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Abstract
Background: Cis-regulatory modules are combinations of regulatory elements occurring in close
proximity to each other that control the spatial and temporal expression of genes. The ability to
identify them in a genome-wide manner depends on the availability of accurate models and of
search methods able to detect putative regulatory elements with enhanced sensitivity and
specificity.

Results: We describe the implementation of a search method for putative transcription factor
binding sites (TFBSs) based on hidden Markov models built from alignments of known sites. We
built 1,079 models of TFBSs using experimentally determined sequence alignments of sites provided
by the TRANSFAC and JASPAR databases and used them to scan sequences of the human, mouse,
fly, worm and yeast genomes. In several cases tested the method identified correctly
experimentally characterized sites, with better specificity and sensitivity than other similar
computational methods. Moreover, a large-scale comparison using synthetic data showed that in
the majority of cases our method performed significantly better than a nucleotide weight matrix-
based method.

Conclusion: The search engine, available at http://mapper.chip.org, allows the identification,
visualization and selection of putative TFBSs occurring in the promoter or other regions of a gene
from the human, mouse, fly, worm and yeast genomes. In addition it allows the user to upload a
sequence to query and to build a model by supplying a multiple sequence alignment of binding sites
for a transcription factor of interest. Due to its extensive database of models, powerful search
engine and flexible interface, MAPPER represents an effective resource for the large-scale
computational analysis of transcriptional regulation.

Background
Identifying the combinatorial logic of transcriptional reg-
ulation is key for understanding the mechanisms of devel-
opment, cell commitment and differentiation and the
way in which external and internal signals are converted

into specific patterns of gene expression. Transcriptional
regulation is accomplished by the coordinated activity of
specific regulatory proteins that recognize and bind regu-
latory elements – short DNA motifs located in the untran-
scribed regions of the genes [1]. Regulatory elements such
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as TFBSs, enhancers, and silencers, are commonly located
in the promoter region of genes, while others, such as
splicing control elements, may be located within the
introns or exons of a gene. As more sequence and expres-
sion data have become available, the task of understand-
ing gene regulation has come to rely on a combination of
experimental and computational approaches. Among the
many bioinformatics approaches aimed at understanding
the role of regulatory elements in transcriptional control,
several research themes have emerged [2-5]. They include
search algorithms that extract putative regulatory ele-
ments [6-15], search engines for their retrieval [16-19]
and databases of experimentally characterized or compu-
tationally derived regulatory elements [20-24]. Moreover,
combinations of regulatory elements that occur in close
proximity to each other form cis-regulatory modules that
control gene expression. Their presence suggests the exist-
ence of a combinatorial code for transcriptional regula-
tion [25], with ample effort being devoted to developing
algorithms for its elucidation [26-34].

In sequences of orthologous genes, regulatory elements
that have a functional role are often conserved throughout
evolution by selective pressure. This led to the develop-
ment of many algorithms that use 'phylogenetic footprint-
ing' – a method for inferring regulatory elements based
upon sequence conservation of orthologous genes [35-
45]. However, recent evidence [46] shows that functional
elements are not necessarily located in conserved regions;
this requires the development of computational methods
to detect binding sites with high specificity without rely-
ing primarily on sequence conservation data.

One of the most common strategies for identifying puta-
tive TFBSs in DNA sequences relies on matching a general
pattern abstracted from sequences of experimentally char-
acterized binding sites and expressed in the form of a
probability weight matrix that describes the probability
distribution of the four possible nucleotides at each loca-
tion [47]. Several programs, such as Patch, Match, MatIn-
spector and TESS, rely on the nucleotide weight matrices
(NWMs) of TRANSFAC – a large and frequently updated
database that contains information on the transcription
factors (TFs) and their binding sites in target genes [20].
The assumption underlying the construction and use of
NWMs is that each nucleotide contributes independently
to the binding site consensus and that the contribution of
the nucleotides to the site is additive [48]. This assump-
tion was tested experimentally in the case of binding sites
for two transcription factors – the Mnt repressor protein
and the mouse EGR1 protein. Nucleotides at positions 16
and 17 in the Mnt repressor protein binding site [49] and
the central nucleotide triplet in the mouse EGR1 binding
site [50] were systematically mutated to all possible com-
binations and the binding affinity of the respective TFs (or

its mutants) for these sites was determined. The results
pointed out that the assumption of independence of
nucleotides within a site is not entirely accurate, but that
although NWMs do not capture the dependencies
between nucleotides within a site they represent a good
enough approximation for modeling it[48,49]. Neverthe-
less, it is generally recognized that using NWMs to identify
putative TFBSs often leads to the retrieval a very high
number of false positives [47].

In this work, we rely instead on Hidden Markov Models
(HMMs) as a more accurate probabilistic method to
model the sequence of nucleotides within a binding site
that in addition to abstracting the probability distribution
of the nucleotides at each site can also model insertion or
deletions and retrieve fragment matches to the model in
the search procedure [51]. HMMs are statistical models
able to represent stochastic sequences of symbols and can
be used to generate sequences that conform to a given
model, or to determine the likelihood that a given
sequence was generated by that model. HMM techniques
have become the basis of many bioinformatics applica-
tions for recognizing conserved domains in amino acid
sequences or gene features in DNA sequences [51,52].
Several publicly available implementations such as
HMMER [51], SAM [53] and Meta-MEME [54] build
HMMs based on multiple sequence alignments and,
among other functions, search input sequences for match-
ing domains. The HMMER package was used to generate
the large collection of annotated protein domains of the
Pfam database [55] and consists of several modules for
which the source code is available, well commented and
easily modifiable. HMMs were previously considered for
modeling and searching for TFBSs. The reports so far were
either theoretical in nature [50,56], where not extended to
genome-wide searches [57], or focused only on a small
number of transcription factors [58-60]. A HMM for CREB
binding sites was used to scan upstream sequences of 10
kb in length from the human and mouse genomes [58],
while a Markov model for the hepatocyte nuclear factor 4
(HNF4) was used to scan sequences between positions -
500 to +100 relative to the transcription start site of con-
firmed genes in the human genome [59]. Recently, a
method for identifying nuclear hormone receptor bind-
ings site was developed based on the use of classification
HMMs [61]. However, to date no study used HMMs of
multiple TFBSs in a large-scale search across three or more
genomes.

The work described in this paper focuses on developing
methods to generate accurate and complete information
on putative TFBSs in genes across multiple genomes (H.
sapiens, M. musculus, D. melanogaster, C. elegans and S. cer-
evisiae in the initial implementation). Our methodology
relies on combining the information on experimentally
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determined binding sites contained in curated databases
such as TRANSFAC and JASPAR with the pattern matching
power of HMMs. As TRANSFAC and JASPAR provide
manually curated representative nucleotide sequences of
binding sites for most TFs included in the databases, we
leveraged this information to recreate the alignments used
to calculate the NWMs, and we used them as input to
HMMER instead. We thus generated a library of 1,079
HMM profiles containing one model for each TRANSFAC
matrix or factor entry (see below) or JASPAR matrix for
which alignments of binding sites were available. The per-
formance of selected models was evaluated by their ability
to retrieve experimentally characterized binding sites, and
the sensitivity and specificity of the method were assessed
in a large-scale comparison with a NWM-based method
using synthetic data. A flexible interface was implemented
(and is publicly available at http://mapper.chip.org) that
allows the user to search a sequence in FastA format or a
gene and its orthologs across five genomes against the
library of 1,079 HMM models or against a model built by
the user starting with a multiple sequence alignment of
binding sites. Although the tools developed for this work
were used to find putative TFBSs, they are directly applica-
ble for identifying other types of regulatory elements for
which sequence alignments are available.

Results
The MAPPER HMM library
HMMs were built using multiple sequence alignments of
binding sites compiled from the TRANSFAC [20] and JAS-
PAR [21] databases. TRANSFAC provides two sources of
information regarding the binding sites for TFs: nucle-
otide sequences of binding sites referenced in the descrip-
tion of the TRANSFAC matrices that were optimally
aligned and used to derive NWMs (designated below as
matrix-derived alignments and catalogued with accession
numbers starting with "M"), and nucleotide sequences of
binding sites referenced as part of the description of the
TFs – also referred to as "factors", used to extract align-
ments designated below as factor-derived alignments and
catalogued with accession numbers starting with "T". By
parsing the TRANSFAC flat files (see Methods for details)
we obtained 402 alignments corresponding to matrices
and 588 alignments corresponding to factor entries. In
addition, 89 alignments were obtained from data down-
loaded from the JASPAR database. Thus, the total number
of alignments used to build HMMs was equal to 1,079.
Figure 1A shows the distribution of the length of the mod-
els and of the number of sequences and size of the nucle-
otide matrix used to train them. The models have an
average length of 10 nucleotides and were trained on an
average of 22 sequences. TRANSFAC assigns a quality
value to the sites used to build the factor-derived models,
based on the existing biological evidence of the binding
(see Figure 1B legend for details). The distribution of the

median and average quality of the sites used for the factor-
derived models suggests that the large majority contains
high quality sites (categorical values smaller than 4).

The 1,079 models retrieved correspond to 888 transcrip-
tion factors entries with distinct names in TRANSFAC and
JASPAR. Table 1 in Additional File 1 lists the names of all
TF entries in the two databases for which HMMs were
built and the models that describe them. It is important to
note that different databases (or even the same database)
often use different names for the same TF or for isoforms
of the same TF (e.g. p65, RelA; HNF-1, HNF-1alpha); nev-
ertheless, for the purpose of this paper, entries with differ-
ent names were considered as distinct.

While the matrix-derived models are generated by com-
bining binding sites for homologous factors from multi-
ple organisms, every factor-derived model and JASPAR
model is derived from sites from a single organism. Our
search engine does not place restrictions on the use of a
model associated with a TF from one organism when
searching a sequence from a different organism. The
rationale for this is that ortholog TFs from different organ-
isms usually show very high structural and functional con-
servation that extends to their binding site specificities.
This allows the user to use all available models for a given
TF when searching, and to evaluate a posteriori whether the
resulting hits are significant.

Evaluation of the method
Evaluating the sensitivity and specificity or our method
compared to other commonly used ones is not straight-
forward, for a variety of reasons. First, in order to measure
the false positive and false negative rates we would need
to be able to reliably classify occurrences of the motif (also
referred to as "hits") into "true" and "false" positive cate-
gories. This is obviously impossible by computational
means, and too expensive and time consuming to pursue
experimentally for a large number of transcription factors
and binding sites. On the other hand, the experimental
data sets that make available genome-wide positions of
"true" hits pertain to a limited number of factors of inter-
est and usually report a region for which binding was
detected and not the precise locations and sequences of
the binding sites [62-65]. For a limited number of well-
characterized factors, collections of binding sites were
compiled from the literature (see below) but the total
number of such sites is still too small to enable a statisti-
cally significant comparison. As such sites usually come
from promoter regions that are rich in regulatory sites, we
were forced to use short flanking sequences to avoid
including extraneous additional sites. The results of test-
ing a method on such short sequences are not entirely pre-
dictive of its performance when long genomic regions are
used as input, as in most experiments. Moreover, for all
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these datasets and even for other ones that contain bind-
ing data for multiple factors [66], no information is avail-
able about "false" hits (i.e. sites that match a consensus
but are not functional). Although it is clear that only a
large-scale biological validation of the predictions of this
method can provide a definite estimation of its perform-
ance, such goal is beyond the scope of this paper.

Given these constraints, we performed three types of eval-
uations of our method. First, for three different factors we
performed control runs to determine if our method is able

to correctly identify a total of 17 experimentally character-
ized binding sites in 9 different genes with the exact
sequence and at the positions reported in the literature.
Secondly, for a collection of 89 experimentally character-
ized sites for six other transcription factors, we determined
the number of sites retrieved and the percentage of false
positives reported by our method and compared them
with the results of four other methods: Match [19], Patser
[9], LMM [67] and ScanACE [6]. Finally, we conducted a
large-scale evaluation based on synthetic data for 491
models in our database in order to compare, using

Quality measures for the alignments retrievedFigure 1
Quality measures for the alignments retrieved. A. Distribution of the parameters characterizing the model (length, 
number of sequences and the size of the nucleotide matrix used to train the model). B. Distribution of the median and average 
quality of the nucleotide sequences used to build the alignments for the TRANSFAC factor-derived models. The quality varia-
ble is categorical and represents "1 – functionally confirmed factor binding site; 2 – binding of pure protein purified or recom-
binant, 3 – immunologically characterized binding activity of a cellular extract, 4 – binding activity characterized via a known 
binding sequence, 5 – binding of uncharacterized extract protein to a bona fide element, 6 – no quality assigned" (cf. TRANS-
FAC documentation).
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modified ROC curves, the sensitivity and specificity of our
method with the ones of a NWM-based method (in this
case Match).

Control runs
To obtain a preliminary evaluation of the performance of
our method in detecting TFBSs we used control sequences
consisting of promoter regions of genes in which binding
sites for specific factors were determined experimentally
and were shown to play a role in the regulation of the

gene. We selected as controls HMM models for three tran-
scription factors – p53, Su(H) and MEF-2 and used them
to scan control sequences chosen so that they contain
experimentally determined TFBSs for the factors whose
nucleotide sequence were not included in the multiple
sequence alignments used to train the models.

A HMM corresponding to p53 was built based on the
alignment for matrix M00761 of TRANSFAC, and was
used to scan promoter regions from the following genes:

Table 1: Results of the small-scale evaluation.

Factor Sites Method Model Distinct 
sequences 
identified

Target True 
positives

False 
positives

False 
positive 

ratio

E2F 27 HMMER M00050 27 27 36 8 18.20%
T05206 27 27 27 4 12.90%

Match V$E2F_02 27 27 36 7 16.30%
Patser V$E2F_02 27 27 36 8 18.20%
LMM V$E2F_02 18 27 18 3 n/a
ScanACE M00050 12 27 12 3 n/a

ER 17 HMMER M00959 16 16 22 7 24.10%
T00258 17 16 16 2 11.10%

Match V$ER_Q6_02 17 16 24 7 22.60%
Patser V$ER_Q6_02 17 16 24 8 25.00%
LMM V$ER_Q6 15 16 15 0 0.00%
ScanACE M00959 8 16 11 1 n/a

GR 7 HMMER M00921 7 7 10 2 16.70%
T05076 7 7 7 1 12.50%

Match V$GR_Q6_01 7 7 9 3 25.00%
Patser V$GR_Q6_01 7 7 9 7 43.70%
LMM V$GR_Q6 6 7 6 1 14.30%
ScanACE M00921 4 7 4 1 n/a

HNF-1 18 HMMER M00790 18 18 19 0 0.00%
T01211 18 18 18 0 0.00%

Match V$HNF1_Q6 18 18 22 3 12.00%
Patser V$HNF1_Q6 18 18 29 1 3.30%
LMM V$HNF1_01 16 18 16 0 0.00%
ScanACE M00790 11 18 11 0 n/a

HNF-3 10 HMMER M00724 10 10 10 1 9.10%
T01049 10 10 10 2 16.70%

Match V$HNF3ALPHA_Q6 10 10 12 4 25.00%
Patser V$HNF3ALPHA_Q6 10 10 10 1 9.10%
LMM V$HNF3ALPHA_Q6 9 10 9 4 30.80%
ScanACE M00724 8 10 8 0 0.00%

HNF-4 10 HMMER M00638 9 9 9 2 18.20%
T00372 10 9 9 0 0.00%

Match V$HNF4ALPHA_Q6 9 9 9 2 18.20%
Patser V$HNF4ALPHA_Q6 10 9 9 2 18.20%
LMM V$HNF4ALPHA_Q6 7 9 7 0 0.00%
ScanACE M00638 3 9 3 0 n/a

The "Sites" column contains the number of sequences containing experimentally validated binding sites provided as input. "Target" represents the 
number of binding sites to be retrieved by a method to be considered successful, and "Distinct sequences identified" is the number of distinct 
sequences in which at least one true positive was detected. Because of partially overlapping hits, the actual number of true positives reported may 
be higher than the true number of sites. Not all matrices tested were available in the LMM matrix library; for those cases, the results obtained using 
the closest available LMM matrix are displayed in italics.
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the human 14-3-3 sigma protein gene for which two p53
binding sites, BDS-1 and BDS-2, were characterized [68],
the mouse cyclinG1 gene that contains one p53 binding
site [69], and the mouse B99/Gtse1 gene, encoding the G
two S phase expressed protein 1 for which a p53-respon-
sive element containing three p53 half-sites was reported
[70]. With the exception of one half-site in the latter
sequence, HMMER retrieved all the described p53 binding
sites at the positions indicated in the literature, with sig-
nificant scores and E-values (for the definitions of these
parameters see the Methods section). Model M00234 for
the Drosophila Su(H) (Suppressor of Hairless) was used to
scan the following sequences: the promoter of Drosophila
him [71] containing four Su(H) binding sites that were
identified computationally and confirmed experimen-
tally, the sequence of an enhancer containing three Su(H)
sites located 3.5 kb upstream of the first exon in Drosophila
yan [72] and the promoter sequence of the human erbb-2
gene containing one Su(H) binding site [73]. While the
sites in Drosophila him where identified with positive
scores, the binding sites in the last two sequences were
reported with negative scores, pointing out that, as men-
tioned in the HMMER documentation [74], real matches
can in some cases have negative scores (one of the three
Su(H) sites in the Drosophila yan enhancer was missed).
Model T00505 corresponding to human MEF-2 (myocyte-
specific enhancer factor 2A) was used to search the pro-
moter sequences from the following genes, each contain-
ing one well characterized MEF-2 site: Drosophila Actin57B
gene [75], mouse mef2c gene [76] and human c-jun [77].
The characterized MEF-2 binding sites in these sequences
were also retrieved by HMMER (with a negative score for
c-jun). In total our method identified correctly 15 out of
the total 17 binding sites (the complete list of hits can be
accessed following the appropriate link from Additional
File 1).

Small-scale evaluation
The purpose of this evaluation was to measure the per-
formance of our method compared to other widely used
tools for the computational detection of TFBSs, using a
high-quality dataset of experimentally validated binding
sites. The criteria we used to compare the TFBS detection
methods in our experiment are the following: first, we
required a method to be able to detect all the experimen-
tally validated sites (true positives) in the input sequences,
except for one at most. Next, we counted the number of
hits not corresponding to true sites (false positives) having
a score greater then the lowest-scoring true positive, and
we expressed it as a percentage of the sum of the number
of true positives and false positives. According to this def-
inition, the false positives represent those hits that cannot
be separated from the true ones on the basis of their score,
since raising the score threshold to exclude them would
cause the method to miss some true positives.

The dataset used for this evaluation contained 110 exper-
imentally characterized binding sites for six factors: E2F,
the estrogen receptor (ER), the glucocorticoid receptor
(GR) and the hepatocyte nuclear factors 1, 3 and 4 (HNF-
1, HNF-3 and HNF-4) previously compiled from the liter-
ature [78-80]. For each factor the dataset contained a 50
bp long sequence extracted from a given gene in which the
binding site was always located in the same positions
throughout the dataset (e.g. for all sequences in the E2F
dataset the actual site was found between positions 20–
31). The length of the sites was 11 for HNF-3, 12 for E2F,
13 for ER and HNF-1, 14 for GR, and 15 for HNF-4.
Adopting this consistent format for the datasets allowed
us to define a true positive as a hit that overlaps at least
60% of the sequence of the site and a false positive as any
other hit retrieved in the sequence. Hits retrieved on both
strands that overlapped more than 75% were considered
equivalent and only the best scoring one was reported.

We included in this evaluation four other methods for
TFBS detection: Match [19] and Patser [9] that scan a
sequence using a supplied NWM, LMM (Local Markov
Method) [67] that uses a p-value-based scoring measuring
the similarity of the hit to the known binding sites for the
factor and its contrast to the local genomic context, and
ScanACE [6] that scans a sequence for matches for a given
motif using a scoring method based on a maximum a pri-
ori log likelihood score. In order to conduct a fair evalua-
tion for each factor we used as input either the HMM (for
our method) or the corresponding NWM (for Match, Pat-
ser and LMM – see exceptions below) that were built on
the same alignment. This alignment was also used directly
as input for ScanACE. For three factors (ER, GR and HNF-
1) the matrix used in the analysis was not found in the
LMM matrix library, therefore we used the closest matrix
available as judged by examining its consensus sequence.
To preserve this correspondence we were in some cases
forced to use a sub-optimal model in the HMMER run; in
these cases we also included an alternative HMM model in
the analysis (the best one available to HMMER for the
given factor). We also filtered the collection of binding
sites in order to eliminate the ones that appear in the
training set (i.e., that were used in the alignments on
which the matrices and all HMMs used were built), result-
ing in a dataset that contained a total of 89 sites. Informa-
tion regarding the binding sites in the alternative matrices
used for LMM is not available in TRANSFAC, so it is pos-
sible that in these cases the alternative matrix used overfits
the dataset.

The results of the small-scale evaluation are presented in
Table 1. The complete listing of the hits found (including
their position, sequence and score) as well as the consen-
sus of the models and matrices used is provided in the
Additional File 2. Table 2 summarizes the results: for each
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method tested we report the overall percentage of true
positives identified, and the lowest and highest percent-
age of false positives in each of the six datasets. In several
cases, two of the methods tested (LMM and ScanACE) did
not reach a sufficient number of true positives, so their
performance is not directly comparable to the one of the
other methods. Their performance in terms of false-posi-
tive hits suggests that they are too specific, and therefore
prone to missing true sites. The other two programs that
we tested against, Match and Patser, show a minimum
false-positive percentage of 12% and 3% respectively. In
contrast, HMMER reaches a minimum value of 0 false-
positive hits, while detecting all (or almost all) true sites
in all cases. The highest percentage of false positive hits
ranges from 16.7% for HMMER (selecting the optimal
model) to 43.7% for Patser. While on individual models
other methods might perform better in particular cases,
these results indicate that HMMER is powerful enough to
detect the target binding sites in all the datasets tested, and
that its sensitivity-specificity trade-off is consistently bet-
ter than those of the other methods.

Large-scale evaluation
To add to the rigor of this analysis and perform it in a con-
text closer to a real-life biological investigation, we
resorted to a computational evaluation based on synthetic
data generated similarly to the technique described by
Barash et al. [81]. This allowed us to compare the propor-
tion of false positive hits returned by our method and by
a TFBS prediction program based on NWMs, in this case
Match [19]. We applied the following procedure to the
491 HMMs in our database (corresponding to all TRANS-
FAC matrix-derived and JASPAR-derived models) for
which a corresponding NWM built using the same multi-
ple sequence alignment was available: we generated a ran-
dom nucleotide sequence of a fixed length (50,000 bp)
and we inserted in it, at random locations, 100 "synthetic"
binding sites. These binding sites were not generated by
sampling from the matrix nor from the HMM as that
could have conferred an advantage to one of the two

methods. Instead the sites were generated by sampling
from the alignment with an algorithm designed to make
the test as fair as possible for both methods by preserving
both the dependencies between nucleotides in the
sequences and the core matrix if it exists (see Methods for
details). Before each hit was planted the random sequence
was scanned to eliminate any other occurrence of its
sequence that might have been present by chance. We
defined our planted hits as the "true positives", while any
other reported instance of the pattern was considered a
"false positive". We then scanned the resulting nucleotide
sequence with the Match program and with HMMER, we
repeated the experiment 20 times for each model
independently and we averaged the results to eliminate
fluctuations due to randomization.

We measured the performance of the two methods using
modified ROC curves – ROC50 curves [82] and compared
the areas obtained with both methods by using a
Bonferroni-corrected Wilcoxon signed rank test. Out of
the original 491 models tested 105 were eliminated due to
the fact that the average ROC50 area for either method was
smaller than 0.25, leaving 386 filtered models on which
the comparison was conducted. At a significance level of
0.05 and with a Bonferroni correction of 491, our method
performed better than Match for 96% of the models for
which the result was significant (71% of the filtered mod-
els), suggesting that it can provide a better trade-off
between sensitivity and specificity that translates into
being able to retrieve more true positives with fewer false
positives. The results of this test are presented in Table 2
of Additional File 1. It should be noted that in many cases
the length of the matrix used by Match differs from the
length of the HMM even though the same alignments
were used to construct both. This situation confers an
advantage to Match because the planted hits have the
same length as the alignment.

We then analyzed the results of these runs to determine,
for each method and model, the percentage of true posi-

Table 2: Comparative performance of the TFBS detection methods tested.

Performance value Method

HMMER M 
model

HMMER T 
model

Match Patser LMM ScanACE

% true positives identified 98% 100% 99% 100% 80% 52%
minimum false positive ratio 0.00% 0.00% 12.00% 3.30% 0.00% 0.00%
maximum false positive ratio 24.10% 16.70% 25.00% 43.70% 30.80% 0.00%

A summary of the results presented in Table 1. The first row displays the overall percentage of validated binding sites detected by the different 
methods. The next two rows display the minimum and maximum percentage of false positive hits found by each method across the six different 
datasets tested.
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tive hits within the first n reported hits (the greater this
percentage, the more sensitive the method is), and the
amount of false positives expressed as a percentage that
needs to be accepted in order to retrieve the first m true
positive hits (the smaller this percentage, the more spe-
cific the method is); these tests are referred below to as the
first and second TPP (true positive proportion) tests. The
values used for n and m were 30, 50, 70 and 90. Tables 3
and 4 of Additional File 1 show these results for all 386 fil-
tered models tested. While the ROC tests give an indica-
tion of the overall performance of the method, the TPP
tests assess its performance in the "early" and "late" stages
of the search, respectively. By the stringent criteria used for
comparison (see Methods) in the first TPP test our
method performs better for 78% of the cases for which a
difference was noted suggesting that these models are bet-
ter suited for retrieving a relatively small number of hits
that are true positives (as for example when analyzing the
promoter of a given gene) while reporting a minimal
number of false positives. In the second TPP test our
method performs better for 85% of the cases in which a di
fference in performance between the two methods was
noticed, suggesting that these models can retrieve a large
number of hits while limiting the number of false posi-
tives, as for example in the case of a genome-wide search
for putative TFBSs for a given factor. It should be noted
that since each of the three tests measures a different
aspect of the performance of the method, the list of mod-
els that perform better in each case might not entirely
overlap.

The MAPPER interface
We designed and implemented a web-based application,
called MAPPER (Multi-genome Analysis of Positions and
Patterns of Elements of Regulation), to facilitate the
retrieval of putative TFBSs in a given sequence based on
the library of 1,079 HMM models described above. The
interface takes as input a gene identifier (e.g. NCBI Gene
ID, RNA accession number) or a user supplied sequence
in FastA format. The user then selects the models to be
used (all, TRANSFAC or JASPAR only) and has the option
to build his/her own model starting with a multiple
sequence alignment of binding sites in FastA format. The
search can be performed on the entire gene region flanked
by a user-specified distance upstream and downstream,
on a specified gene region (promoter, introns, exons, 3'-
UTR) or within a certain distance upstream of the ATG or
the start of the transcript (Figure 2). If a gene identifier is
provided the program will also display the actual nucle-
otide sequence scanned (in FastA and Genbank format), a
useful option in the case of those genes for which discrep-
ancies exist between different annotations.

The user can choose to display all hits for a given
sequence, or only the hits for factors that are common

across the orthologs of that sequence (if present in the
HomoloGene database). The output of the system is the
list of putative hits found in the specified conditions –
default score and E-value thresholds are 0 and 10 respec-
tively (Figure 3). For each hit the system displays the
model used to retrieve it, its location, score and E-value
and (in a pop-up window) the alignment between the
model and the sequence at that site. The hit set can be
sorted by position (from the ATG or the start of the tran-
script for genes supplied via an identifier, or from the
beginning of the sequence for FastA sequences), by model
name, model accession, score or E-value. In addition the
results page highlights adjacent sites (situated within 50
bp from each other) retrieved for TFs that are known to
physically interact with each other (as annotated in the
TRANSFAC database), and also the classes of TFs for
which putative sites were found. For each TRANSFAC fac-
tor-derived or JASPAR-derived model the organism in
which the factor was described is specified. The user can
choose to highlight hits in evolutionarily conserved
regions representing the most conserved elements
between sets of organisms provided by the UCSC Genome
Browser annotations (see Methods for details). Figure 4A
shows a graphical representation of the position and ori-
entation of the hits listed in Figure 3. Arrows are drawn to
scale and in some cases represent the sum of overlapping
sites for the different transcription factors that are listed
above or beneath them. Hits occurring in evolutionarily
conserved regions are displayed in red. While the results
page in Figure 3 lists and sorts all putative TFBSs inde-
pendently from each other, the graphical representation
in Figure 4A makes it easy to identify regions in which
more than one model (corresponding to the same factor
or to closely related factors) detects a binding site making
it, therefore, more likely to represent a true binding site.
The set of hits can also be exported and displayed in the
UCSC Genome Browser using its "custom tracks" feature
(Figure 4B). This allows the user to view the TFBSs in the
general context of the genomic region in which they
appear and to take advantage of the powerful visualiza-
tion tools of the UCSC Genome Browser in order to high-
light important features of the genomic region.

Figures 3 and 4 present the output of MAPPER when the
human MCM5 gene (Entrez Gene ID 4174) is used as an
example. The promoter of the human MCM5 gene con-
tains multiple experimentally characterized binding sites
for the E2F transcription factor. These binding sites were
retrieved by our search, and were found to be conserved
across the human, mouse and Drosophila MCM5
orthologs. MCM5 genes code for proteins involved in the
initiation of DNA replication [83], and are members of
the MCM family of chromatin-binding proteins that par-
ticipate in cell cycle regulation. The E2F family of tran-
scription factors plays a critical role in the control of cell
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proliferation and consists of six factors, E2F-1 to E2F-6,
that heterodimerize with two other subunits, DP-1 and
DP-2; the activity of these complexes is modulated by the
retinoblastoma tumor suppressor protein (pRB) that

binds E2F [84]. TRANSFAC and our database contain
multiple models describing the binding sites in target
genes characterized for different combinations of E2F and
DP proteins, complexed or not with pRB. Below, we refer

The selection page of the search engineFigure 2
The selection page of the search engine. The selection page for the MCM5 gene displays detailed information on the gene 
and its homologs available in our database, and allows the user to select the gene region to be scanned. The same region will be 
scanned for all homologs included in the search.
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The output of the query for the human MCM5 geneFigure 3
The output of the query for the human MCM5 gene. The output was edited to highlight the E2F binding sites discussed 
in the text. The hit alignment window shows the match between the sequence at positions +2 to +12 from the transcript start 
and model T05206. The set of hits can be sorted by position, name or accession number of the factor. The position of the hits 
can be displayed with respect to the start of the transcript, the ATG or as absolute coordinates on the chromosome. The page 
can display the list of common factors that bind to the same selected region in the homologs included in the analysis, the fac-
tors on the list that are known to physically interact or the different classes to which they belong. In addition, the hits occur-
ring in evolutionarily conserved regions can be highlighted.
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Different representations of the set of putative TFBSs in the human MCM5 gene promoterFigure 4
Different representations of the set of putative TFBSs in the human MCM5 gene promoter. A. Graphical repre-
sentation of the hit set presented in Figure 3. B. The hit set was exported to the UCSC Human Genome Browser as a custom 
track. The region displayed in this image extends to 500 bp upstream of the coding sequence start. Note that the clusters of 
predicted binding sites correspond to peaks in the human/mouse conservation track at the bottom, suggesting that those 
regions are functional. The positions of the most conserved elements displayed in the conservation track are the ones used in 
the previous page to highlight hits in evolutionary conserved regions (see Methods for details).
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to these models generically as "E2F" models given the fact
that, while the transcriptional role of E2F family members
is different given the identity of the E2F and DP moieties
that forms the complex [85], no specificity has been
detected in vivo for the association of particular complexes
to known E2F-regulated promoters [86,87]. Experimental
evidence showed that the upregulation of the human
MCM5 gene in response to growth stimulation is medi-
ated by the binding of E2F to four sites within the MCM5
promoter, and that mutations in these sites abolish this
response [88]. The four E2F binding sites consist of two
sets of overlapping sequences running on opposite
strands and were mapped by RNase protection assays to
positions -194 to -183 and +2 to +13 respectively, relative
to the start of the transcript [88]. In our search, three mod-
els for the E2F family (MA0024 for E2F, T05206 for E2F-
4:DP-1 and T05208 for Rb:E2F-1:DP-1) retrieved all four
E2F sites at the location and in orientation described in
the literature (Figures 3 and 4). To simplify the display in
these figures and to highlight the four E2F binding sites
retrieved by the three models, a more stringent set of
parameters was used for the query (500 bp upstream of
the ATG, score > 3, E-value < 6.8). Figure 3 shows the list
of all TFBSs retrieved given these input parameters with
the four E2F binding sites described by Ohtani et al.
boxed, as well as the list of factors for which putative bind-
ing sites where found also in the other two MCM5
homologs selected (mouse and Drosophila MCM5). For
each hit in the listing the model identifier is displayed as
a double link, to a pop-up window showing the match
between the sequence and the model (Figure 3) and to a
separate page giving detailed information regarding the
model including its length, the number of sequences in
the training set, associated models, HMM logo [89], and
the references used to build the alignment (Figure 5).

Discussion
Our method offers several advantages over other similar
tools, with respect to the extent and quality of the models
it uses, its sensitivity and specificity, and the overall func-
tionality of the web-based interface.

MAPPER includes a large database of profile HMMs corre-
sponding to 888 TF entries that was built using the data
provided by the TRANSFAC and JASPAR databases, con-
sisting of sets of experimentally validated binding sites for
several hundred TFs. In addition to the models based on
optimal alignments provided by TRANSFAC and JASPAR,
our database includes a large number of additional mod-
els generated by extracting the representative motif from
the "raw" binding site sequences contained in TRANSFAC
with the program MEME (Multiple Expectation-maximi-
zation for Motif Elicitation) [90] that usually provide a
tighter definition of the binding site specificity. As a result
our method can make use of a larger number of models

that provides an increased ability to detect putative bind-
ing sites. In many cases, several models are available for a
single TF; in addition to increasing the probability of
detecting a binding site for the factor, this redundancy
also allows the user to evaluate whether a putative site is a
"true" one (if it is detected by multiple models) or a
potential false positive. Although the Plan7 architecture
on which HMMER is built does not take into account the
dependencies between the nucleotides within a site and,
similarly to NWMs, weights each state independently
[74], several features of the HMMER modeling and search
procedure confer an added level of generality to HMMs as
compared to NWMs built upon the same alignments.
First, profile HMMs model insertions, deletions and allow
fragment matches to the model [74]. This property
becomes significant in the case of those TFs that bind to
sites comprised of half sites separated by spacer regions of
variable length (as for example nuclear receptors); while
insertion and deletions are rare in the functional half sites
they can occur with higher frequency in the spacer regions
that are much more divergent [91]. Moreover, allowing
fragment matches to the model ensures that binding sites
that may contain a well defined half-site and an imperfect
one or half-sites separated by long spacers can still be
retrieved as fragment matches to the model. Secondly, all
hits returned by HMMER are subject to a bias composition
filtering based on a second null model that is computed
for each alignment and leads to a rescoring of the hits
penalizing the ones for which the nucleotide composition
is biased [74]. Even in equal performance conditions, as
could be the case for short alignments that do not allow
insertions or deletions or fragment matches to the model,
this filtering alone would still confer an advantage to
using HMMER versus NWMs.

Using profile HMM for modeling bindings sites has also
limitations. To build a model HMMER converts the
observed counts in the training set into probabilities by
combining the actual counts with pseudocounts from pri-
ors, in this case single-component Dirichlet priors [74].
The latter can have a more pronounced effect and can bias
the model in the case in which the number of sequences
in the training set is low. These cases would be difficult to
model accurately by any statistical approach (including
NWMs) and their suitability for the desired analysis will
have to be evaluated case by case by the user. To facilitate
this, we report for each model the length, the number of
sequences in the training set, the HMM consensus (for
matrix-derived models), the HMM logo [89], the other
associated MAPPER models, and the references used to
curate the binding sites used in the training set. The pres-
ence of models trained on small number of sequences
usually does not represent a problem, as in the large
majority of cases MAPPER makes available multiple mod-
els for any given TF.
Page 12 of 20
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:79 http://www.biomedcentral.com/1471-2105/6/79
We compared the predictive performance of our method
with that of several other similar computational tools, by
testing them on a dataset of over 100 experimentally
determined binding sites as well as on synthetic data. The
factors for which experimentally characterized sites were

tested were selected so that they bind sites with different
overall organization and belong to different categories of
TFs such as fork head TFs (E2F and HNF-3), MADS box
(MEF-2), helix-turn-helix/homeo domain (HNF-1), Cys4
Zn finger of nuclear receptor type (ER, GR and HNF-4),

The page for model T05206 for E2F-4:DP-1Figure 5
The page for model T05206 for E2F-4:DP-1. The model page displays detailed information regarding the model including 
the name and (if available) organism and classification of the factor, the model length, the number of sequences in the alignment 
used to train the model and the references used to select these sequences. The page also displays the HMM logo generated 
using the LogoMat-M software [89].
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beta-scaffold factors with minor groove contacts (p53),
and IPT/TIG domain (Su(H)). As presented in the results
section our method correctly identified 15 out of 17 bind-
ing sites reported in the literature for p53, Su(H) and
MEF-2. Moreover, from a collection of 89 binding sites for
six other TFs (E2F, ER, GR, HNF-1, HNF-3 and HNF-4)
our method identified 98% to 100% of the true positives
with false positive ratios ranging from 0% to 16% (or 24%
when a non-optimal model was used). The other methods
tested (Match, Patser, LMM and ScanACE) either retrieved
a comparable number of true positives at the expense of
higher false positive ratios (as for example Match and Pat-
ser) or attained lower false positive ratios at the expense of
missing a high number of true positives (as for example
ScanACE and, in some cases, LMM).

Although encouraging, the results of this evaluation can-
not be easily extrapolated to a scenario in which very long
sequences (up to an entire genome) are scanned with
hundreds of models. In order to make our analysis more
general, we performed a large-scale evaluation using syn-
thetic data for 491 models in our database (46% of the
total number) for which a HMM and a NWM was availa-
ble and compared the performance of our method with
the one of Match in scanning sequences of 50 kb in
length. Models that performed very poorly for one
method or the other or both were filtered out and among
the remaining 386 models 74% showed a statistically sig-
nificant difference based on a Bonferroni corrected Wil-
coxon signed rank test. Among the latter our method
performed better in 96% of the cases.

However, we recognize that the entire enterprise of TF
binding site annotation is burdened by the challenge of a
robust definition of what constitutes a true positive, even
those based on binding studies. For example, Tronche
[92]and others note the evolutionary conservation of
binding sites for genes transcribed in tissues that do not
even express the transcription factor. In these instances as
in others, computational or even biochemical binding
assays are only a first step on the path to focused func-
tional studies.

Finally, the MAPPER interface offers several advantages
over other similar tools. It accepts as input a user-supplied
FastaA sequence or a gene identifier for any annotated
gene in the human, mouse, fly, worm or yeast genomes. It
can use in the search all or each of the different categories
of models in our database (based on TRANSFAC matrices,
TRANSFAC factors or JASPAR matrices) or a model built
on a multiple-sequence alignment supplied by the user.
The results are presented in a simple yet comprehensive
manner providing detailed information regarding the
gene, the sequence scanned and the putative sites

retrieved, and powerful graphical and export options facil-
itate the analysis and the interpretation of the results.

Conclusion
The purpose of our work was to establish a methodology
for the detection of TFBSs in multiple genomes endowed
with enough sensitivity and specificity to be effective in
large-scale analysis (such as generating a whole-genome
map of binding sites for a collection of TFs). Accomplish-
ing this requires a large library of high-quality TFBS mod-
els and a computational method able to reliably detect
instances of the models in a given DNA sequence.

The model library used by our program was created from
the data contained in the TRANSFAC and JASPAR data-
bases, with a procedure that generated over a thousand
high-quality models. The computational method we
implemented relies on HMM profiles built from nucle-
otide sequence alignments. Using HMM profiles instead
of NWMs is a powerful way for capturing the characteris-
tics of a binding site and several observations suggest that
our method is reliable and performs well. First, HMM pro-
files for selected factors retrieved binding sites in the pro-
moter regions of genes used as controls with high
specificity, as described in the Results section. Secondly,
on an extended collection of experimentally characterized
TFBSs, our method identified 98% to 100% of the true
positives with a false positive ratio that was consistently
smaller than the ones reported by the other methods
tested. Thirdly, ROC and True Positive Proportion tests
performed on a large number of models for which both a
NWM and a HMM was available showed that in the
majority of the cases our method performs significantly
better than a NWM-based program such as Match. This
translates into an increased ability to detect true binding
sites while reducing the number of false positive sites
reported. Finally, our method takes advantage of a larger
set of models for a given TF, and this results in an
increased ability to detect true hits.

The web-based interface was design to maximize usability
and to facilitate the analysis of the retrieved hits; it has
simple and flexible input requirements, a clear and com-
prehensive display of the results and powerful graphical
and export options.

The current work and its future extensions make available
a novel and reliable method for the identification of
TFBSs that, used in combination with existing molecular
genetic information and biological validation, represents
a powerful tool for understanding the logic of
combinatorial regulation. The search engine can be seen
as the foundation for more advanced applications, such as
highlighting patterns of TFBSs involved in the regulation
of particular genes, assessing the conservation of such pat-
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terns across multiple genomes, or identifying the TFBSs
overrepresented in a set of coexpressed genes.

Methods
Genomic sequences, homology and conservation 
information
Genomic sequences and annotations were downloaded
from the UCSC Genome Bioinformatics site [93,94] and
correspond to the following releases: Homo sapiens – hg17,
Mus musculus – mm5, Drosophila melanogaster – dm1,
Caenorhabditis elegans – ce2 and Saccharomyces cerevisiae –
sg1. Homology information was obtained from the
HomoloGene database Build 38.1 [95], containing clus-
ters of genes that share a consistent ortholog relationship
across three or more organisms [96]. Evolutionary conser-
vation information was obtained from the UCSC Genome
Browser [97] and consisted in the location and scores of
the most conserved elements identified using the phast-
Cons program [98] between the following sets of organ-
isms respectively: human, chimp, mouse, rat, dog, chick,
fugu and zebrafish; Drosophila melanogaster, D. yakuba, D.
pseudoobscura and A. gambiae; Caenorhabditis elegans and C.
briggsae; Saccharomyces cerevisiae, S. paradoxus, S. mikatae,
S. kudriavzevii, S. bayanus, S. castelli and S. kluyveri. The
option "highlight hits in evolutionarily conserved
regions" of the results page of the interface emphasizes
hits that fall in or within a distance of 100 bp upstream to
100 bp downstream of these elements for each appropri-
ate genome.

Generating the multiple sequence alignments of binding 
sites
The flat files of TRANSFAC Professional version 8.1 were
parsed to extract two types of alignments: nucleotide
sequences used to generate the TRANSFAC NWMs and the
nucleotide sequences referenced in the description of the
TRANSFAC factors (see below). The vast majority of
matrix entries in TRANSFAC lists the accession numbers
of the factor(s) associated with that matrix (multiple fac-
tors are usually orthologs from different organisms) and
the accession numbers of the nucleotide sequences used
to generate the matrix referred to below as "sites". Moreo-
ver, for each factor TRANSFAC lists which organism the
factor belongs to and the accession numbers of the sites
described for the factor in target genes. One factor can be
linked with more than one matrix, and more than one
matrix can describe the same factor. Not all matrices have
associated site identifiers, and, more importantly, not all
factors that have associated sites were used to build
NWMs. Therefore, to extract the maximum amount of
information, the TRANSFAC files were parsed following
not only the links from "matrices" to "sites" but also the
links from "matrices" to "factors" and from there to
"sites". We called the alignments retrieved following the
links from "matrices" to "sites" matrix-derived align-

ments. These were optimal multiple sequence alignments
that were used as such to build HMMs called matrix-
derived models and having accession numbers starting
with "M". Nucleotide sequences retrieved following the
links from "matrices" to "factors" and from there to "sites"
were first processed in order to extract the underlying
motif using the MEME program [90] downloaded from
[99]. For each set of sequences, the MEME search was con-
ducted separately on the forward and on the forward and
reverse strands and the best motif was selected taking into
account its length and E-value; this selection was also ver-
ified by manual curation. The resulting MEME align-
ments, called factor-derived alignments, were used to
build HMMs called factor-derived models that have acces-
sion numbers starting with "T".

Motifs extracted using Gibbs sampling from nucleotide
sequences of binding sites and used to build the JASPAR
matrices were extracted by parsing the matrix site files
downloaded from [100]. The resulting alignments, called
JASPAR-derived alignments, were checked against the Jas-
par matrices and used to build HMMs called JASPAR-
derived models designated with accession numbers start-
ing with "MA". The accession numbers of the HMM mod-
els are the same as the corresponding entries in the
TRANSFAC and JASPAR databases. To estimate the
number of TFs that have corresponding models in MAP-
PER, we counted them as distinct if they had different
names, although in several cases in TRANSFAC and JAS-
PAR entries with different names may refer to the same TF
or TF family, or slightly different names may refer to iso-
forms of the same TF.

Generating HMMs from alignments using HMMER
Profile Hidden Markov models were generated using the
HMMER package (version 2.2 August 2001) available at
[74]. The null model used to generate the models
employed equal probabilities for all four nucleotides and
took into account the fact that TFBSs can occur frequently
throughout the sequence scanned. Therefore we used in
the null model a p1 value for the G→G transition control-
ling the expected length of the target sequences [74] equal
to 0.98 instead of the default value of 0.999, thus assum-
ing that two sites for the same TF may occur 50 bp and not
1000 bp apart as in the default model. This significantly
decreased the likelihood of retrieving true positive hits
with negative scores (S.R. Eddy, personal
communication).

The HMMER function hmmpfam searches a sequence or a
database of sequences against a library of HMM models,
and characterizes each hit it returns by two parameters:
the score and the E-value. The score is the logarithm in
base 2 of the ratio P(seq|HMM)/P(seq|null), where
P(seq|HMM) is the probability of the target sequence
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according to the HMM model and P(seq|null) is the prob-
ability of the sequence according to a null model distribu-
tion. The greater the score the better the match between
the hit and the model is. The E-value, computed with
respect to the number of the sequences in the database
queried, is a measure of the expected number of false pos-
itives that will have scores equal to or larger than the score
of the hit. The smaller the E-value, the more significant the
hit is.

HMMER control runs
First, a qualitative evaluation of the performance of the
method was carried out by searching promoter sequences
of selected genes that contain well characterized binding
sites for specific TFs against the HMMs built for these fac-
tors. The factors selected as controls were mouse p53,
human MEF-2 and Drosophila Su(H) – Suppressor of Hair-
less for which the alignment files M00761, T00505 and
M00234 respectively, were used to construct and calibrate
HMMs. For the promoter sequences of the genes used as
controls the nucleotide positions and sequences of the
characterized binding sites for these TFs were available in
the literature and were compared with the ones of the hits
returned by HMMER.

Small-scale evaluation
As a starting point for this analysis, six datasets were pre-
pared containing a total of 110 experimentally character-
ized binding sites for the following transcription factors:
E2F, the estrogen receptor (ER), the glucocorticoid
receptor (GR), the hepatocyte nuclear factors HNF-1,
HNF-3 and HNF-4. The sequences for 27 E2F and 25 ER
binding sites, located between well defined positions in
the center of a 50 bp sequence containing flanking regions
from the corresponding genes [78], were downloaded
from [101]. For consistency and to facilitate the analysis
of the results the remaining datasets were processed and
written in the same format. The sequences of 16 GR bind-
ing sites were downloaded from [79,102]. 19 bindings
sites for HNF-1, 11 for HNF-3 and 12 for HNF-4 [80] were
obtained by parsing the datafiles at [103]. For these data-
sets the sequence of the sites listed in the Gibbs sampling
log files were matched to the original fasta sequences and
the flanking nucleotides extracted in a sequence of 50 bp
total.

The methods used for comparison were accessed as fol-
lows: the Match code was supplied with the TRANSFAC
professional 8.2 suite [19], Patser [9] was used at [104],
LMM [67] was downloaded from [105], and ScanACE [6]
was downloaded from [106]. For Match a value of 0.7 was
used for both the matrix and the core similarity thresh-
olds. Patser, ScanACE and the hmmpfam function of
HMMER were used with default parameters. LMM was

used with a window size of 15 and default values for the
other parameters.

For each dataset we used the NWM provided by TRANS-
FAC as input for the NWM-methods and its correspond-
ing HMM model as input for HMMER. An alternative,
better performing HMM model for the factor (designated
with accession numbers starting with "T") was always
included for HMMER. In three cases, for LMM that con-
tains only the publicly available TRANSFAC matrices we
had to use the closest available matrix for the factor as an
input. The following matrices and corresponding HMM
models were used for this analysis: for E2F V$E2F_02
(equivalent to M00050) and T05206; for ER V$ER_Q6_02
(equivalent to M00775), T00258 and V$ER_Q6 (for
LMM); for GR V$GR_Q6_01 (equivalent to M00921),
T05076 and V$GR_Q6 (for LMM); for HNF-1
V$HNF1_Q6 (equivalent to M00790), T01211 and
V$HNF1_01 (for LMM); for HNF-3 V$HNF3ALPHA_Q
(equivalent to M00724) and T00371; for HNF-4
V$HNF4ALPHA_Q6 (equivalent to M00638) and
T00372. For each factor the binding sites included in the
test datasets were checked against the ones in the training
set on which the corresponding matrix and HMMs were
built. 21 sites that were in common were eliminated from
the test set resulting in a filtered dataset of 89 binding sites
that can be downloaded following the appropriate link
from Additional File 1. No information regarding the
exact sites used to build the alternative LMM matrices was
available in TRANSFAC so these matrices may very well
overfit the test set.

The output of each method was parsed to identify the true
and the false positives among the hits retrieved. Hits
retrieved on both strands and overlapping more than 75%
were counted as one hit. True positives were defined as
hits that are either contained in or overlap at least 60% of
the sequence of the known binding site; all other hits were
considered false positives. For each run the number of dis-
tinct sequences containing at least one true positive was
reported. Hits were sorted by score and the percent of false
positives was calculated as the ratio between the false pos-
itives and the sum of false positives and true positives that
have to be retrieved until at least one true positive was
found for each of n sequences from the dataset. The value
of n was chosen for each dataset based on the following
rule: if in four cases corresponding to three different meth-
ods (the two HMMER cases, Match and Patser) the maxi-
mum number of unique sequences was identified, we
used this value as a cutoff. Otherwise we used the value
immediately below the maximum number. This
percentage was not computed for methods that missed
more than 2 sequences from the dataset.
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Large-scale evaluation
We compared the sensitivity and specificity of our method
against those of a NWM-based method (Match) by carry-
ing out a large-scale analysis of their performance on
synthetic data using 491 models in our database corre-
sponding to the TRANSFAC and JASPAR matrices for
which both a NWM and a HMM, built from the same mul-
tiple sequence alignment, were available. For each of these
models we generated a 50,000 bp random sequence and
we planted 100 "synthetic" binding sites into it, at ran-
dom locations [81]. Before a hit was planted the random
sequence was scanned to eliminate any potential matches
that could occur by chance. The algorithm used to gener-
ate the synthetic binding sites builds a simple Markov
chain by reading the original multiple sequence align-
ment and represents each step in the chain as a 6-by-6
matrix of transition frequencies (the states include A, C, G,
T, N and gap). Each sequence in the alignment is scanned
sequentially, and the matrix element corresponding to
each transition is incremented. In the end, the counts are
converted into probabilities by normalizing them to 1.
The Markov chain was used to generate new sequences by
choosing a starting base at random according to the
marginal probabilities of the bases in the first position,
and by selecting at random a transition from each succes-
sive matrix at each step. This procedure prevents transi-
tions that never appear in the alignment from being
generated, as could instead happen if the synthetic sites
had been generated by sampling from the probability dis-
tribution described by the NWM, while at the same time
preserving the "core" sequence (the most conserved nucle-
otides) that Match relies on. Therefore, this method is well
suited for generating sequences that can be recognized by
both HMMER and Match, without giving an unfair disad-
vantage to any of the two methods. This method was
favored over inserting at random binding sites from the
alignments used to generate the NWM or HMM in order
to keep the training and test set separate and to evaluate
the two methods based on their ability to detect sequences
that are similar but not identical with the one already
reported as it would be expected for novel bona fide bind-
ing sites. We scanned the resulting sequence with both
HMMER (with a threshold on the E-value equal to 20)
and Match (with both core matrix and similarity matrix
thresholds equal to 0.7), and we compared the results of
both programs against the known locations of the syn-
thetic binding sites. The whole process was repeated 20
times, and the results were analyzed in two different ways,
by using modified ROC curves [82] and True Positive Pro-
portion (TPP) tests described below.

We generated ROC plots to obtain an indication of the
overall performance of both methods. However, while
our methodology provides a definition of true and false
positives, it does not explicitly define the set of true nega-

tives. Since both programs scan the nucleotide sequence
assigning a score to every position in the sequence and
moving one base at a time, the effective number of true
negative hits should be the length of the sequence minus
the number of planted TFBSs, that is, the number of posi-
tions that were tested and were not found to match the
TFBS pattern. This obviously results in a heavy imbalance
between the number of true positives and the number of
false positives, making it hard to evaluate the ROC curves
in the commonly used way. For example, the areas under
the curves that are normally used as a measure of predic-
tive performance will always be very close to 1 and very
similar to each other. Therefore, following the method of
Gribskov and Robinson [82] we used ROC50 curves, plot-
ted until 50 false positives are found, and we computed
the areas under them (ROC50 areas). Models for which
one or both method attained average areas below 0.25
were filtered out as their comparison was not meaningful.
To determine if the values of the two sets are statistically
different we performed a Wilcoxon signed rank test at sig-
nificance value α equal to 0.05 with a Bonferroni correc-
tion of α divided by the number of independent tests
(491). The result of this test is presented in Table 2 of
Additional file 1.

In addition to the ROC curves, we also used two alterna-
tive tests, assessing the True Positive Proportion of hits
retrieved by each method. For each sequence, we sorted
the list of predicted hits by score, from highest to lowest,
and we determined the percentage of true hits retrieved by
each method within the first n reported hits and the
amount of false positive hits (expressed as percentage)
that one needs to accept in order to identify the first m true
positive hits. The values used for n and m were 30, 50, 70
and 90. One method was considered to outperform the
other in the TPP tests if it scored strictly better (showed a
higher or lower percentage, depending on the test) for
three out of the four n or m values and equally or better in
the remaining one. The complete results of these tests are
reproduced in Tables 3 and 4 of Additional File 1.

Database construction, website development and software 
environment
Genomic annotations from the UCSC Genome Browser,
TRANSFAC, JASPAR and HomoloGene information were
used to build a MySQL relational database storing data
about genes, transcription factors, and their binding sites.
We implemented a web-based system, accessible at http:/
/mapper.chip.org/, that allows users to search for the
putative TFBSs in any region of a gene and of its orthologs,
or in an arbitrary user-supplied sequence.  This resource
also offers access to a previously described database of
pre-computed TFBSs found in the upstream sequences of
all genes in the human, mouse and Drosophila genomes
[107], that was generated using a methodology similar to
Page 17 of 20
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the one described in this paper.  The application is written
in Common Lisp and relies on a development environ-
ment for web-based applications developed by the
authors.  

Abbreviations
HMM – hidden Markov model; NWM – nucleotide weight
matrix; ROC curve – receiver operating characteristic
curve; TF – transcription factor; TFBS – transcription factor
binding site; TPP test – true positive proportion test.
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