST. The same WND-BLAST
package provided for the master node software must be

installed on each of the worker nodes as well. The BLAST
Engine allows for the selection of child nodes, fasta file or
folder, and BLAST parameters. The user is also presented
with a list of BLAST databases to choose. Note: the user
must format or import these databases. Progress bars keep
track of the job and a real-time log file viewer provides
feedback to the user on the overall progress of the BLAST
as well as on which workstations are working.

W.ND BLAST distribution algorithm
The software utilizes simple client/server architecture with
a single source client, referred to as 'master node' and mul-
tiple servers that are referred to as 'child nodes'. An
included W.ND-BLAST server must be installed and run-
ning on all participating child nodes. Each child node is
used solely for communication with the master node and
executing the BLAST program. The BLAST algorithm used
is unchanged from the most current NCBI BLAST, version
2.2.9. As newer versions are released by NCBI the algo-
rithm can be updated independently with an integrated
update feature or with new versions of W.ND-BLAST pro-
vided through the Livestock Issues Research Unit's web-
site. The child nodes are queried by the master node upon
execution of the BLAST algorithm. Communication
between the master and child nodes is achieved and main-
tained through a well known port using an underlying
Transmission Control Protocol (TCP) connection.

The child nodes are located by W.ND-BLAST, which per-
forms a search of all workstations within range (e.g.
domain or subnet mask) of the master or local machine.
This is accomplished by creating a unique multicast group
for the master and child nodes. Once communication has
been established by the master node, the child nodes are
added to the available workstation pool. The user is given a
choice of using all or any combination of child nodes in a
pool for their job. Thereafter, the available child node pool
can be used to add child nodes, while the BLAST is in
progress. This is useful when a user knows his colleagues
no longer need their compute resources and wishes to add
this newly freed resource to his currently running BLAST
job. Before the master node executes a BLAST query, each
participating child node must have the database the user
wishes to query available locally. If not available locally,
the master will distribute the database to the child nodes
lacking the database. Once each child node has the
required database, the master begins running queries on
that child.

To add flexibility to input data processing, the user has the
option to select a single multi-fasta file or an entire folder
containing individual fasta files. If a multi-fasta file is
selected, W.ND-BLAST automatically parses the file into
single fasta files. If a whole folder is selected, W.ND-
BLAST will attempt to BLAST each fasta file contained in
Page 4 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
Screenshot: Project Control Panel (PCP)Figure 1
Screenshot: Project Control Panel (PCP). The Project Control Panel (PCP) displays the user's options for W.ND
BLAST. This example screenshot shows where the user is able to "Create New Project" by simply entering in a new project
name. The "Create New Project" can also be changed to "Load Saved Project" where the user has the option to choose a pre-
vious project from the left text box.
Page 5 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
that folder, but each file in the directory must only con-
tain a single sequence. Once the user identifies either a file
or folder every sequence in the pool is marked as not done
in the master node job log at initialization of the
"BLASTem" command. The sequences are then mar-
shalled and sent one by one to child nodes. The master log
reflects this distribution by updating the status of each
sequence to working. Upon receipt, the child node un-
marshals the query and begins BLAST operations. After
the initial sequence distribution to each node, the master
node is placed in a wait state tied to that sequence. The
master node remains in this state until it receives a call-

back from one of the child nodes or there are zero
sequences remaining in its waiting sequence pool. Every
child node, upon completion of a BLAST, sends a call-
back message to the master informing of its finished state.
The master node then retrieves the BLAST results and
writes them to a file in the project folder. Upon receipt of
the call-back, the master node also sends the child node
the next query sequence from the pool to begin BLAST
operations and update the sequence status to done. This
process continues for every sequence until the sequence
pool is empty.

Screenshot: Database and BLAST Engine (DBE)Figure 2
Screenshot: Database and BLAST Engine (DBE). This example screenshot displays the Database Engineer, which is
used for scanning for child nodes, creating custom databases and distributing existing databases. Within the same interface is
the BLAST engine, which is used for executing inputting query sequences, choosing BLAST parameters, and executing BLAST
jobs. Also available is the ability to control child nodes during BLAST jobs. Lastly, the user has the option of resuming a failed
BLAST.
Page 6 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
BLAST Output Viewer
Once a BLAST is completed, the user has the option to
view the BLAST output in the BLAST Output Viewer (BOV,
Figure 3). The viewer scans through each BLAST output,
one input sequence at a time, and displays as many hits
for each sequence as the user desires. The viewer displays
hits in a tabular format that can be rearranged based upon
the user's desired preference. The viewer works with any
type of XML formatted BLAST output such as BLASTx,

BLASTn, BLASTp, tBLASTx, etc. There is also an alignment
option that brings up a separate window that displays any
of the output alignments. The alignment view of the
sequence shows the query-seq, hit-seq, and mid-line fields
of the hit aligned for easy viewing and analysis (Figure 4).
The curation of BLAST hits is performed by clicking the
checkbox corresponding to a single BLAST hit. This man-
ual curation is based on which hits the user decides are
significant based on his/her criteria. The researchers' crite-

Screenshot: BLAST Output Viewer (BOV)Figure 3
Screenshot: BLAST Output Viewer (BOV). This example screenshot of the BLAST Output Viewer displays some of the
available columns information from an individual BLAST hit. This particular window is displaying the first five hits for a sequence
named, "Contig_318." From here the user can move forward or backward through all BLAST output sequences. The user can
also click on the "View Alignment" column to bring up the "Sequence Alignment Viewer" window.

Screenshot: Sequence Alignment ViewerFigure 4
Screenshot: Sequence Alignment Viewer. This screenshot of the Sequence Alignment Viewer gives an example the
BLAST output for one alignment. The query sequence, midline and hit sequence are displayed in parallel and pair-wise equal
can be seen in black
Page 7 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
ria may consist of bit-score, e-value, and hit length for
example. Curated hits can be exported as tables, associa-
tion files and even annotated fasta sequences.

Annotation Engine
The BOV acts not only as a way to view and curate high-
throughput BLAST data, but also has an effective way to
perform automated annotations based upon top hits. The
type of annotation can be defined dynamically based

upon hit definition and can include any of the BLAST
output fields that are available. The Annotation Engine
(Figure 5) is used to export the BLAST output data accord-
ing to the user's specifications. The Annotation Engine can
automatically create annotated multi-fasta files, tab
delimited text files containing all annotation, or common
association files that are fully annotated based upon the
user's criteria or selections.

Screenshot: Annotation EngineFigure 5
Screenshot: Annotation Engine. The Annotation Engine window shown here gives the user the options to export their
data in several different formats. The user can choose from any of the available BLAST output result fields and any available
type of output file and associated delimiters.
Page 8 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
In addition, as one of the most powerful aids to down-
stream analysis, the software automatically creates sepa-
rate FASTA file folders within a project that contain the
"no hits". This allows the "no-hits" from previous jobs to
be queried against separate databases or future updated
database versions. Similarly, during manual curation (as
described above), those hits not "curated" or considered
significant by the scientist are considered "false hits". As
with the "no-hit" results the "false-hit" files can be
exported separately as fasta files. As indicated, no-hits are
those queries which did not get a significant match against
the database.

An example of a typical annotated fasta output of an
unknown sequence (contig 111) searched against a typi-
cal protein databases that hit against the database
sequence with accession number Q143235 could be
exported as follows (the following sequence is for demon-
stration only): >contig 111- similar to GB:AF166120.1 -E-
value 1 × 10e-180- transcription activator
AAGCTTCACGCCCAATTCTGCATCATTTTCATAAAGAGC
AGGATTGGACAATACTTGAAAACTCAGTTTATTGGCTG
CGTCGGAGGCGTTGGAGATCAACTCACGTAGG...

Workstation test network
The workstation test network used for testing was limited
to the number of workstations available within our facil-
ity (25 windows workstations). All of the workstations
have various versions of Microsoft Windows (e.g. XP,
2000, 2003 server, and 98). The workstations used in the
testing process are detailed in Table 2.

Performance testing
Various combinations of workstations from the test net-
work were utilized to test the functionality and reliability
of W.ND-BLAST. For performance tests, the job start times

were automatically recorded as well as the time when the
job finished. Duration of the job was calculated by sub-
tracting the software recorded initiation time from the
software recorded end time. Performance of W.ND-BLAST
was tested by varying the number of input sequences,
database size, and number of workstations. Two sizes of
databases were used for testing the functionality of W.ND-
BLAST, a 332 MB (total formatted size) protein (able to
reside in physical memory) and 1.5 GB (total formatted
size) nucleotide database (too large to reside in physical
memory). The primary rational for testing the larger data-
base was that the larger database exceeds the caching abil-
ity of the physical memory and requires the computer to
access disk. In addition, larger databases are automatically
segmented by formatdb. For this reason it is necessary to
test both the database engine and BLAST engine for their
abilities to handle large and segmented databases. The
current version of W.ND-BLAST improves BLAST scalabil-
ity only by distributing jobs across networks. As noted in
the future work section at the end of the manuscript future
versions of W.ND-BLAST will be further optimized to
enhance performance on increasingly large databases
using database partitioning (segmentation) and dynamic
task allocations (Quality of Service partitioning). The
smaller database was populated by protein sequences so
BLASTx was executed. The larger database was populated
by a subset of nucleotides from NCBI's nt database, there-
fore, BLASTn was executed. Current versions of NCBI nt
and NCBI nr databases were tested to ensure that the soft-
ware was able to handle much larger databases. Finally, all
of the common BLAST programs were tested (BLASTp,
BLASTx, BLASTn, and tBLASTx) and found to perform
correctly.

Table 2: Workstation specifications

Class Processor Operating System Number of
workstations

RAM Harddisk Space

A Dual Xeon 3.0 Ghz Microsoft Windows XP Pro 1 6 GB 80 GB Ultra320 SCSI RAID0
B Pentium 4 Extreme 3.2 Ghz Microsoft Windows Server 2003 1 1 GB 140 GB SATA RAID0
C Pentium 4 2.8 Ghz Microsoft Windows XP Pro 2 2 GB 40 GB SATA
D Pentium 4 2.4 Ghz Microsoft Windows XP Pro 2 2 GB 80 GB SATA
E Pentium 4 2.4 Ghz Microsoft Windows XP Pro 12 1 GB 80 GB SATA
F Pentium 4 2.0 Ghz Microsoft Windows XP Pro 1 1 GB 40 GB
G Pentium 4 1.8 Ghz Microsoft Windows 2000 Advanced Server 1 512

MB
40 GB

H Pentium 4 1.4 Ghz Microsoft Windows 2000 Pro 1 128
MB

20 GB

I Pentium 3 M 1.0 Ghz Microsoft Window 2000 Pro 1 512
MB

20 GB

Different classes of workstations used in testing W.ND-BLAST are given. They are classified according to processor type and speed, OS, RAM, and
hard disk space. The number of each workstation class in our lab is also given.
Page 9 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
Fault tolerance/recovery implementation
As with any distributed system, fault tolerance is always a
key issue. W.ND-BLAST displays several layers of fault
tolerance. The primary level of fault tolerance is achieved
by allowing the master node to assign individual and dis-
tinct jobs to each child node. Because jobs (each individ-
ual sequences) are submitted independently by the master
node to each child node, if a node fails, only the single
sequence the failed node was processing at the time of
failure is temporarily lost. The lost sequence is ultimately
reallocated to a separate node by the master so that there
will be no missing data. A log is kept at the master node
of all of the queries in the sequence pool (jobs waiting to
be executed) and their respective status. When a result is
received at the master node, the validity of the result is
checked, the sequence status is changed to done in the log,
and the sequence is removed from the pool. The master
node will only allow the sequence to remain in the work-
ing state for a user specified amount of time before return-
ing the status to not done. This prevents jobs from being
stalled on slow nodes toward the end of large jobs. When
a failed child node is restarted on the network, it will
broadcast a message to the master informing it of its
return to ready status. The master then prompts the user to
add or omit this node to its working nodes. If the master
node goes down (upon rebooting of the master node or
restart of the software), the job can be resumed at the
point of failure and all data up to that point is maintained
intact. All remaining query sequences in the sequence

pool will then resume execution on the available children.
The final layer of fault tolerance occurs at the end of a
large BLAST job when the software performs a final check
of data integrity and ensures that all the input sequences
have generated a quality output. Any sequence that did
not generate an output file is automatically subjected to a
second BLAST.

Efficiency
Efficiency (calculated as a percentage) was used in order to
determine the scalability of W.ND-BLAST. Efficiency was
calculated by means of the following equation:

E = [σ / (n * x)]*100%.

where:

E = efficiency expressed as a percentage.

σ = Time to process a given number of sequences (job) on
a single average class E (Table 2) workstation.

n = Number of workstations being evaluated for a given
data point (e.g. if 9 workstations are being tested n = 9).
This does not include the master node which does not
perform queries.

x = Time to process job on n workstations.

WND-BLAST PerformanceFigure 6
WND-BLAST Performance. This graph presents the performance of WND-BLAST observed when varying the number of
workstations and input sequences. To collect this data, we utilized W.ND-BLAST to perform BLASTx against a 332 MB (for-
matted size) database with the varying number of input (query) sequences shown.
Page 10 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
Results and discussion
Performance of W.ND BLAST
Figure 6 provides data to illustrate the time savings real-
ized with use of W.ND-BLAST on increasing numbers of
workstations. This data was obtained by performing

BLASTx for various numbers of sequences against a 332
MB (formatted size) database. The figure indicates a
decrease in the amount of time required for BLAST of large
input files as the number of workstations is increased.
W.ND-BLAST exhibits an almost inverse linear relation-

Table 3: Performance evaluation Number of Sequences

Number of Sequences

100 500 1000 1500

Number of
Workstations

W.ND-BLAST W.ND-BLAST W.ND-BLAST W.ND-BLAST

1 38.15 194.68 461.81 662.68
3 19.20 70.36 154.28 222.67
6 13.28 32.79 77.88 109.12
8 10.09 29.50 58.58 81.70
12 6.74 17.45 40.10 54.66
15 5.04 13.92 33.79 46.67
17 4.05 13.33 32.58 44.97

This table provides the time in minutes to perform the specified BLAST jobs on the number of sequences shown. The database size used for this
analysis was 332 MB (formatted size) protein database. BLASTx was utilized to search high-throughput jobs ranging from 100–1500 sequences on
various heterogenous workstations ranging from 1 to 17 nodes per job. At 15 and 17 nodes it should be noted that older machines were utilized.

Workstation Efficiency Percentage with Best Fit trend linesFigure 7
Workstation Efficiency Percentage with Best Fit trend lines. This graph shows the overall efficiency of performance of
the data presented in Figure 1, as the number of machines is increased. Equation 1 from the text is used to generate this data.
The linear best fit regressions for the data points are also provided.
Page 11 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
ship between the time taken to complete a given job and
the number of workstations utilized for that job. This
trend is very evident when considering Figure 7, which
displays the efficiency of W.ND-BLAST as additional
machines are added. Note that the number of worksta-
tions was limited to available workstations within our lab-
oratory and we cannot project how network performance
would affect this linear relationship when increasingly
large numbers of workstations are utilized. Table 3 pro-
vides the raw data for the completion of test jobs as time
in minutes.

When performing the test using 1500 sequences on one
workstation the BLASTx took on average 662.68 min. The-
oretically, when increasing the number of workstations by
three the time should decrease by no more than 3 times
(220.89 minutes). The actual time, derived from Table 3,
was measured at 222.67 minutes, which correspond to a
99% efficiency rating using Equation 1. With 6 worksta-
tions the time should theoretically be 110.33 minutes.
The actual average time achieved was 109.12 minutes,
which gives an efficiency rating of better than 100%. This
trend can also be seen when doubling the number of
workstations from 6 to 12. It is likely that those efficien-
cies above 100% are likely attributed to the effect of add-
ing worker nodes with slightly more resources (e.g. Class
D) as part of the child node pool. This is because effi-
ciency is calculated in relation to the single machine
times, which are determined on our Class E nodes (Table
2).

Figure 7 exhibits the sequence sample size efficiency
expressed as a percentage (Equation 1) when plotted for
all benchmarks. These data demonstrate that W.ND-
BLAST is more efficient when using a larger number of
query sequences. The efficiencies for 15 and 17
workstations were not calculated because experiments
were forced to be performed on workstations of much
lower (Class F – I) or of much higher compute perform-
ance capabilities (Class A). However, the results using
these additional workstations illustrate scalability and are
provided in Table 3. Table 4 displays the results of BLAST
scalability using even larger databases (1.5 GB) indicating
that W.ND-BLAST can accommodate and make more effi-

cient such intensive database queries. As a final operabil-
ity test we obtained and tested W.ND-BLAST on 12-15-04
full and segmented versions of both NCBI nr and nt data-
bases and found it was easily able to utilize even very large
databases (data not shown).

Fault tolerance/recovery
W.ND-BLAST allowed workstations to fail, be turned off,
or to be turned on during jobs. It easily adapted by redi-
recting failed queries, adding new workstations, or ignor-
ing failed workstations. Even when the master node was
shut off during testing and although the job did not
progress, W.ND-BLAST was able to continue the job at the
point of failure once the master node was rebooted.

Shortcomings in current version
W.ND-BLAST was designed as a user-friendly distributed
software implementation of BLAST. For large databases
such as current versions of nr or nt from NCBI there is a
inherent decrease in the efficiency of the BLAST algorithm
as described in the introduction. By distributing tasks
among computers W.ND-BLAST still reduces the time it
takes to perform searches on any size databases (in pro-
portion to the number of worker nodes utilized) but does
not enhance the efficiency of the BLAST algorithm itself.
With tools such as MPI-BLAST [4], which utilizes a
database segmentation scheme, queries against large data-
bases are more efficient. As noted in the following section
on future work the next evolution of W.ND-BLAST will
include a database segmentation scheme that will dramat-
ically improve overall efficiency on increasingly large
databases.

In the current version of W.ND-BLAST there is the inabil-
ity of the software to handle multiple projects simultane-
ously originating from a single master node. However on
large networks multiple instances of the software can be
running simultaneously if separate master processes are
activated from different workstations and worker nodes
are partitioned between jobs. This potentially allows more
than one scientist to be utilizing the software on the same
network.

Table 4: BLAST performance for large databases gives the average times (n = 3) for a W.ND-BLAST project to complete when
querying 50 sequences on Class E machines against a 1.5 GB nucleotide database (too large to fit in physical memory). The times,
shown in minutes and seconds, show a relatively large decrease in execution time when the number of machines is increased from one
to seven nodes.

Sequence Number Database Size Number of Machines Total Time(mm:ss)

50 1.59 GB 1 63:57
50 1.59 GB 7 12:14
Page 12 of 14
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
W.ND-BLAST software is able to do a BLAST locally on the
master node alone (local BLAST) but it is unable to BLAST
on the master node, while performing distributed BLAST.
This means that the number of machines for distributed
BLAST is always n-1 if the master node is counted. It
should be noted that all calculations based on time in this
paper do not count the master node. In W.ND-BLAST the
master node distributes tasks, coordinates, and compiles
results.

Finally, there is a lack of ability in the current version to
utilize more than one processor on multi-processor
machines. In future versions this feature will be reincorpo-
rated as a feature.

Future work
There are several areas where W.ND-BLAST would benefit
from future work. Firstly, W.ND-BLAST provides for suffi-
cient fault tolerance when the master node fails, but
implementing a shadow master would be the most effi-
cient addition to the algorithm. The shadow master would
act as a clone to the master node, and in the event of fail-
ure the shadow would continue the execution of the
application. If the master node fails, the current imple-
mentation would not resume until the user arrived back at
the master workstation to restart it. With a shadow master,
the software would continue. Secondly, one of the most
dramatic planned performance improvements in the
W.ND-BLAST implementation will be the development of
a database segmentation scheme similar to MPI-BLAST
[4]. Considering the efficiency of W.ND-BLAST on smaller
databases a segmentation scheme should provide an even
greater increase in efficiency on large databases such as
current versions of nr or nt. This increase in performance
would be primarily based on the ability of a given node to
maintain a designated segment (small piece) of large data-
bases in its memory so that it does not exceed the physical
memory capacity and allowing it to cache the database
files in memory after the first search. This prevents
excessive writing to disk to load additional portions of the
database. Instead by segmenting the database a node will
typically search all sequences against its own small piece
of the database and return results to the master to be com-
piled. Thirdly, several levels of Quality of Service (QoS)
will be implemented within the W.ND-BLAST system. The
current implementation only allows the remote users
(users at nodes) to end the application if necessary. Future
efforts will allow the user at the worker node or at the
master node to decrease the amount of CPU usage BLAST
is allotted on each node on a node by node basis. QoS will
also be implemented related to the availability or lack of
availability of disk space on child nodes. In example, if the
child node is unable to hold the database it can automat-
ically be pointed or manually assigned to access a file
share database.

Conclusion
BLAST is one of the most widely used applications in
modern biology, including genomics, microbiology, and
molecular biology in general. Its significance can be
shown in the thousands of publications that refer to its
use every year. In science, when a tool is this significant,
the next logical step is to improve its functionality (ease of
use). WND-BLAST provides this with its no hassle
installation and intuitive user interfaces. Also, when a tool
is this widely used the need arises for enhancing perform-
ance. WND-BLAST accomplishes this by allowing the user
to distribute BLAST jobs from a single workstation to all
available computing resources without the need for a
server class machine. WND-BLAST provides the research
community with a more comprehensive, fault tolerant,
user-friendly, reliable, and time efficient toolkit to per-
form BLAST queries distributed across Windows based
networks. W.ND-BLAST's output viewer and annotator
also provide the user with a high-throughput method to
analyze, process, and export BLAST results in a well-organ-
ized fashion.

Availability and Requirements
WND-BLAST can be downloaded free-of-charge from the
web page http://liru.ars.usda.gov/mainbioinformat
ics.html. WND-BLAST requires Windows 2 k or higher
with the .NET 1.1 framework installed. As mentioned
previously, WND-BLAST was written primarily using
Microsoft Visual Studio .NET 2003 using C#. The WND-
BLAST software is provided 'as is' with no guarantee or
warranty of any kind. The WND-BLAST software is availa-
ble for all non-commercial use. Any other use of the soft-
ware requires special permission from the primary author.

USDA disclaimer
Mention of trade names or commercial products in this
publication is solely for the purpose of providing specific
information and does not imply recommendation or
endorsement by the U.S. Department of Agriculture.

Authors' contributions
SD conceived of the project, devised the W.ND-BLAST
algorithm, designed the functionality of each aspect of the
software, and edited very early versions and final drafts of
the manuscript; JZ encoded much the software and wrote
the primary version of the manuscript; MO assisted with
testing, finding bugs in the software, and editing early
version of the manuscript; JR assisted with all coding of
the software; PP assisted in writing the manuscript and
testing the software.

References
1. Altschul S, Gish W, Miller W, Myers E, Lipman DJ: Basic Local

Alignment Search Tool. Journal of Molecular Biology 1990,
215:403-410.

2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: A new generation of
Page 13 of 14
(page number not for citation purposes)

http://liru.ars.usda.gov/mainbioinformatics.html
http://liru.ars.usda.gov/mainbioinformatics.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694

BMC Bioinformatics 2005, 6:93 http://www.biomedcentral.com/1471-2105/6/93
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

protein database search programs. Nucleic Acids Res 1997,
25:3389-402.

3. Gish W: WU-BLAST. 1996 [http://blast.wustl.edu].
4. Darling A, Carey L, Feng W: The Design, Implementation, and

Evaluation of mpiBLAST. ClusterWorld 2003 conference 2003
[http://mpiblast.lanl.gov/].

5. BLAST++ [http://xena1.ddns.comp.nus.edu.sg/~genesis/blast++/]
6. DeCypherBLAST™ [http://www.timelogic.com/

decypher_blast.html]
7. Dowd SE, Rodriguez JR, Khurana V, Sobolewski M, Soorinarayanan S:

S-BLAST: Federated BLAST Using Sorcer. Publication pending
2004 [http://liru.ars.usda.gov].

8. Grant JD, Dunbrack RL, Manion FJ, Ochs MF: BeoBLAST: distrib-
uted BLAST and PSI-BLAST on a Beowulf cluster. Bioinformat-
ics 2002, 18(5):765-6.

9. StarBLAST [http://www.dnastar.com]
10. Condor BLAST [http://www.cs.wisc.edu/condor/tools/BLAST/]
11. Soap-HT-BLAST [http://mammoth.bii.a-star.edu.sg/webservices/

htblast/index.html]
12. Paracel [http://www.paracel.com]
13. W.ND-BLAST [http://liru.ars.usda.gov]. (Current Paper)
14. NCBI BLAST [http://www.ncbi.nlm.nih.gov/BLAST/]
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://blast.wustl.edu
http://mpiblast.lanl.gov/
http://xena1.ddns.comp.nus.edu.sg/~genesis/blast++/
http://www.timelogic.com/decypher_blast.html
http://www.timelogic.com/decypher_blast.html
http://liru.ars.usda.gov
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050075
http://www.dnastar.com
http://www.cs.wisc.edu/condor/tools/BLAST/
http://mammoth.bii.a-star.edu.sg/webservices/htblast/index.html
http://mammoth.bii.a-star.edu.sg/webservices/htblast/index.html
http://www.paracel.com
http://liru.ars.usda.gov
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	What is BLAST?
	Table 1

	Implementation
	Programming language
	Auxiliary programs
	W.ND-BLAST Toolkit overview
	Project Control Panel
	Database Engine
	BLAST Engine
	W.ND BLAST distribution algorithm
	BLAST Output Viewer
	Annotation Engine
	Table 2

	Workstation test network
	Performance testing
	Fault tolerance/recovery implementation
	Efficiency
	Table 3

	Results and discussion
	Performance of W.ND BLAST
	Fault tolerance/recovery
	Shortcomings in current version
	Future work

	Conclusion
	Availability and Requirements
	USDA disclaimer

	Authors' contributions
	References

