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Abstract
Background: Beta-barrel transmembrane (bbtm) proteins are a functionally important and
diverse group of proteins expressed in the outer membranes of bacteria (both gram negative and
acid fast gram positive), mitochondria and chloroplasts. Despite recent publications describing
reasonable levels of accuracy for discriminating between bbtm proteins and other proteins,
screening of entire genomes remains troublesome as these molecules only constitute a small
fraction of the sequences screened. Therefore, novel methods are still required capable of
detecting new families of bbtm protein in diverse genomes.

Results: We present TMB-Hunt, a program that uses a k-Nearest Neighbour (k-NN) algorithm to
discriminate between bbtm and non-bbtm proteins on the basis of their amino acid composition.
By including differentially weighted amino acids, evolutionary information and by calibrating the
scoring, an accuracy of 92.5% was achieved, with 91% sensitivity and 93.8% positive predictive value
(PPV), using a rigorous cross-validation procedure.

A major advantage of this approach is that because it does not rely on beta-strand detection, it
does not require resolved structures and thus larger, more representative, training sets could be
used. It is therefore believed that this approach will be invaluable in complementing other,
physicochemical and homology based methods. This was demonstrated by the correct
reassignment of a number of proteins which other predictors failed to classify. We have used the
algorithm to screen several genomes and have discussed our findings.

Conclusion: TMB-Hunt achieves a prediction accuracy level better than other approaches
published to date. Results were significantly enhanced by use of evolutionary information and a
system for calibrating k-NN scoring. Because the program uses a distinct approach to that of other
discriminators and thus suffers different liabilities, we believe it will make a significant contribution
to the development of a consensus approach for bbtm protein detection.
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Background
Beta-barrel transmembrane proteins
The beta-barrel is one of only two membrane spanning
structural motifs currently identified [1]. It is proven with
high resolution structures for many proteins expressed
within the outer membranes of gram negative bacteria
and is also widely expected for several proteins expressed
in the outer membranes of mitochondria [2] and chloro-
plasts [3]. In addition, the structure of a protein found
spanning the outer membrane of Mycobacteria (an acid
fast gram positive bacterium) was recently resolved reveal-
ing two consecutive membrane spanning beta-barrels [4].
As with alpha-helical transmembrane (ahtm) proteins,
beta-barrel transmembrane (bbtm) proteins play both
functionally important and diverse roles [1].

Currently, over 92 bbtm protein structures are present in
the protein databank [5], including 23 families as defined
in PDB_TM [6]. They are classified in the SCOP hierarchy,
in 3 different folds [7], the transmembrane beta-barrels
(described as not a true fold, but a gathering of beta-barrel
membrane proteins), the integral outer membrane pro-
tein TolC fold and the Leukocidin (pore forming toxins)
fold. The transmembrane beta-barrels consist of four
SCOP superfamilies; OmpA-like, OmpT-like, OmpLA and
the Porins; and include channels, enzymes and receptors.
These superfamilies vary in numbers of subunits, where
each subunit contributes a single barrel. The TolC fold,
consists of one SCOP superfamily and includes proteins
involved in secretion and expression of outer membrane
proteins (OMPs) [8]. These proteins are trimeric with each
subunit contributing four strands to a single barrel, and
contain large stretches of alpha-helix, which stretch across
the periplasm. Finally, the Leukocidin fold consists of
heptameric pore forming toxins with each subunit con-
tributing 2 strands to the barrel. TolC, Leukocidin and the
Mycobacterial porin MspA (which is not yet classified
within SCOP) can thus be considered "non-typical" bbtm
proteins. From the diversity of bbtm proteins in different
SCOP folds, it seems likely that these proteins have multi-
ple evolutionary origins.

These structures have helped reveal a number of features
concerning transmembrane (TM) beta-strands and their
organisation [9]. TM beta-strands show an inside-outside
dyad repeat motif of alternating residues facing the lipid
bilayer and the inside of the barrel. Outside (lipid bilayer
facing) residues are typically hydrophobic whilst inside
(facing inside of barrel) residues are of intermediate
polarity. TM beta-strands are often flanked by a layer of
aromatic residues, believed to be involved in maintaining
the protein's stability within the membrane [10]. Struc-
tures have also revealed an even number of strands, with
N and C termini on the same side of the membrane.
Strands form an antiparallel beta-meander topology with

alternating long and short loops. The number of TM beta-
strands in a barrel has been shown to range from 8–22
strands, with a range of 6–22 (most frequently 12)
residues.

In contrast to ahtm proteins, which are easy to identify
through TM alpha-helices composed of 20 or more hydro-
phobic residues [11], the short and cryptic nature of TM
beta-strands makes their discrimination difficult. Predic-
tion is complicated further with beta-strands of some
globular proteins superficially resembling those of bbtm
proteins.

BBTM protein discriminators
Despite these difficulties, numerous methods have
recently been published for the identification of these pro-
teins, most commonly focusing on identification of TM
beta-strands. Methods include rule based approaches
[12], an architecture based approach [13], Hidden
Markov Models (HMMs) [14-18], a neural network based
method [19], a combined neural network and support
vector machine [20], composition of transmembrane beta
strands combined with secondary structure prediction
[21] and an approach based on architecture [13] com-
bined with isoleucine and asparagine abundance [22]. Of
these, the first two give no indication of discriminatory
accuracy, but the others range from 80 to 90%.

Whilst this level of accuracy may seem acceptable if ana-
lysing a particular sequence of interest, problems will
occur when screening an entire genome for potential
bbtm proteins, owing to the fact that a large number of
sequences are being tested of which these molecules only
constitute a small fraction. There is therefore a need for
programs with higher accuracy and in particular higher
specificity, in order to minimise the false discovery rate.

Amino acid composition based protein classification
This paper describes TMB-Hunt, an amino acid composi-
tion based program for the identification of bbtm pro-
teins. Amino acid composition has been analysed for
bbtm proteins [13], however whole sequence composi-
tion has not previously been used for discrimination.
Many previous studies have shown how amino acid com-
position can be successfully applied to protein sequence
analysis, including prediction of structural class [23], dis-
crimination of intra- and extra cellular proteins [24] and
distinguishing between membrane protein type [25].
Amino acid composition is often used for prediction of
subcellular location, as an alternative to signal detection
based methods [26-29] which are prone to errors in auto-
mated gene prediction at the 5' end [30]. The limitation of
this technique, however, is that the correlation of cell
location with amino acid composition is not absolute. It
was suggested that composition differences are a
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consequence of different requirements for protein fold-
ing, stability and transportation [24,26]. Subsequently it
has been shown that amino acid composition differences
correlate most strongly with surface residues [27]. Thus,
composition has been particularly useful in discriminat-
ing between ntm and ahtm proteins, which consist of
large numbers of hydrophobic amino acids in contact
with the lipid bilayer. This feature has enabled algorithms
to be developed capable of distinguishing between the
two classes with >97% accuracy [31], based on identifica-
tion of the TM alpha-helices.

Because TMB-Hunt puts no emphasis on identification of
TM beta-strands, we were not dependent on sequences
with resolved structures and training sets could be much
larger than those used for other predictors [12-22]. As a
result, bbtm proteins with structures more diverse than
those used by other predictors were included, resulting in
a greater degree of sensitivity. TMB-Hunt is at least as accu-
rate as other predictors, but its major advantage is that it
adopts a completely different approach to other methods
and is likely therefore to be valuable in consensus
approaches, which should be much more successful at
hunting for new families of candidate bbtm proteins in
diverse proteomes.

Implementation
Training sets
Training sets for bbtm, ahtm and non-TM (ntm) proteins
were gathered from a number of manually curated and
published sources. The PDB accessions of 3159 ntm pro-
teins were acquired from PDB-REPRDB via the Papia data-
base [32], and respective sequences were extracted.

Sequences of ahtm proteins were downloaded from a test
set available at the Sanger centre [33]. Four datasets were
available of varying quality. Dataset A comprised 37
sequences where structural information was available.
Dataset B contained 23 sequences with very good bio-
chemical characterisation from at least two complemen-
tary methods. Dataset C contained 129 sequences with

some biochemical characterisation and where annotation
was only reliable for part of the sequence. Dataset D con-
tained sequences with no biochemical characterisation
and only hydrophobicity or an alignment as a basis for
their characterisation. Datasets A, B and C were used.

Beta-barrel transmembrane protein sequences were
downloaded from a number of resources including:

957 from UniProt [34] using a keyword search for 'Trans-
membrane' and 'Outer Membrane' and taxonomy filter
for only bacteria

134 from the transporter classification (TC) database [35]

35 extracted from the PDB files of beta-barrel outer mem-
brane proteins in SCOP [7].

All these datasets were manually created and rechecked to
ensure no obvious spurious sequences were present.
Sequences of less than 120 residues were removed from
the training set. Sequences were next grouped into clusters
using BLASTclust and a sequence similarity threshold of
23%. Amino acid composition profiles were produced for
each group using evolutionary information, as described
below. Dataset details are summarised in Table 1.

The final dataset included numerous types of bbtm pro-
tein not included in the training sets of other predictors.
Inclusion of such a diverse range of proteins was impor-
tant as it covers a wide range of evolutionary origins and
physicochemical adaptations. TolC, Alpha-hemolysin
and the Mycobacterial Porin Family are bbtm proteins
with resolved structures, not used by other predictors,
either because of their unusual structure or because their
structure was resolved after the predictor had been com-
pleted. Fimbrial, pili and flagellar associated proteins
were also included, as were non-bacterial proteins e.g. the
mitochondrial porin (VDAC), plastid bbtm proteins (e.g.
OEP24) and chloroplast porins (Toc75).

Table 1: Sequence datasets used to generate training sets.

Training dataset Sources Initial number 
sequences

Sequences >120 AA Size after redundancy 
removal

ntm PDB-REPRDB [32] 3159 2290 1763
ahtm Sanger all-alpha membrane 

datasets A, B and C [33]
189 166 132

bbtm TC-DB [35], Uniprot [34] and 
PDB [5]

1126 1107 196

Three training datasets were generated using sequences from various sources. Datasets were filtered for sequences of <120 AA and clustered to 
remove redundancy.
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Sequences used for proteome screening were downloaded
from the NCBI FTP site [36]. Sequences used for annota-
tion comparison were downloaded via SRS [37,38] from
Uniprot [34].

k-nearest neighbour algorithm
The k-nearest neighbour algorithm is a simple instance-
based learning method for performing general, non-para-
metric classification [39,40]. Each object or instance (a
protein in this case) is associated with a class which can be
unknown (class 0), bbtm (1), ahtm (2) or ntm (3). For
query proteins of unknown class, predictions are made by
using information from a training set of proteins where
the class is known. The prediction is made on the basis of
a set of k objects from the training set which are most sim-
ilar (in the sense described below) to the query protein.
This technique is thus a local approximation, focusing on
the neighbourhood of the query instance. A major advan-
tage of this algorithm is that it is robust to noisy data
(given a large dataset), as taking the weighted average of
the nearest neighbours smoothes out isolated training
instances.

Proteins are represented by x = (fa (x), a ∈ A; c(x)), where
c(x) represents the class c ∈ {0,1,2,3} as defined above, A
is the set of naturally occurring amino acids and fa(x)
denotes the relative frequency of the amino acid a. The
distance between two proteins xi and xj in this representa-
tion is measured by the standard Euclidean metric.

Given a query protein xq, the algorithm first finds the k
closest instances in the training set according to this met-
ric, and then assigns a score S(xq, c) for each possible class
c,

where δ(c1, c2) = 1 if the classes c1 and c2 are equal and zero
otherwise. Thus the score for each class is a sum of positive
contributions from each of the nearest neighbours from
that class, where the contribution is weighted according to
the reciprocal square distance between query instance and
neighbour with closer neighbours contributing more
strongly.

Since we are very often concerned with binary classifica-
tion problems (e.g. distinguishing bbtm proteins from
proteins in any other class), it is also useful to define a dis-
crimination score,

which is the score from one class (e.g. bbtm proteins)
minus the scores from other classes.

Calibration and scoring
In making predictions a standard nearest neighbour algo-
rithm would simply predict the class of xq to be the class c
with the highest score S(xq, c). However, this procedure is
problematical in cases such as this where the training set
is unbalanced, containing many more ntm proteins than
either of the other two classes. Statistical chance means
that the k-nearest neighbour sets tend to contain more
proteins from the dominant class, leading to this class as
the dominant prediction even in the presence of substan-
tial evidence for membership of one the other classes in
the nearest neighbour set. One approach to this problem
would be to reduce representation of the dominant class
to produce a balanced training set, but this procedure
involves wasting useful information. It would also be pos-
sible to down-weight information from the dominant
class, but we found that a more effective approach was to
use the distributions of D(x,c) scores in the training set
proteins, divided between proteins in class c, and proteins
in other classes from which they are to be distinguished.
For clarity, in the remainder of this section we will con-
sider c = 1, where the classification problem is to distin-
guish bbtm proteins from any others, and D will denote
the discrimination score D(x,c = 1) for an arbitrary protein
x.

Empirical cumulative probability distributions for D in
the case above are shown in Figure 1. As expected, plots
showed a higher mean discrimination score for bbtm
(mean = 0.078, standard deviation = 0.115) than other
proteins (mean = -0.206, standard deviation = 0.171).
These distributions do not deviate significantly from the
normal distribution. Using these distributions it is possi-
ble to convert discrimination scores into a convenient log
likelihood ratio (beta-barrel score),

R(D) = log(p(bbtm|D)/p(other|D)),

where p(bbtm|D) denotes the probability of a bbtm pro-
tein obtaining a score of at least D, and p(other|D) denotes
the probability of a protein from the other class obtaining
a score of D or greater. Negative values of R indicate a
query protein more likely to come from the other class,
and positive values indicate a protein more likely to come
from the bbtm class.

An alternative probabilistic interpretation of the D score is
the expected number of proteins from the other class
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a

2( , ) ( ( ) ( ))2

A

= −
∈
∑ .

S x ,c = c,c x d x ,xq i q i
i=

k

( ) ( ( )) ( )2

1

δ /∑

D x ,c = S x ,c S x ,c’q q q
c’ c

( ) ( ) ( )−
≠

∑

Page 4 of 16
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:56 http://www.biomedcentral.com/1471-2105/6/56
scoring D or greater, E(D) = Np(other|D), where N indi-
cates the number of query sequences tested. This measure
takes account of the multiple testing involved in screening
large numbers of sequences in a genome, and is related to
the standard Bonferroni correction. It is directly analo-
gous to the E-values reported by the popular sequence
search programs FASTA [41] and BLAST [42].

Differential dimension weightings
To account for some dimensions contributing informa-
tion more valuable to classification than others, weights
were applied to each of the dimensions used in calculating

Euclidean distances. The modified Euclidean distance cal-
culation was:

where ga is the weight applied to amino acid a.

A genetic algorithm was employed to calculate the opti-
mal weightings for each dimension. Genetic algorithms
are an optimisation approach, based on Darwinian prin-
ciples, which assume that given a population of

Probabilities used for development of a calibrated scoreFigure 1
Probabilities used for development of a calibrated score. Probability (y-axis), p(D'≥D), for observing a score D' greater 
than or equal to D (x-axis) for either bbtm (■) or ntm (▲) proteins. Plots were made by calculating the frequencies of bbtm 
and ntm proteins identified above certain discrimination scores (using weighted amino acids, no evolutionary information and a 
'leave homologues out' cross-validation).
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individuals, environmental pressures cause natural
selection thus increasing the overall fitness of the popula-
tion [43]. Application of a genetic algorithm requires a
population of solutions, termed chromosomes, whose fit-
ness can be measured using an objective function. Based
on fitness, the better candidates are chosen to seed the
next generation through a combination of crossover and/
or mutation. This will result in the evolution of succes-
sively better solutions. The process is carried out until an
optimal solution or time limit is reached.

The algorithm initiates by constructing a random popula-
tion of chromosomes (i.e. potential solutions), repre-
sented as vectors, with each element of the vector termed
a gene, representing a weight for a particular dimension of
the Euclidean space. Fitness for chromosomes was meas-
ured by the Matthews Correlation Coefficient (MCC)
value returned from a 'leave homologues out' cross-vali-
dation analysis (see below) using a fixed set of 100 bbtm
proteins and 100 ntm proteins. Once fitness for each of
the chromosomes within a generation was determined,
the fittest were used to create offspring through a process
of crossover and mutation. Crossovers involve the con-
struction of a new vector, using random genes taken from
two or more parents. Mutations involved randomly
mutating 1 in 8 genes.

Inclusion of evolutionary information
Random noise in amino acid composition was reduced by
inclusion of evolutionary information. Evolutionary
information was included by building a feature vector
using both the query sequence, as well as a number of
close homologues (as determined by a BLAST query
against Uniprot/SwissProt with an E-value threshold of
0.0001, and a maximum of 25 homologues) to calculate
an average amino acid composition vector for the
sequence and its close evolutionary relatives. A weighted
average composition was used, with more distant homo-
logues contributing more to the average (since the more
distant sequences contain more new information).
Weights were assigned by first carrying out all-against-all
alignments within the set using BLAST, then weighting
sequences according to their average distance to other
sequences. The weights were calculated as

where Wk denotes the weight applied to sequence k, and
pk the average percentage difference (100 minus the per-
centage identity) from sequence k to other sequences.

Performance
Cross-validation studies were used to assess performance.
Two approaches were used, 'leave-one out' cross-valida-

tions and 'leave-homologues out' cross-validations. The
first of these methods involved removing in turn profiles
from the training set and seeing if the algorithm could cor-
rectly reassign one of the sequences used to build the pro-
file. Removal of profiles and their construction using
sequences in clusters of >23% identity meant that
sequences should not then be correctly reassigned due to
'self-detection' by a close homolog. However, even
sequences of <23% identity can be homologues and show
significant similarity e.g. over shorter fragments of the
sequence, therefore a 'leave homologues out' cross-valida-
tion was used as a stricter alternative. This meant pre-com-
puting sequences similar (with a BLAST E-value threshold
<1) to each query sequence, and leaving these out of the
training set when testing. This procedure eliminates any
homolog whose sequence is sufficiently similar to be
detected with BLAST.

Performance was measured using sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), accuracy and MCC, which are defined in terms of
true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN).

Sensitivity is a measure of the percentage of bbtm proteins
correctly classified and is calculated with, 100*TP/
(TP+FN). Specificity is the percentage of non-bbtm cor-
rectly classified as is calculated as 100*TN/(TN+FP). The
PPV is the percentage of predicted bbtm proteins that are
correct and is calculated by, 100*TP/(TP+FP). The NPV is
the percentage of predicted non-bbtm proteins that are
correct and is calculated using 100*TN/(TN+FN). Accu-
racy is a measure of the total number of correctly assigned
proteins and is measured by, 100*(TP+TN)/t, where t is
the total number of sequences queried. However this sta-
tistic can be misleading in circumstances with bias in the
test set composition. Therefore, the Matthews Coefficient
Correlation (MCC) is an alternative measure that
accounts for both under and over predictions.

This returns a value between -1 and 1, with 1 meaning eve-
rything is correctly assigned and -1 meaning everything is
incorrectly assigned. Given two prediction classes (e.g.
bbtm and ntm) and a random probability of assigning
queries to either, a score of 0 would be expected by ran-
dom classification.

W p pk k k
k

= ∑/ ’
’

= −
+ + + +

(TPxTN) (FPxFN)

(TP FP)(TP FN)(TN FP)(TN FN)
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Results

TMB-Hunt uses a k-Nearest Neighbour (k-NN) algorithm
to classify query instances, using the class (bbtm, ahtm or
ntm) of their nearest neighbours, as defined by differences
in amino acid composition. A number of steps were
involved in optimisation, including selection of the
numbers of neighbours used (k), amino acid weightings
and scoring statistics. Once optimised, performance of the
program was assessed and it was applied to the screening
of several genomes.

K-values
An optimal k-value was chosen using a series of cross-val-
idation tests. These were computed with a range of param-
eters and, consistently, the program found that accuracy
showed a weak peak at k = 5 and gradually declined there-
after. However performance was generally insensitive to
the precise value of k, with similar performance shown for
moderate values ≥ 5.

Differential amino acid weightings
A genetic algorithm was used to calculate optimal amino
acid weightings for differentiating between bbtm and ntm
proteins. The results are shown in Figure 2, alongside
weights derived from average compositional differences
between the classes. Amino acids contributing the most to
classification include Cys, Phe, His, Met, Asn, Gln and
Thr. Those contributing the least include Glu, Pro and Tyr.
The greatest contributing amino acid, Phe contributed
3.76 times more than the lowest, Pro.

Interestingly, these weights did not completely correlate
with compositional differences (Figure 2). Phe had the
greatest GA weighting, with 0.077, but had a relatively
small composition difference between training sets, with
corresponding weight 0.042 (ranked 15th of 20) and Glu
had a fairly large composition difference (ranked 7th) but
lower GA weighting (ranked 16th). However, there were
some correlations, with Asn, His, Cys and Met ranked 2nd,
3rd, 4th and 5th in the GA weightings and 4th, 2nd, 1st and
6th respectively in the composition difference rankings.

Comparison between GA weightings and difference ratiosFigure 2
Comparison between GA weightings and difference ratios. Relationship between GA derived weights for amino acids 
and weights based simply on average compositional distances between classes.
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Weights significantly differed from those used by Liu [21]
who found, using a Fisher's Discrimination Ratio, that the
amino acids most useful for distinguishing between beta-
strands of globular and membrane proteins were Gly, Val,
Ile, Asn, Leu and Cys. These differences can be attributed
to the fact that Liu tried to identify differences in strand
residues, whereas our method identifies differences in the
composition of entire sequences.

Performance
The ability of the program to discriminate between differ-
ent classes was tested using a 'leave homologues out'
cross-validation (see methods) and was defined in terms
of PPV, sensitivity and accuracy. Figure 3 shows how PPV,
sensitivity and accuracy vary over a range of discrimina-
tion scores. Performance results are summarised in Tables
2,3, with the optimal cut-off point (discrimination score
giving the highest accuracy) used. Table 2 summarises the
performance difference between the program with various
features, i.e. weighted amino acids and query sequence

TMB-Hunt performance over a range of discrimination scoresFigure 3
TMB-Hunt performance over a range of discrimination scores. Accuracy (x), sensitivity (▲) and PPV(■) of the predic-
tor at range of discrimination score thresholds. The above results were taken for the predictor discriminating between bbtm 
and non-bbtm proteins, using the 'leave homologues out' cross-validation, with weighted amino acids and evolutionary informa-
tion for the query sequence. Similar patterns were found with all settings i.e. using weighted amino acids, no evolutionary infor-
mation, 'leave homologues out' cross-validation and discriminating between bbtm and ntm proteins.
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evolutionary information. Table 3 describes the ability of
the program to discriminate between various protein
classes with two different settings. Without inclusion of
query sequence evolutionary information, the program
was better at discriminating between bbtm and ntm
proteins than bbtm and ahtm, with accuracies of 85% and
77.5% respectively. This difference was reduced with the
inclusion of query sequence evolutionary information
and weighted amino acids, with a prediction accuracy of
92.5% for discrimination between both bbtm and ntm
proteins and bbtm and ahtm proteins.

Results reported so far have used cross-validations based
on removing detectable homologues (BLAST E-value<1)
from the training set. The results have shown high accu-
racy discriminations. This indicates that amino acid com-
position can be used to identify bbtm proteins. It is not
possible to know the extent of very distant homology in
the training set, since this is often only apparent when 3D
structures are determined. It is not clear therefore whether
the good performance we observe results from the detec-
tion of distant homologues, or whether the composition
signal is a characteristic of many evolutionary unrelated
families of bbtm protein. It seems likely that both expla-
nations contribute to the results, which indicate at the
very least that composition is an important feature of

these proteins that is preserved over long evolutionary dis-
tances and may be shared by unrelated bbtm proteins.

The program was extremely fast, able to query 400
sequences in <1 minute on a 2 Ghz Pentium processor.
When using evolutionary information, speed was limited
by a BLAST query against Uniprot/Swissprot, and 'all
against all' BLAST runs to identify the similarities of
homologues. However, even with evolutionary informa-
tion TMB-Hunt is still faster than Prof-TMB, of a similar
speed to Pred-TMBB and only marginally slower than
BOMP.

Specific examples
Cross-validation results were reviewed specifically for a
number of bbtm proteins that are non-typical, controver-
sial, expressed in membranes other than the outer mem-
brane of gram negative bacteria or for bbtm proteins of
gram negative bacteria that have recently been structurally
resolved. The aim of TMB-Hunt is identification of novel
families of bbtm protein. Unfortunately a fair comparison
of the abilities of various predictors to detect novel fami-
lies is difficult owing to unavoidable uncertainties about
training set contents and in some cases (e.g. BOMP) a lack
of user control in specificity thresholds. In an attempt to
make this comparison we chose examples that for the rea-

Table 2: Program performance using different settings.

BBTM vs NTM % Sensitivity % Specificity % PPV % NPV % Accuracy

Plain 83 87 86.5 83.7 85
Weighted AAs 84 91 90.3 85 87.5
Evolutionary information 89 94 93.7 89.5 91.5
Evolutionary information + weighted AAs 91 94 93.8 91.3 92.5

Ability of the program to discriminate between bbtm and ntm proteins, using the 'leave homologues out' cross-validation method and with a range 
of different features. The plain mode indicates neither evolutionary information or weighted amino acids were included.

Table 3: Ability of program to differentiate between various protein classes.

A. Plain % Sensitivity % Specificity % PPV % NPV % Accuracy

bbtm vs ntm 83 87 86.5 83.7 85
bbtm vs ahtm 83 72 74.8 80.1 77.5

B. Evolutionary Information plus weighted AAs % Sensitivity % Specificity % PPV %NPV % Accuracy

bbtm vs ntm 91 94 93.8 91.3 92.5
bbtm vs ahtm 88 97 96.7 88.9 92.5

A shows the ability of the program to differentiate between various protein classes without inclusion of evolutionary information or differential 
amino acid weightings. B shows the improvements given the inclusion of these features. Performance was assessed using the 'leave homologues out' 
cross-validation.
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sons given should not be well represented in the training
sets of other predictors. The ability of TMB-Hunt to iden-
tify novel families is given with results coming from cross-
validation tests. Table 4 gives details of prediction results
using TMB-Hunt and compares them with three other
web-based bbtm protein predictors; BOMP, Prof-TMB,
Pred-TMBB.

Pred-TMBB and TMB-Hunt both correctly classified non-
typical bbtm proteins TolC [8] (P02930), Alpha-hemo-
lysin [44] (P09616) and the Mycobacterial Porin [4]
(Q9RLP7), whilst these were classified as non-bbtm by
BOMP and Prof-TMB. The secreted pore-forming toxin,
Alpha-hemolysin is difficult to classify because the major-
ity of its beta-strands are non-membrane. Alpha-hemo-
lysin is homoheptameric, with each subunit contributing
2 strands to a 14 strand TM barrel. In addition to the 2 TM
strands, each subunit consists of 14 soluble strands which
make up a cap and rim domain. The Mycobacterial Porin,
has not been included in the training sets of any currently
published predictors, because its structure has only
recently been resolved [4] and because, at 10 nm width,
the outer membrane of gram positive Mycobacteria is
unlike that of gram negative bacteria at 4 nm width [45].
TolC has been a problem in classification because each of
the three subunits contributes just 4 strands to the beta-
barrel and contains large stretches of alpha-helix.

To confirm that the predictor was not just selecting pro-
teins destined for the outer membranes of gram negative
bacteria, we also tested with a number of mitochondrial

and chloroplast bbtm proteins. All the predictors tested
were able to correctly classify the mitochondrial porin
VDAC (Q9RLP7), but only BOMP and Pred-TMBB classi-
fied Tom40 (Q18090) as a bbtm protein. Only Prof-TMB
and TMB-Hunt (using the 'leave-one out' cross-valida-
tion) classified Toc75 (Q43715) as a bbtm protein and
only Pred-TMBB and TMB-Hunt identified OEP24
(O49929).

All four predictors tested were able to correctly identify
proteins with recently resolved structures i.e. Tsx [46]
(P22786), FadL [47] (P10384), BtuB [48] (P06129)
except BOMP which misclassified NalP [49] (Q8GKS5).
BOMP was the only predictor tested which did not classify
Secretin [50] (P31700) as a bbtm protein but all four clas-
sified the Usher protein [51] (P30130) as bbtm. A 60 kDa
cysteine rich outer-membrane protein [52] (P26758), was
the only example that was not classified as a bbtm protein
by any of the predictors. However the experimental evi-
dence that this is a genuine bbtm protein is weak and it
has been suggested that it is falsely annotated [21]. It
should be noted that PSORT-B 2.0 [53] identified all of
these examples as outer membrane proteins, including
the 60 kDa rich outer membrane protein. However it clas-
sified these using strong homology to sequences within its
training set and thus did not give a representation of its
ability to predict novel families of bbtm proteins.

Differences in the prediction results of these algorithms
with these examples suggests that combined approaches
could result in a higher overall accuracy.

Table 4: Comparison of various predictors with specific examples.

BOMP Prof-TMB Pred-TMBB TMB-Hunt: Leave 
Homs Out

TMB-Hunt: Leave 
One Out

NalP – Q8GKS5 0Γ 12.32 2.92 10.73 10.73
TSX – P22786 1 10.92 2.94 4.47 4.47
FadL – P10384 1 9.47 2.88 0.8 0.8
BtuB – P06129 1 10.39 2.91 10.82 10.82
Secretin – P31700 0Γ 3.73Γ 2.90 5.48 5.48
Usher – P30130 1 10.46 2.95 10.79 10.79
60 kDA cysteine rich OMP – P26758 0Γ 2.42Γ 3.03Γ -1.70Γ -1.70Γ

Mycobacterial Porin – Q9RLP7 0Γ 5.65Γ 2.84 7.74 7.74
TolC – P02930 0Γ 1.85Γ 2.90 6.76 10.64
Alpha hemolysin – O68404 0Γ 0.83Γ 2.88 9.89 9.89
VDAC – Q60931 1 6.55 2.88 5.24 5.24
Tom40 – Q18090 1 4.79Γ 2.92 -1.04Γ -1.04Γ

Toc75 – Q43715 0Γ 6.50 2.99Γ -1.41Γ 1.24
OEP24 – O49929 0Γ 3.11Γ 2.87 1.55 1.55

All programs were run via their web interfaces, using default settings. Sequences classified as non-bbtm are marked using Γ. BOMP [22] values 
indicate the number bbtm proteins predicted given the number of sequences queried. Prof-TMB [17] returns a z-score statistic for which 50% of 
bbtm proteins get a z-score of >= 10 at an accuracy of 80% and 35% bbtm proteins get a z-score >= 6 at an accuracy of 35%. Pred-TMBB [16] 
returns a threshold score, for which sequences with threshold scores >2.965 are assumed not to be bbtm proteins. Beta-barrel scores, were given 
for TMB-Hunt. These were calculated without inclusion of evolutionary information, using 'leave homologues out' and 'leave one out' cross-
validations. Beta-barrel scores >0 indicate that there is a greater probability that the sequence is from a bbtm protein.
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Genome screening
Figure 4 demonstrates typical results seen when screening
a genome. It demonstrates that due to the large number of
sequences queried, a number of sequences get scores with
an E-value >1 but a beta barrel score indicative of a bbtm
protein (i.e. >0). These sequences are said to be in the 'twi-
light zone' because it is impossible to classify them as
either bbtm or not. To reduce the number of sequences
within this zone, sequences without signal peptides were
removed. Sequences were accepted if a signal peptide was
predicted using SignalP 3.0 with either the Neural
Network [54] or HMM [55] modes, so as to minimise the

number of potential candidates removed. Similar filtering
systems have been applied in previous bbtm protein
screening attempts [3,16,56]. Signal peptide filtering
poses certain risks owing to errors in the prediction of the
5' ends of genes [30] and imperfections in signal peptide
prediction algorithms, but these risks are outweighed by
the reduction of FP sequences within the twilight zone.

A range of organisms with completed genomes were
screened for bbtm proteins, including several bacteria, a
protozoan, a fungus, a nematode and an angiosperm.
Table 5 shows the results of proteomes screened. Plasmo-

Range of E-values and BB-scores from E. coli screeningFigure 4
Range of E-values and BB-scores from E. coli screening. Sequences with a predicted signal peptide from the proteome 
of E. coli, were screened using the algorithm described. Sequences were then sorted by their E-values and plotted graphically. 
The graph demonstrates that in proteome screening with this tool there a number of sequences will be identified with positive 
bb scores, but E-values >1. Sequences with these scores are described as being in the twilight zone.
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dium falciparum, Saccharomyces cerevisiae, Caenorhabditis
elegans and Arabidopsis thaliana were screened as eukaryo-
tic tests. To date, the only predicted eukaryotic bbtm pro-
teins are those of the mitochondrial and chloroplast outer
membranes, however the possibility of other eukaryotic
bbtm protein families should not be ignored. Three exam-
ples of where they could exist are i) organelles of endo-
symbiotic bacterial origin other than the mitochondria
and chloroplasts e.g. the apicoplast of apicomplexan par-
asites including the malaria parasite Plasmodium [57] or ii)
novel double membrane systems e.g. the outer mem-
branes of the parasitic worm schistosomes, which con-
tains two overlaid phospholipid bilayers [58] and iii)
toxins e.g. TT95 which is a pore forming molecule pro-
duced by the parasitic nematode Trichuris [59] but which
does not contain any predicted TM helices.

Screening eukarotic genomes for bbtm proteins is a more
complex process than with prokaryotes owing to larger
numbers of sequences queried and a wider range of target-
ing signals. TMB-Hunt is able to identify mitochondrial
and chloroplast outer membrane bbtm proteins (Table 4),
but these were missed during eukaryotic genome screen-
ing due to prior removal of sequences without signal
peptides. Owing to the wide range of eukaryotic protein
targeting pathways, eukaryotic sequences should ideally
be screened without prior filtering, however this would
result in much larger numbers of sequences within the
twilight zone. Another alternative would be an addition
to the score whenever targeting signals are detected.

TMB-Hunt did not predict many bbtm proteins in eukary-
otes; 3 with an E-value <1 in P. falciparum (0.03% of all
proteins screened), 4 in S. cerevisiae (0.07%), 23 in Arabi-
dopsis thaliana (0.07%) and 26 in C. elegans (0.1%), with
the majority of selected sequences in A. thaliana and C. ele-
gans being closely related and described as hypothetical or
putative proteins. Only 1 eukaryotic protein got an E-
value <0.1, a P. falciparum gene annotated as a serine pro-
tease with an E-value of 0.032.

The mean percentage of proteins in Gram negative bacte-
rial proteomes, with an E-value <1, was 1.37%, with a
range of 0.65–2.46%. The figure was highest in proteobac-
teria, possibly reflecting biases in the training set, with
homologies to training instances enabling statistically sig-
nificant scores (E-values) for many sequences. However
given that the numbers of bbtm proteins in various bacte-
rial phyla is not known, it may be that these results reflect
true figures. Previous results [17] identified smaller num-
bers of bbtm proteins in some genomes e.g. Aquifex aeoli-
cus, Thermatoga maritima and Trepanoma palidium
although the numbers of sequences screened were not
given.

Escherichia coli O157:H7 proteins downloaded from Uni-
prot were screened in order to compare results with high
quality annotation (Figure 5). In total, 249 sequences got
a positive beta barrel score when, given the number of
sequences queried, 133 would be expected. Thus assum-
ing the remaining 116 sequences are genuine bbtm pro-

Table 5: Proteomes screened.

Organism Proteins No. signal 
peptide

% proteins with 
signal peptide

No. bbtm 
protein <E = 1

% of proteins 
with signal 
peptide bbtm 
E<= 1

% bbtm 
proteins <E = 1

Escherichia coli 5341 1032 19.32 87 8.43 1.63
E. coli Ш 4005 782 19.52 69 8.82 1.72
Pseudomonas aeruginosa 5567 1142 20.51 137 12 2.46
P. aeruginosa Ш 5567 1412 25.36 137 9.7 2.46
Staphylococcus aureus 2632 409 15.54 18 4.4 0.68
Aquifex aeolicus 1560 187 11.98 16 8.55 1.02
Chlamydia trachomatis 895 145 16.20 17 11.7 1.89
Thermatoga maritima 1858 265 14.26 12 4.53 0.65
Trepanoma pallidum 1036 203 19.59 12 5.91 1.16
Bacteroides thetaiotaomicron 4778 1614 33.78 131 8.12 2.74
Deinococcus radiodurans 3182 689 21.65 25 3.62 0.76
Rhodopirellula baltica 7325 1584 20.66 49 3.09 0.67
Plasmodium falciparum Ш 9178 1613 17.57 3 0.18 0.03
Arabidopsis thaliana 28860 5569 19.30 23 0.41 0.07
Caenorhabditis elegans Ш 22561 5778 22.60 26 0.45 0.12
Saccharomyces cerevisiae 5866 651 11.09 4 0.61 0.07

Several proteomes were screened, representing the major kingdoms of life. Proteomes were first filtered for sequences with signal peptides. 
Remaining sequences were then each queried, returning bb scores and E-value statistics. All proteomes were downloaded from the NCBI FTP site 
except those denoted Ш, downloaded from Uniprot/SwissProt for superior annotation.
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teins, the proteome contains (116/4005) × 100 = 2.896%
bbtm proteins (a number consistent with other predic-
tions). Of these 249 sequences, 69 had an E-value<1, that
is 1.72% of all proteins queried. These 69 included 15
proteins described as outer membrane and TM, 40 hypo-
thetical or putative bbtm proteins described as probable
OMPs or with homology to OMPs, 6 hypothetical pro-
teins without homology to well annotated proteins, 4
flagellar proteins, 3 lipoproteins and 1 well known ahtm
protein. The 15 proteins described as outer membrane
and TM should be bbtm proteins and the 40 with
homology to OMPs are probably bbtm proteins. The flag-
ellar are possible bbtm proteins as several flagellar pro-
teins are known bbtm proteins. The 6 hypothetical
proteins without homology to well annotated proteins
possibly represent novel families of bbtm protein. The 3
lipoproteins are non-bbtm proteins and the 1 ahtm pro-
tein could be easily filtered using a ahtm protein
predictor.

TMB-Hunt proved successful in that Uniprot annotation
suggests that the vast majority of bbtm proteins (65 of the
69 (>95%)) it predicted were probably bbtm proteins.
However, several more probable bbtm proteins were
found in the twilight zone, suggesting that this algorithm
alone does not infallibly detect all bbtm proteins, even in
organisms well represented in the training set. In compar-
ing results with BOMP, we found it rejected the lipopro-
teins that TMB-Hunt incorrectly classified as bbtm
(Q8XBQ1, Q7ABP6, Q7ABA4), whilst correctly classify-
ing a number of proteins annotated as bbtm proteins
which were within the TMB-Hunt twilight zone (e.g.
Q7AGG6, Q7AY93). However we found that BOMP also
incorrectly rejected a large number of annotated bbtm
proteins that we classified with an E-value <1 (e.g.
Q7AAR4, Q7A9N7). Similar patterns were found with
Pred-TMBB and Prof-TMB. These differences are further
evidence suggesting that combining algorithms could lead
to a higher overall accuracy.

Uniprot annotation of predicted E. coli bbtm proteinsFigure 5
Uniprot annotation of predicted E. coli bbtm proteins. Numbers of E. coli O157:H7 sequences with a TMB-Hunt E 
value <= 1 with different categories of annotation in Uniprot.
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Because composition is correlated with physicochemical
environment [26], TMB-Hunt struggles with differentia-
tion between bbtm proteins and proteins occupying sim-
ilar environments i.e. lipoproteins and periplasmic
proteins. However TMB-Hunt gets a stronger signal from
bbtm proteins as they effectively occupy 3 environments,
the transmembrane (where there is a preference for amino
acids which form TM beta-strands) and either side of it,
whereas lipoproteins and periplasmic proteins will
occupy only one side of the membrane. The liability of
TMB-Hunt is thus different to that of topology based pre-
dictors which typically report difficulties in discriminating
between beta-strands of bbtm proteins and some globular
proteins.

Conclusion
A program called TMB-Hunt has been described which
identifies bbtm proteins using the amino acid composi-
tion of entire sequences. TMB-Hunt uses a novel method
for calibration of results from the k-NN algorithm and
uses evolutionary information from close homologues to
build composition profiles. We suggest that these meth-
ods can be used to boost the accuracy of other k-NN and
composition based classifiers.

TMB-Hunt was found to have several advantages over
existing methods. Firstly, a cross-validation analysis
showed performance to be superior to that of other bbtm
protein predictors. Secondly, unlike previous predictors
which are dependent on TM beta-strand detection, this
method does not require resolved structures and thus
larger more representative training sets could be used.
Thirdly, by adopting a novel approach, we believe that the
major benefit of this program is that it has different liabil-
ities to others. This was demonstrated by its ability to
correctly classify several proteins with which previous pre-
dictors struggled. Finally, it is extremely quick, capable of
screening >400 sequences per minute. TMB-Hunt has
been successfully applied to the screening of several
genomes, however, numerous proteins fell into the twi-
light zone, where it was impossible to statistically catego-
rise them as either bbtm or not. It is therefore intended
that it will be included as part of a consensus approach,
which can be used to hunt for novel families of bbtm
protein.

Availability and requirements
Project name: TMB-Hunt

Project home page: A web server is available at http://
www.bioinformatics.leeds.ac.uk/betaBarrel.

Operating system: LINUX

Programming languages: ANSI C and Perl

Other requirements: None

Licence: GPL

Any restrictions to non-academics: None
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