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Abstract
Background: The cellular signaling pathway (network) is one of the main topics of organismic
investigations. The intracellular interactions between genes in a signaling pathway are considered
as the foundation of functional genomics. Thus, what genes and how much they influence each
other through transcriptional binding or physical interactions are essential problems. Under the
synchronous measures of gene expression via a microarray chip, an amount of dynamic information
is embedded and remains to be discovered. Using a systematically dynamic modeling approach, we
explore the causal relationship among genes in cellular signaling pathways from the system biology
approach.

Results: In this study, a second-order dynamic model is developed to describe the regulatory
mechanism of a target gene from the upstream causality point of view. From the expression profile
and dynamic model of a target gene, we can estimate its upstream regulatory function. According
to this upstream regulatory function, we would deduce the upstream regulatory genes with their
regulatory abilities and activation delays, and then link up a regulatory pathway. Iteratively, these
regulatory genes are considered as target genes to trace back their upstream regulatory genes.
Then we could construct the regulatory pathway (or network) to the genome wide. In short, we
can infer the genetic regulatory pathways from gene-expression profiles quantitatively, which can
confirm some doubted paths or seek some unknown paths in a regulatory pathway (network).
Finally, the proposed approach is validated by randomly reshuffling the time order of microarray
data.

Conclusion: We focus our algorithm on the inference of regulatory abilities of the identified
causal genes, and how much delay before they regulate the downstream genes. With this
information, a regulatory pathway would be built up using microarray data. In the present study,
two signaling pathways, i.e. circadian regulatory pathway in Arabidopsis thaliana and metabolic shift
pathway from fermentation to respiration in yeast Saccharomyces cerevisiae, are reconstructed using
microarray data to evaluate the performance of our proposed method. In the circadian regulatory
pathway, we identified mainly the interactions between the biological clock and the photoperiodic
genes consistent with the known regulatory mechanisms. We also discovered the now less-known
regulations between crytochrome and phytochrome. In the metabolic shift pathway, the casual
relationship of enzymatic genes could be detected properly.
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Background
Biological phenomena at different organismic levels have
revealed some sophisticated systematic architectures of
cellular and physiological activities implicitly. These
architectures were built upon the biochemical processes
before the emergence of proteome and transcriptome [1-
3]. Under the molecular machinery, the biochemical proc-
esses are mostly interpreted as frameworks of connectivity
between biochemical compounds and proteins, which are
synthesized from genes to function as transcription fac-
tors binding to regulatory sites of other genes, as enzymes
catalyzing metabolic reactions, or as components of signal
transduction pathways [4-6]. This implies that, in order to
understand the molecular mechanism of genes in the con-
trol of intracellular or intercellular processes, the scope
should be broadened from DNA sequences coding for
proteins to the systems of genetic regulatory pathways
determining which genes are expressed, when and where
in the organism and to which extent [7]. In the experience
of engineering field, the systematic architecture and
dynamic model could investigate the characteristics of sig-
naling regulatory pathways [8]. Therefore, how to con-
struct the dynamic model of a signaling pathway from the
system structure point of view might be the first key to the
door of system biology. Most biological phenomena
directly or indirectly influenced by genes such as metabo-
lism, stress response, and cell cycle are well studied on the
molecular basis. Thus, identification of a signal transduc-
tion pathway could be traced back to the genetic regula-
tory level. The rapid advances of genome sequencing and
DNA microarray technology make possible the quantita-
tive analysis of signaling pathway besides the qualitative
analysis. More particularly, the embedded time-course
feature of microarray data would promote the system
analysis of signal regulatory pathways as well, which is
very mature in the field of engineering.

In addition to northern blots and reverse transcription-
polymerase chain reaction (RT-PCR), which study a small
number of genes in a single assay, the transcriptome anal-
ysis has, via DNA microarray technology [9], managed to
achieve high-throughput monitoring of the almost
genome-wide mRNA expression levels in living cells or tis-
sues. Two types of available microarrays, the spotted
cDNA and in situ synthesized oligonucletide [10] chips,
which permit the spatiotemporal expression levels of
genes to be rapidly measured in a massively parallel way,
are used in different experimental requirements and
stocked in the databases on net, such as Stanford Microar-
ray Database (SMD) [11], Gene Expression Omni-
bus(GEO) [12] in NCBI, and ArrayExpress [13] in EBI.
Microarray experiments are now routinely used to collect
large-scale time series data that facilitate quantitative
genetic regulatory analysis while qualitative discussion is
the traditional thinking [14-17].

Several analytic methods have been proposed to infer
genetic interrelations from gene expression data. In the
coarse-scale approach of clustering, the underlying con-
jecture is that co-expression is indicative of the co-regula-
tion, thus clustering may identify genes that have similar
functions or are involved in the related biological proc-
esses. The most widely used method is the unsupervised
hierarchical clustering [18]. This approach has an increas-
ing number of nested classes by similarity measurement
and resembles a phylogenetic classification. If we know
the number of clusters in advance, the k-means clustering
[19] could assign gene elements into a fixed number k of
clusters in a way to minimize the overall Pearson or Eucli-
dean distances of each member internally in the same
cluster. Other algorithms such as the neural-network-
based self-organizing maps (SOM) [20], singular value
decomposition (SVD) or principal component analysis
(PCA) [21], and fuzzy clustering methods [19] also have
their own advantages and limitations. Alternative super-
vised clustering algorithm of support vector machine [22],
which uses prior biological information of cluster for
training, would enhance the accuracy of clustering. How-
ever, the nature of clustering algorithms apparently can-
not uncover the causal interactions between genes just by
grouping. Regarding the causality of pathways, the cluster-
ing analysis needs to cooperate with sequence motif
detection [23]. It is also important to note that models
using clustering analysis are static and thus can not
describe the dynamic evolution of gene expression, even
in the type of time-course microarray data.

A statistical model of Bayesian network [24] was proposed
to model genetic regulatory networks. Basically, the tech-
nique uses a probabilistic score to evaluate the networks
with respect to the expression data and searches for the
network with the optimal score. The dynamic Bayesian
network [25] was proposed to learn the network structure
and parameters by maximizing the posterior probability
via Bayes rule of prior probability and marginal likeli-
hood. Another algorithm of Boolean networks [26] can
also be employed to model the dynamic evolution of gene
expression, where the state of a gene can be simplified to
being either active (on, 1) or inactive (off, 0). The proba-
bilistic nature of Bayesian networks is capable of handling
noise inherent in both the biological processes and the
microarray experiments. This makes Bayesian networks
superior to Boolean networks, which are deterministic in
nature. The validity of dynamic Bayesian networks is eval-
uated by the sensitivity-specificity score ratios [25], which
depend on the training size, the degree of accuracy of prior
assumption. A genetic regulatory network based on the
first order differential equation with given decay rates was
discussed in [27].
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In this study, the dynamic system approach could be
employed to model how a target gene's expression profile
is regulated by its upstream regulatory genes from the sys-
tem causality point of view. Then, with the causal
dynamic model, the upstream regulatory function can be
extracted from the expression profile of the target gene by
the optimal estimation method, i.e. maximum likelihood
estimation. Since merely the second-order differential
equation is employed to model the dynamic evolution of
the target gene, only a few parameters need to be esti-
mated. Furthermore, the derived regulatory function is
closely related to the causal upstream information of the
pathway and will create a basis for inferring the regulatory
pathway from the system biology point of view.

In either eukaryote or prokaryote, signaling regulatory
pathways are considered as responses to the physiological
activities or the deviation from homeostasis, which would
affect the normal states of an organism. Among these sig-
naling regulatory pathways, cell cycle [17] is one of the
most conspicuous features of life which plays an impor-
tant role in growth and cellular differentiation in all
organisms. In plants, the stress-induced pathways [28] are
very important to survivability under the abiotic environ-
mental treatment such as drought, salinity and cold[29].
If these critical pathways can be identified from quantita-
tive analysis in silico, the defect of biological processes
would be predicted and corrected before hand. Our aim is
to construct signaling regulatory pathways quantitatively
by the system inference approach with a dynamic model
and microarray data.

In this study, a second-order differential equation, which
has been widely used to model many physical dynamic
systems with good characteristics, is proposed to model
the time-profile evolutional behavior of a target gene. The
regulatory function is taken as the driving input of the
dynamic equation of the target gene. Using the dynamic
equation and microarray data, we first extract the regula-
tory function for each target gene. According to the
extracted regulatory function, we deduce their upstream
regulators to trace back upstream signaling pathways.
Then, upstream regulatory genes are taken as target genes
to trace back their upstream regulatory genes. Iteratively,
we can construct the whole regulatory pathway to the
genome wide using the dynamic regulatory model and
microarray data from the system biology point of view.
Finally, we give some independent validation of our
approach by repeating the analysis with randomly reshuf-
fling the time order of microarray data and see if the pro-
posed pathways are destroyed.

We have applied our dynamic system approach to two
genetic regulatory pathways with microarray data sets
publicly available on net [15,30]. One is the circadian reg-

ulatory pathway in Arabidopsis thaliana [31,32], and the
other is the metabolic shift pathway from fermentation to
respiration in yeast Saccharomyces cerevisiae [33]. The circa-
dian system is an essential signaling pathway that allows
organisms to adjust cellular and physiological processes
in anticipation of periodic changes of light in the environ-
ment [34-38]. According to the synchronously dynamic
evolution of microarray data, we have successively identi-
fied the core signaling transduction from light receptors to
the endogenous biological clock [39,40], which is cou-
pled to control the correlatively physiological activity with
paces on a daily basis. On the other hand, the diauxic shift
[41] from the exhausted fermentable sugar of anaerobic
metabolism to aerobic growth is correlated with wide-
spread changes in the expression of genes involved in fun-
damental cellular processes such as carbon metabolism,
protein synthesis, and carbohydrate storage.
[28,31,32,42-47] The architecture of the signaling path-
way correlative to glycolysis or gluconeogenesis during
the diauxic shift is properly built up. With the dynamic
system approach, not only the regulatory abilities
between causal genes could be derived, but also the delays
of regulatory activity are specified. These quantitative
characteristics will help determine the intrinsic frame-
works of connectivity in the above interesting pathways
from the system biology point of view.

Results
The proposed methods in this study would be divided
into four steps. In the first step, a dynamic model using
the second-order differential equation is developed to
describe the expression profile data as output and the reg-
ulatory function as input to denote the implicit character-
istics of each gene with some parameters. With the help of
the second-order dynamic model, we would then extract
the upstream regulatory function from the expression pro-
file of the target gene using the optimal estimation
method. In the third step, the regulatory function esti-
mated will help seek the correlative regulatory signals
from the upstream paths. Iteratively, we can reconstruct
the whole signaling regulatory pathway by linking up the
upstream regulatory paths. Finally, some biological filters
using available biological knowledge are employed to
prune the constructed signaling regulatory pathway to
improve the accuracy of the proposed method.

I. Dynamic system description of signaling regulatory 
model
The second-order differential equation is well used in the
description of dynamic system evolved from the causality
of gene regulatory function. Let Xi (t) denote the expres-
sion profile of the i-th gene at time point t. The following
second-order differential equation is proposed to model
the expression level of the i-th gene,
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where Gi(t) is the upstream regulatory function to influ-
ence the expression profile Xi(t) of the i-th gene while ai,
and biare the parameters that characterize the dynamic
inherent property of the gene like degradation and oscil-
lation, and εi(t) is the noise of current microarray data or
the residue of the model. In general, the second-order dif-
ferential equation has been widely used to model
dynamic systems to characterize efficiently the dynamic
properties of damping and resonance of systems in phys-
ics and engineering.

Obviously, the clue of upstream regulatory pathways is in
Gi(t). Thus, the first step is to detect the upstream regula-
tory function Gi(t) from both dynamic equation in (1.1)
and microarray data. However, to detect the input regula-
tory function Gi(t) from both equation (1.1) and microar-
ray data directly is not easy. In this situation, a Fourier
decomposition technique is employed to decompose
Gi(t) as a synthesis of some harmonic sinusoid functions
so that the signal detection problem of Gi(t) is reduced to
a simple parameter estimation problem.

Accordingly, we can decompose Gi(t) by the following
Fourier series,

Then the detection of Gi(t) becomes how to estimate the
Fourier coefficients of αn and βn, which are the magni-
tudes of different harmonics of cos(nωt) and sin(nωt), for
n = 0,..., N in equation (1.2), respectively. In science and
engineering, the Fourier series has been widely employed
to synthesize any continuous functions with finite energy.
The estimation of αn, βn and the detection of Gi(t) in equa-
tion (1.2) are given in Methods in the sequel.

As a result of parameter estimation in Methods, the detec-

tion  of regulatory function Gi(t) could be derived as
follows,

Since the input regulatory function Gi(t) of a target gene is
usually due to the transcriptional binding or some physi-
cal interactions from the upstream regulatory genes, in the
following, we would trace back to the corresponding reg-

ulatory genes from input regulatory function  of the
target gene.

II. Inference of the regulatory pathway via 
Apparently the input regulatory function Gi(t) in equation
(1.1) contains the driving information for the target
gene's expression from the upstream regulatory genes. The

identified regulatory function  from equation (1.3)
could be interpreted as the regulatory connectivity
through transcriptional binding or protein-protein inter-
action imposed on the i-th target gene. Nevertheless, the
expression data of protein type which should be consid-
ered directly in practice are by now unavailable and unre-
liable to trace back upstream regulatory genes. Instead, the
expression data on mRNA level which is now widely avail-
able from microarray assays would make tracing back the
upstream regulatory pathway possible under proper
assumptions. All along the paper we assume that the
expression levels of mRNA transcripts are proportional to
the actual number of corresponding proteins in the cell.
This assumption is indeed a strong approximation since
post-transcription is known to play a very important role
in down regulating the number of the transcription factor
in the cell.

Before the inference of upstream regulatory genes, it is rea-
sonable to confine the effect of the regulatory genes on the
regulated target gene. The saturated activity of expression
level reveals that the regulatory ability cannot extend
unlimitedly. The sigmoid function is often chosen to
express the nonlinear saturation with proper parameters.
Here, we apply the sigmoid transformation to represent
the 'on' and 'off activities of the regulatory genes on bind-
ing or not to motifs of the target gene. So the regulatory

signal  shown below with the parameter set of

θj = {γ, Mj, τj} is the sigmoid transformation of Xj(t), the
expression profile of the j-th regulatory gene.

where γ is the transition rate, Mj is the mean expression of
the j-th regulatory gene's profile, and τj is the correspond-
ing signal transduction delay.

The delay activity should be considered in order to
describe the signal transduction delay τj from the j-th reg-
ulatory gene to the target gene. The delay τj would be com-
puted by statistical correlation between the regulatory

signal  transformed from the j-th regulatory

gene and the identified regulatory function  of the
target gene. The delay τj is determined by the following
maximum correlation criterion,
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where rτ is the correlation between  and 

under variable delay τ. If there are many τ to achieve the
maximum correlation in (2.2), then only the smallest one
is chosen.

Using the correlation method, we trace back Ri regulatory

genes whose regulatory signals  are most corre-

lated with the regulatory function  of the ith target
gene, i.e. choose Ri genes with maximum correlation but
with smaller τj in (2.2). The determination of number Ri

will be discussed later. Then, we construct the regulatory
pathway by tracing back Ri regulatory genes from the iden-

tified regulatory function  of the target gene as the
following kinetic relationship,

where cij is the pathway kinetic parameters from the regu-
latory gene j to the target gene i, Ri are the searched
upstream regulatory genes, the constant ci0 represents the
basal level to denote the regulatory function other than
upstream regulatory genes, and ei(t) is the residue of the
model.

Furthermore, to estimate the pathway kinetic parameters
cij, equation (2.3) for m time points should be written in
the following regression form,

where

, .

We assume that each element in the error vector, ei(tk), k =
{1,..., m}, is an independent random variable with a nor-
mal distribution with zero mean and variance σ2. By max-

imum likelihood parameters estimation method (see
Methods), the estimates of σ2 and Ωi are given as follows,
which is solved as

and

It should be noted that with the combination of biologi-
cal knowledge about the transcriptional factors, protein
phosphorylation, post-transcriptional and specific
enzyme regulation of target genes, lots of putative and ver-
ified genes correlated with the target genes are pruned by
this biological filter for the more efficient and accurate
searching of Ri upstream regulatory genes in equation
(2.3). For example, suppose the expression profile of gene
j has a high correlation with regulation function Gi(t) of
target gene i. However, if gene j is not a transcription fac-
tor, protein phosphorylation, post-transcription or spe-
cific enzyme of target gene i, it will be deleted from the
candidates of Ri upstream regulatory genes because it may
be only a co-expressed gene with the target gene corregu-
lated by the other gene. On the contrary, a verified regula-
tory gene should be recruited into the candidates even
with small correlation with Gi(t).

Finally, we take the well-known Akaike Information Cri-
terion (AIC) into account for determining the number Ri

of regulatory signal [42],

The first term in AIC is the residual variance and the sec-
ond term Ri is the number of regulatory genes. AIC
includes both the estimated residual variance and model
complexity in one statistic, which decreases as σ2

decreases and increases as Ri increases. AIC has been
widely employed to determine the complexity of system
modeling science and engineering [42]. The optimal
number Ri of the upstream regulatory genes will be deter-
mined by the minimization of the AIC value in
equation(2.7).

Now, for the selected target genes in the interesting path-
way, we could search for the optimal Ri upstream regula-
tory genes by AIC in equation (2.7) after the biological
filtering and determine their pathway kinetic parameters
cij of regulatory signal by equation (2.6). After biological
filter pruning, if the number of candidates of regulatory
genes is still less than Ri determined by AIC, then some
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genes, which are highly correlative to Gi(t) but not of tran-
scription factors or signaling proteins of target gene i,
should be recruit into candidates to uncover regulatory
relationships that were not suspected to be connected.
After the combination of equations (2.3) and (1.1), the
whole regulatory pathway is obtained as

for i = {l, 2,..., L}, and L is the number of target genes in
the pathway. The sub-paths related to the i-th target gene
in the interesting pathway could be detected by the infer-
ence algorithm. Then, it is natural that the whole regula-
tory pathway would be constructed by the links of all the
sub-paths. We also outline the whole flowchart of our
dynamic inferring algorithm as shown in Figure 1 for an
overview.

Discussion
Data set of analysis
The two famous modeling organisms, Arabidopsis thaliana
and yeast Saccharomyces cerevisiae, have been well studied
biologically and their microarray assays are abundant.
Thus, we chose different types of pathways, one is the
plant behavior under environmental variation and the
other is the cellular metabolism in response to exhaustion
of external source, as examples in this study. In other
words, two signaling pathways, i.e. circadian regulatory
pathway in Arabidopsis thaliana and metabolic shift path-
way from fermentation to respiration in yeast Saccharomy-
ces cerevisiae, are constructed from microarray data to
confirm the accuracy of our proposed method.

For cells grown in the light/dark cycle according to circa-
dian rhythm, Harmer and colleagues [15] used highly
reproducible oligonucleotide-based arrays representing
about 8200 different genes to determine steady-state
mRNA levels in Arabidopsis thaliana that are measured in
replicate hybridization of 12 samples harvested every 4
hours over 2 days. With their investigation on the circa-
dian regulatory system, Harmer et al. have provided an
abundance of correlated genes for the regulatory pathway
inference.

As for the metabolic pathway, an cDNA microarray assay
from DeRisi et al. [30], containing approximately 6400
distinct expression sequence tags (ESTs) in yeast Saccharo-
myces cerevisiae, is harvested at seven successive 2-hour
intervals after an initial nine hours of growth under the
diauxic shift. Adoption of the diauxic shift data set would
make possible the inference of metabolic shift pathways.

Process of raw microarray data
With the second-order equation and the optimal estima-
tion method, the dynamic model should be developed
first for the regulatory scheme of target genes in the sign-
aling regulatory pathway. Because the raw microarray data
sample of the biological assays that will be analyzed is
small with less than 15 data points for an individual gene,
the cubic spline method is used to interpolate the

Illustration of the overall flowchart of the pathway inference algorithmFigure 1
Illustration of the overall flowchart of the pathway inference 
algorithm.
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observed data to increase the data points of each gene's
time-course microarray data. As shown in Figure 2, the
expression profiles of Cry1 (CRYTOCHROME 1) and PhyA
(PHYTOCHROME A) genes in the circadian regulatory
pathway of Arabidopsis thaliana are interpolated by the
cubic spline method among raw data points on the left-
hand side. Similarly, Pgi1 (PHOSPHOGLUCOSE ISO-
MERASE 1) and Pgm2 (PHOSPHOGLUCOMUTASE 2)
genes in the metabolic shift pathway of yeast Saccharomy-
ces cerevisiae are on the right-hand side. After the expres-
sion profiles are smoothed by the cubic spline technique,

we can obtain the data of the first derivative  and the

second derivative  more accurately and abundantly.

Extraction of regulatory information
After data expansion by the cubic spline method, we
would have enough data to estimate the parameters of the
regulatory dynamic model of the target gene from equa-
tion (2.4). Following the dynamic model in equation
(3.1), the parameters which characterize the dynamic reg-
ulatory mechanism are estimated successfully for each tar-
get gene in the pathway. By dynamic model fitting, the
expression profiles of the mentioned genes in Figure 2 can
be reconstructed in Figure 3 with time progression again.

Hence, we not only could predict the dynamic evolution
of the target gene's expression profile accurately, but also

deduce the regulatory function  simultaneously as
the scheme of Figure 4. The regulatory information
between target genes and their upstream genes can be
extracted properly with this method.

Inference of the regulatory pathway
For illustrations, the inferring strategy is applied to the
selected core genes (X1~X13 and Y1~Y11) in two pathways
of the circadian regulatory system in Arabidopsis thaliana
and the metabolic shift pathway in yeast Saccharomyces
cerevisiae to recognize their upstream regulatory genes,
respectively. Their regulatory abilities with signal trans-
duction delays are shown in the form of dynamic equa-
tion in Table 1 and Table 2, respectively. These regulatory
abilities implying different degrees of influence are con-
verted into a red-colored line as positive regulation (acti-
vation) and a blue-colored line as negative regulation
(inhibition) for each target gene. Then, according to the
dynamic regulatory equations in Table 1 and Table 2, the
pathways of the circadian regulatory system and the met-
abolic shift pathway are described in Figure 5 and Figure
6, respectively.

The expression profiles derived from the cubic spline interpolationsFigure 2
The expression profiles derived from the cubic spline interpolations. The expression profiles after performing the 
cubic spline interpolations for Cry1, PhyA (pathway of circadian regulatory system of Arabidopsis thaliana) on the left-hand side, 
and PGI1, PGM2 (metabolic shift pathway of yeast Saccharomyces cerevisiae) on the right-hand side. The red open triangles are 
the raw microarray data, and the blue dotted points are the interpolation data.

X ti( )

X ti( )

G ti( )
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a. Pathway of circadian regulatory system
The circadian rhythm controls processes ranging from
cyanobacteria cell division to human wake-sleep cycles. In
plant, especially for Arabidopsis thaliana, the growth and
development have adapted to the diurnal cycling of light
and dark [28,31,32,42,44,46-49]. The ability of plants to
respond to light is achieved through some photorecep-
tors. Two classes of photoreceptors are well known to
form the photo-transduction pathway under the circadian
regulatory system in Arabidopsis thaliana [50]. One is the
crytochrome of blue-light photoreceptors, containing
Cry1 and Cry2. The other is the phytochrome of mainly
red-light photoreceptors, including PhyA, PhyB, PhyD and
PhyE.

In the photo-transduction related genes (Table 1 and Fig-
ure 5), containing both crytochrome (Cry1 and Cry2) and
phytochrome (PhyA, PhyB, PhyD and PhyE), Cry1 [X6] and
Cry2 [X10] are commonly regulated by Lhy [X3] (LATE
ELONGATED HYPOCOTYL) in reciprocal ways with sig-
nificant values (0.7569 in Eq.(6) and -1.8773, Eq.(10) of
Table 1, respectively), implying the essentially regulatory
role of Lhy on crytochrome genes. In addition, from

Eq.(10) in Table 1, we further observe that Ccal [X4] (CIR-
CADIAN CLOCK ASSOCIATED 1) has the greatest posi-
tive regulation (2.3465) on Cry2, meaning that Cry2 is
jointly regulated by Lhy and Ccal. Because the binding
sites of Lhy and Ccal found in the promoter regions of
Cry2 [51] are consistent with our inference, the transcrip-
tional binding might be the mechanism of Cry2 affected
by both Lhy and Ccal. In addition, the mutual activations
of phosphorylation between Cry1 [X6] and PhyA [X7] in
Eq.(6) and Eq.(7) of Table 1 are specifically identified
consistent with the previous work [52]. At present, little is
known about the nature of interactions between these two
classes of photoreceptors. From Eq.(10) in Table 1, Cry2
[X10] is also positively regulated by PhyA [X7] with 0.5-hr
activation delay similar to that in Cry1 (Eq.(6) in Table 1).
Therefore, PhyA is considered as a post-transcriptional reg-
ulator of phosphorylation to crytochrome within 1.0-hr
after transcription. On the other hand, PhyB [X11] down-
regulates Cry2 with a significant effect (-0.7141) while
Cry2 [X10] up-regulates PhyB (0.0511) weakly by feedback
(see Eqs.(10), (11) in Table 1.). The mutual interactions
between Cry2 and PhyB in nuclear speckles that are
formed in a light-dependent fashion are also confirmed

The second-order dynamic model fitting of pathway genesFigure 3
The second-order dynamic model fitting of pathway genes. The expression profile with corresponding second-order 
dynamic model fitting for Cry1, PhyA (pathway of circadian regulatory system of Arabidopsis thaliana) on the left-hand side, and 
PGI1, PGM2 (metabolic shift pathway of yeast Saccharomyces cerevisiae) on the right-hand side. The blue dotted points are the 
cubic spline interpolations of microarray data, and the red dashed lines are the estimated dynamic evolution of expression data.
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by Mas et al. [48]. Because Cry1 and Cry2 are both nega-
tively co-regulated by PhyD [X8] and PhyE [X12]
significantly (see Eqs.(6), (10) in Table 1), PhyA has
apparently different behavior from PhyB, PhyD, and PhyE
in activating crytochrome. This might suggest the mecha-
nism that PhyA mediates the blue light by up-regulating
Cry1 and Cry2, whilst PhyB, PhyD, and PhyE would medi-
ate the red light by inhibiting blue photoreceptors
[53,54].

In the mainly red-light photoreceptors of phytochrome
(PhyA, PhyB, PhyD and PhyE) in Figure 5, undoubtedly Lhy
[X3] and Ccal [X4], well-known biological clock genes in
the circadian system [40,46], are core regulators involved
in the transcriptions of both phytochrome (see Eqs.(7),
(8), (11), and (12) in Table 1) and crytochrome (see
Eqs.(6), (10) in Table 1) via feedback transcriptional
binding. Similarly, Gi [X15] (GIGANTEA) in Figure 5 has
been identified as a manifested regulator to all the phyto-
chromes (also see Eqs.(7), (8), (11), and (12) in Table 1),
although Gi sequence lacks any motifs suggesting that it is
a transcription factor of phytochromes [55]. Hence, Gi
might be a post-transcriptional regulatory factor. How-
ever, there is another gene Elf3 [X16] (EARLY FLOWERING
3) opposite to Gi on phytochrome, especially for PhyA,

PhyB and PhyE (Eqs.(7), (11) and (12) in Table 1).
Because of lower regulatory ability than transcription fac-
tor Lhy or Ccal, Elf3 might play the same role as Lhy and
Ccal. Just as expected, Elf3 contains glutamine-rich motif
suggesting that it is a transcription factor [56].

Before entrance of the biological oscillator of the circadian
system formed by Toc1, Lhy, and Ccal, a crucial gene of
Pif3 [X9] (Figure 5) is mediated significantly by PhyA [X7]
(-0.7631) and PhyB [X11] (0.1223) (see Eq.(9) in Table 1).
This is consistent with the post-transcriptional interac-
tions of Pif3-PhyA and Pif3-PhyB complexes. As a core
gene in the biological oscillator, Toc1 [X13] is transcrip-
tionally regulated by Lhy [X3] (0.7009) and Ccal [X4] (-
1.4704) whilst Pif3 [X16] (-0.1698) is presumably consid-
ered as the bridge between Toc1 and phytochrome
(Eq.(13), Table 1). From Lhy and Ccal point of view, they
are both positively affected simultaneously by Pif3 imply-
ing the regulation on the transcriptional level [57]. In
addition, Toc1 inhibits both Lhy and Ccal to form the
structure of mutual transcriptional regulation (please
compare Eqs.(3), (4) with Eq.(13) in Table 1). So we con-
clude that Lhy and Ccal function as principal transcription
factors.

The extracted upstream regulatory functions of pathway genesFigure 4

The extracted upstream regulatory functions of pathway genes. The upstream regulatory function  extracted 
from expression profiles of corresponding target genes Cry1, PhyA (pathway of circadian regulatory system of Arabidopsis 
thaliana) on the left-hand side, and PGI1, PGM2 (metabolic shift pathway of yeast Saccharomyces cerevisiae) on the right-hand 
side.

G t( )
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We also infer some downstream pathways of Chs [X5]
(CHALCONE SYNTHASE), Pap1 [X1], and Co [X2]
(CONSTANS) in Figure 5. Chs is known as correlated with
UV-B protection. It seems that Ccal and Lhy have greater
effect (2.7078, -0.7631, respectively) on Chs than Pap1 (-
0.0455) as a transcription factor (Eq.(5) in Table 1). This
might mean that Chs is regulated by Pap1 in a small scale
with amplifying effect on the cis-regulatory level. Co is rec-
ognized as a pivotal gene of photoperiodic regulation of
flowering. Indeed, strong regulations from Ccal and Lhy
are identified to show that Co is regulated with a large-
scale attenuation effect on the cis-regulatory level (Eq.(2)
in Table 1).

In the overview of the circadian system in Figure 5, most
red lines of activating regulation are found in the photo-
transduction pathway between phytochrome (light blue
ovals) and crytochrome (light yellow ovals) implying the
chain interactions after the external light input. By the
feedback regulations of Lhy and Ccal (orange ovals), rep-
resented by black lines with more linking to upstream
genes, the photo-transduction pathways are stabilized to
provide oscillation. On the other hand, more blue lines of

inhibitive interactions are revealed in the biological-clock
regulatory pathways relevant to Co, Pap1, and Chs (light
green ovals) underlying the anti-phase functional regula-
tion between these output pathways and the oscillator. In
addition, the essential signal transduction factors of Fkf1,
Gi, Elf3, and Pif3 (gray ovals) make some critical links
between the functional blocks mentioned above in the
circadian system[58]. Finally, in order to validate the pro-
posed approach, an independent validation is also given
by randomly reshuffling the time order of microarray
experiment [see Additional file 2] but with the same
choices of target gene and regulatory genes, as shown in
Figure 7. It is seen that the proposed circadian regulatory
pathway in Figure 5 is destroyed by reshuffling the exper-
imental data.

b. Metabolic shift pathway
Sugars, such as glucose and sucrose, are excellent carbon
sources for yeasts and almost all of the energy require-
ments of the cell can be satisfied by glycolysis [6,45,59-
61,63-66]. Saccharomyces cerevisiae can switch from
fermentatioon at high levels of glucose to respiration at
low levels of glucose with major changes in metabolic

Table 1: The dynamic equation set of the identified upstream regulators and their regulatory relationships to the specific target genes 
in the pathway of circadian regulatory system of Arabidopsis thaliana.

Target Genes X1 X2 X3 X4 X5 X6 X7 X8
Papl* Co Lhy* Ccal* Chs Cryl PhyA PhyD
X9 X10 X11 X12 X13
Pif3 Cry2 PhyB PhyE Tocl*

Other Genes X14 X15 X16
Fkfl Gi Elf3

( ) ( ) . ( ) . ( ) . . (1 0 4270 1 2630 0 3690 0 1033 21 1 1 4X t X t X t X t= − − + − ⋅ − .. ) . ( . )5 0 2231 3 513− ⋅ −X t

( ) ( ) . ( ) . ( ) . . (2 0 3951 1 3000 0 6585 10 41962 2 2 4X t X t X t X t= − − + + ⋅ − 66 0 0 6226 3 0 9 4639 6 513 3. ) . ( . ) . ( . )− ⋅ − − ⋅ −X t X t

( ) ( ) . ( ) . ( ) . . (3 0 3696 1 1202 0 5962 0 8880 33 3 3 9X t X t X t X t= − − + + ⋅ − .. ) . ( . ) . ( . )5 0 2503 7 0 0 3263 0 54 13− ⋅ − − ⋅ −X t X t

( ) ( ) . ( ) . ( ) . . (4 0 3757 1 3057 0 3627 0 7002 04 4 4 9X t X t X t X t= − − + + ⋅ − .. ) . ( . ) . ( . )5 0 3049 1 0 0 5689 0 513 3− ⋅ − − ⋅ −X t X t

( ) ( ) . ( ) . ( ) . . (5 0 2034 1 0242 0 3691 2 7078 65 5 5 4X t X t X t X t= − − + + ⋅ − .. ) . ( . ) . ( . ) . ( .0 0 0455 3 5 0 1218 2 5 2 3586 7 01 13 3− ⋅ − − ⋅ − − ⋅ −X t X t X t ))

( ) ( ) . ( ) . ( ) . . (6 0 3307 0 9893 0 1251 0 7569 26 6 6 3X t X t X t X t= − − + + ⋅ − .. ) . ( . ) . ( . ) . ( .0 0 2358 1 0 0 2020 0 5 0 2116 17 12 14+ ⋅ − − ⋅ − − ⋅ −X t X t X t 55 0 3788 7 08) . ( . )− ⋅ −X t

( ) ( ) . ( ) . ( ) . . (7 0 3465 1 0682 0 0718 0 5392 47 7 7 3X t X t X t X t= − − + + ⋅ − .. ) . ( . ) . ( . ) . ( .5 0 3095 0 5 0 2997 3 5 0 2098 215 6 16+ ⋅ − − ⋅ − − ⋅ −X t X t X t 00 0 7631 4 54) . ( . )− ⋅ −X t

( ) ( ) . ( ) . ( ) . . (8 0 2194 1 1127 0 1881 0 3434 18 8 8 3X t X t X t X t= − − + + ⋅ − .. ) . ( . ) . ( . ) . ( .0 0 1719 6 0 0 0626 7 0 0 0124 215 16 6+ ⋅ − − ⋅ − − ⋅ −X t X t X t 00 0 1474 1 0 0 3037 1 014 4) . ( . ) . ( . )− ⋅ − − ⋅ −X t X t

( ) ( ) . ( ) . ( ) . . (9 0 1457 0 9994 0 3943 0 12239 9 9 11X t X t X t X t= − − + + ⋅ −11 5 0 0779 3 5 0 0593 2 0 0 0514 612 10 6. ) . ( . ) . ( . ) . (+ ⋅ − − ⋅ − − ⋅ −X t X t X t .. ) . ( . ) . ( . )0 0 0485 0 5 0 1001 1 58 7− ⋅ − − ⋅ −X t X t

( ) ( ) . ( ) . ( ) . .10 0 2859 0 8381 0 9862 2 346510 10 10 4X t X t X t X= − − + + ⋅ (( . ) . ( . ) . ( . ) . (t X t X t X− + ⋅ − − ⋅ − − ⋅5 5 0 3928 0 5 0 0124 6 0 0 40847 14 12 tt X t X t X t− − ⋅ − − ⋅ − − ⋅ −7 0 0 6551 7 0 0 7141 1 5 1 87738 11 3. ) . ( . ) . ( . ) . ( 66 5. )

( ) ( ) . ( ) . ( ) . .11 0 1581 0 8327 0 1857 0 297811 11 11 4X t X t X t X= − − + + ⋅ (( . ) . ( . ) . ( . ) . (t X t X t X− + ⋅ − + ⋅ − + ⋅5 0 0 1142 0 5 0 0511 6 5 0 002115 10 6 tt X t X t X t− − ⋅ − − ⋅ − − ⋅1 5 0 0905 3 0 0 1199 3 5 0 164816 14 3. ) . ( . ) . ( . ) . ( −− 5 5. )

( ) ( ) . ( ) . ( ) . .12 0 1477 1 0848 1 1463 2 912112 12 12 4X t X t X t X= − − + + ⋅ (( . ) . ( . ) . ( . ) .t X t X t X− + ⋅ − + ⋅ − + ⋅7 0 0 4623 0 5 0 4572 1 0 0 210414 15 10(( . ) . ( . ) . ( . ) . (t X t X t X t− + ⋅ − − ⋅ − − ⋅0 5 0 0326 5 0 0 3324 5 5 3 36996 16 3 −− 7 0. )

( ) ( ) . ( ) . ( ) . .13 0 1163 0 8416 0 4262 0 700913 13 13 3X t X t X t X= − − + + ⋅ (( . ) . ( . ) . ( . ) . (t X t X t X t− + ⋅ − + ⋅ − + ⋅4 5 0 3677 7 0 0 2575 7 0 0 12847 11 6 −− − ⋅ − − ⋅ − − ⋅ −1 5 0 1698 7 0 0 2247 7 0 1 4704 49 10 4. ) . ( . ) . ( . ) . (X t X t X t .. )0
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activity (diauxic shift). In their experiment on the diauxic
shift [30], DeRisi et al. inoculated cells from an exponen-
tially growing culture into fresh medium and grew them
at 30 for 21 hrs. This offers a resource to infer the possible
allosteric regulation of enzymatic activities, protein mod-
ification and transcriptional regulation as shown in Table
2. In addition, the scheme of the corresponding inferred
pathway is shown in Figure 6. In the overview of the infer-
ring relationships in Table 2, the gluconeogenesis from
Pyk1 to pgm2 and the partial fermentation from Pyk1
(PYRUVATE KINASE 1) to Adh1 and Adh2 (ETHANOL
DEHYDROGENASE ISOZYME 1, 2) are unraveled as a
result of the diauxic shift, so two sub-pathways in oppo-
site directions are concluded.

In the fermentation direction, Pykl [Y4] encoding an
enzyme, which catalyzes PEP (Phosphoenolpyruvate) to
pyruvate, is negatively regulated (-5.8763) by Pck1 [Y26]
(Eq.(4) in Table 2). Pck1 could be intepreted here as an
indirect upstream transcription factor or regulatory gene
for Pyk1 due to its function of decarboxylation and phos-
phorylation of oxalacetat in the presence of a nucleoside
triphosphate and a divalent metal ion to yield PEP.
Another Gcrl [Y15] gene is also identified as the strongest

positive regulation (5.9829) to Pyk1 (also see Eq.(4) in
Table 2), which is putatively considered as a transcription
factor. This candidate transcription factor Gcrl of Pdc1 [Y6]
(PYRUVATE DECARBOXYLASE ISOZYME 1) plays a more
essential role (-2.5615, Eq.(6) in Table 2) than Rap1 [Y17]
(0.1164), and Pyk1 [Y4] is an upstream regulatory factor
coding an enzyme with the most positive effect (3.1295)
on Pdc1 according to the production of acetaldehyde from
pyruvate. In the last kernel of the fermentation, Adh1 [Y7]
and Adh2 [Y3] are involved in the ethanol metabolism of
carbohydrate storage. Adh2 is implicated to up-regulate
Adh1 (0.5145, Eq.(7) in Table 2) under the catabolism
from ethanol to acetaldehyde and is significantly up-regu-
lated by Adh1 (1.0746, Eq.(3) in Table 2) to produce eth-
anol reversely. The mutual regulations of these two
isozymes are within a tiny activation delay of 0.5-hr
implying their close relationship. In addition, Gcr2 [Y16]
and Sfp1 [Y30] with consistently dominant negative influ-
ences on Adh2 and Adh1 respectively would be at the tran-
scriptional level presumably (see Eqs.(3), (7) in Table 2).

In the sub-pathway of glyconeogenesis, Eno2 [Y2] (ENO-
LASE ISOZYME 2) is regulated by Pck1 [Y26] (-0.7195) in
the same way as Pyk1 while the main transcription factor

Table 2: The dynamic equation set of the identified upstream regulators and their regulatory relationships to the specific target genes 
in the metabolic shift pathway of yeast Saccharomyces cerevisiae.

Target Genes y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
Fbpl Eno2 Adh2 Pykl Pgm2 Pdcl Adhl Gpm1
Y9 Y10 Y11
Pgil Tpil Fbal

Other Genes Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19
Tdhl Tdh2 Tdh3 Gcrl* Gcr2* Rap1* Abfl* GrflO*
Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27

Ino4* Pgkl Pfk2 Hsfl* Pdc5 Pdc6 Pckl Glkl
Y28 Y29 Y30 Y31

Hxkl Hxk2 Sfpl* Stp2*

( ) ( ) . ( ) . ( ) . . (1 1 3288 7 8425 2 5833 0 32841 1 1 22Y t Y t Y t Y t= − − + − ⋅ −11 50 1 9639 0 2511. ) . ( . )− ⋅ −Y t

( ) ( ) . ( ) . ( ) . . (2 1 6388 10 7990 1 2717 0 21472 2 2 31Y t Y t Y t Y t= − − + + ⋅ −− − ⋅ −4 00 0 7195 0 2526. ) . ( . )Y t

( ) ( ) . ( ) . ( ) . . (3 1 5344 8 6412 0 0085 1 0746 03 3 3 7Y t Y t Y t Y t= − − − + ⋅ − .. ) . ( . )25 1 536 4 0030− ⋅ −Y t

( ) ( ) . ( ) . ( ) . . (4 1 6373 10 5480 0 7200 5 98294 4 4 15Y t Y t Y t Y t= − − + + ⋅ −− − ⋅ −0 25 5 8763 0 2526. ) . ( . )Y t

( ) ( ) . ( ) . ( ) . . (5 1 7960 10 5470 1 5690 0 35325 5 5 27Y t Y t Y t Y t= − − + + ⋅ −− + ⋅ − − ⋅ − − ⋅2 25 0 2417 0 75 0 5770 3 50 0 850628 29 9. ) . ( . ) . ( . ) .Y t Y t Y (( . )t − 0 25

( ) ( ) . ( ) . ( ) . . (6 1 5074 10 4820 0 4572 3 12956 6 6 4Y t Y t Y t Y t= − − + + ⋅ − 00 25 0 1164 1 00 0 0932 0 25 2 561517 26 15. ) . ( . ) . ( . ) .+ ⋅ − − ⋅ − − ⋅Y t Y t Y (( . )t − 0 25

( ) ( ) . ( ) . ( ) . . (7 1 8942 7 1791 0 3671 0 80117 7 7 25Y t Y t Y t Y t= − − + + ⋅ − 44 00 0 5045 0 25 0 3484 1 25 0 22923 6 24. ) . ( . ) . ( . ) . (+ ⋅ − + ⋅ − + ⋅Y t Y t Y t −− − ⋅ −2 00 1 3287 1 7516. ) . ( . )Y t

( ) ( ) . ( ) . ( ) . . (8 1 5560 11 8410 0 3077 5 30578 8 8 2Y t Y t Y t Y t= − − + + ⋅ − 00 25 5 2530 2 50 0 3503 1 25 5 041416 17 15. ) . ( . ) . ( . ) .+ ⋅ − + ⋅ − − ⋅Y t Y t Y (( . ) . ( . )t Y t− − ⋅ −0 25 5 1767 4 0023

( ) ( ) . ( ) . ( ) . . (9 1 7344 10 0450 1 0756 4 76899 9 9 16Y t Y t Y t Y t= − − + + ⋅ −− + ⋅ − + ⋅ − − ⋅2 75 1 1252 4 25 0 3681 0 25 0 332017 22 11. ) . ( . ) . ( . ) .Y t Y t Y ( . ) . ( . ) . ( . )t Y t Y t− − ⋅ − − ⋅ −4 25 0 4213 0 25 5 4206 3 0015 1

( ) ( ) . ( ) . ( ) . .10 1 9030 12 0970 0 3121 9 931210 10 10 1Y t Y t Y t Y= − − + + ⋅ 22 21 170 25 2 7883 0 25 0 3995 2 00 0 1047( . ) . ( . ) . ( . ) .t Y t Y t− + ⋅ − + ⋅ − + ⋅⋅ − − ⋅ − − ⋅ − −Y t Y t Y t15 20 140 75 0 0288 4 50 5 9365 0 25 6 5( . ) . ( . ) . ( . ) . 4499 0 2513⋅ −Y t( . )

( ) ( ) . ( ) . ( ) . .11 1 6353 12 1860 0 1356 39 352911 11 11Y t Y t Y t Y= − − − + ⋅ 112 19 160 25 2 7954 5 00 2 2388 3 50 0 575( . ) . ( . ) . ( . ) .t Y t Y t− + ⋅ − + ⋅ − + 88 1 25 4 2732 5 00 9 0430 0 25 1417 18 10⋅ − − ⋅ − − ⋅ − −Y t Y t Y t( . ) . ( . ) . ( . ) .. ( . ) . ( . )4732 0 25 15 9251 0 2513 14⋅ − − ⋅ −Y t Y t
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is Stp2 [Y31] with significantly positive regulation (0.2147,
see Eq.(2) in Table 2). As seen in Table 2, a causal cascade
of Eno2, Gpm1 [Y8] (PHOSPHOGLYCERATE MUTASE l),
Tpi1 [Y10] (TRIOSE-P ISOMERASE 1), Fba1 [Y11] (ALDO-
LASE 1), and Pgi1 [Y9] (PHOSPHOGLUCOSE
ISOMERASE 1) indicates the construction of a trunk of the
glyconeogenesis (see Eqs.(8), (9), (10), and (11) in Table
2). Among them, Rap1 [Y17] and Gcrl [Y15] are the com-
mon regulators of Gpm1, Pgi1, and Tpi1. This means that
Rap1 and Gcrl might be the most important regulators in
the glyconeogenesis pathway by the transcriptional bind-
ing. Finally, Pgm2 [Y5] (PHOSPHOGLUCOMUTASE 2)
co-regulated by Glk1 [Y27] (GLUCOKINASE 1), Hxk1
[Y28], and Hxk2 [Y29] (HEXOKINASE 1, 2) significantly
confers another pathway leading to the synthesis of UDP-
GLU from Glucose-6-P (see Eq.(5) in Table 2).

In the overview of the metabolic shift pathway in Figure 6,
extremely significant regulations (vivid red lines or blue
lines) from most transcription factors (gray ovals) means
that transcriptional regulations are feasibly identified.
However, in the fermentation sub-pathway (light blue
ovals), the mutual regulations between Adh1 and Adh2 are
apparent when compared with the obscure relationships
in glyconeogenesis (light yellow ovals). Interestingly,
three transcription factors Gcr1, Gcr2 and Rap1 (black-line
signals) appear to have very significant effects on the met-
abolic shift pathway. Finally, in order to validate the pro-
posed method, an independent validation is also given by
randomly reshuffling the time order of microarray
experiment but with same choices of target gene and reg-
ulatory gene, as shown in Figure 8. Obviously, the pro-
posed metabolic shift in Figure 6 is destroyed by
reshuffling the experimental data.

Conclusion
Microarray expression analysis by the dynamic system
approach offers an opportunity to generate functional reg-
ulation interpretation on the genome-wide scale. The cru-
cial ontology behind using dynamic system techniques is
that the causality between gene expression profiles could
be identified according to the differential equation under-
lying a dynamic system. Therefore, because the microarray
data were harvested with time progression, the simultane-
ously varied gene expressions implicated in a genetic reg-
ulatory system would be detected to infer the regulatory
pathways in spite of the versatile interactions such as tran-
scriptional control, protein phosphorylation, or specific
enzyme regulation.

The clustering method answers the problem of what is the
functional catalogue of a specific gene by the identifica-
tion of resembling patterns of gene expressions. Similarly,
the co-regulations of upstream genes in our method also
imply their concurrent functions. In contrast to the

clustering algorithm, the causality of time-course data has
been smoothly drawn by our dynamic method. The
Bayesian networks were used merely for forward probabi-
listic estimation with time transition lacking in the feed-
back linkages. This unidirectional problem would not
happen in our algorithm. Owing to the quantitative regu-
latory abilities of our model, we have a greater diversity of
regulatory influence than the Boolean networks, which
are deterministic with merely two states.

In our dynamic system approach, we not only can link
qualitatively the upstream genes to the downstream ones
iteratively, but also indicate quantitatively their regulatory
relationships, including the regulatory abilities and the
activation delays. In terms of the regulatory abilities, the
comparison between the upstream regulatory genes of a
target gene can inspire us to ask which one is significant
biologically and whether it is a positive or negative influ-
ence on the investigated gene. Moreover, the speculation
of activation delays benefits the empirical reference by
providing us when the upstream regulatory genes might
interact with their target genes. Since any gene can be con-
sidered as a target gene to trace back its upstream regula-
tors, these regulators are then considered as target genes to
trace back their upstream regulators. Iteratively, the
genetic regulatory pathway (or network) can be con-
structed to the genome-wide. According to the qualitative
and quantitative features imbedded, two regulatory path-
way examples are characterized as in Figure 5 and Figure 6
for the identification of the proposed method. In
addition, using the Akaike Information Criterion (AIC), a
proper number of regulatory genes would be affirmed. As
a result, many links overlap with well-known regulatory
and signaling pathways in the previous literature and sev-
eral putative ones are also found. Furthermore, the activa-
tion or repression relationships inferred via the
microarray data would distinctly uncover the overall effect
of regulatory interactions among casual genes in pathways
on the transcriptional level.

In the two pathways under investigation, we have a more
detailed understanding about the regulatory interactions
among phytochrome, crytochrome and biological clock
in the circadian regulatory system. On the other hand, the
sophisticated knowledge of the metabolic pathway after
the diauxic shift can be unfolded properly in our analysis.
Furthermore, the independent validation of our approach
is also given by randomly reshuffling the time order of
microarray experiment. We found that the proposed path-
ways in Figures 5 and 6 are all destroyed as shown in Fig-
ures 7 and 8, respectively. The successful analysis of these
two pathways implies the development of a valid and
high-throughput method. All of the programs have been
released [see Additional file 1]
Page 12 of 19
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:44 http://www.biomedcentral.com/1471-2105/6/44
The pathway of circadian regulatory system of Arabidopsis thaliana according to the dynamic regulatory modeling in Table 1Figure 5
The pathway of circadian regulatory system of Arabidopsis thaliana according to the dynamic regulatory mod-
eling in Table 1. The related genes are represented as ovals with different colors of light yellow (crytochrome), light blue 
(phytochrome), orange (biological clock genes), light green (some physiologically light-dependent downstream genes), and gray 
(other relevant genes not as target genes). There are three types of lines with colors of red (activation), blue (repression), and 
black. In addition to the black line representing the signal pipes from genes, the red lines are shown depending on the degree of 
activation whilst the blue lines are shown depending on the degree of repression. The black square symbol attached on the 
lines is the bifurcate node from the same pipe of signal. The circle symbol attached on the lines is the collecting nodes from dif-
ferent signal sources. The colored degree bar between activation and repression is also shown in the bottom of the figure.
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The metabolic shift pathway of yeast Saccharomyces cerevisiae according to the dynamic regulatory modeling in Table 2Figure 6
The metabolic shift pathway of yeast Saccharomyces cerevisiae according to the dynamic regulatory modeling 
in Table 2. The related genes are represented as ovals with different colors of light blue (fermentation), light yellow (glucone-
ogenesis), and gray (other relevant genes not as target genes). There are three types of lines with colors of red (activation), 
blue (repression), and black. In addition to the black line representing the signal pipes from genes, the red lines are shown 
depending on the degree of activation whilst the blue lines are shown depending on the degree of repression. The black square 
symbol attached on the lines is the bifurcate node from the same signal source. And the circle symbol attached on the lines is 
the collecting nodes from different signal sources. The colored degree bar between activation and repression is also shown in 
the bottom of the figure.
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The pathway of circadian regulatory system of Arabidopsis thaliana in Fig. 5 is repeated as independent validation by randomly reshuffling the time order of microarray experiment but with the same choices of target and regulatory genes. Obviously, the proposed pathway in Fig. 5 is destroyed by the reshuffling of experimental dataFigure 7
The pathway of circadian regulatory system of Arabidopsis thaliana in Fig. 5 is repeated as independent valida-
tion by randomly reshuffling the time order of microarray experiment but with the same choices of target and 
regulatory genes. Obviously, the proposed pathway in Fig. 5 is destroyed by the reshuffling of experimental 
data. The related genes are represented as ovals with different colors of light yellow (crytochrome), light blue (phytochrome), 
orange (biological clock genes), light green (some physiologically light-dependent downstream genes), and gray (other relevant 
genes not as target genes). There are three types of lines with colors of red (activation), blue (repression), and black. In addi-
tion to the black line representing the signal pipes from genes, the red lines are shown depending on the degree of activation 
whilst the blue lines are shown depending on the degree of repression. The black square symbol attached on the lines is the 
bifurcate node from the same pipe of signal. The circle symbol attached on the lines is the collecting nodes from different signal 
sources. The colored degree bar between activation and repression is also shown in the bottom of the figure.
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The pathway of metabolic shift regulatory system of yeast Saccharomyces cerevisiae in Fig. 6 is repeated as independent valida-tion by randomly reshuffling the time order of microarray experiment but with the same choices of target and regulatory genes. Obviously, the proposed pathway in Fig. 6 is destroyed by the reshuffling of experimental dataFigure 8
The pathway of metabolic shift regulatory system of yeast Saccharomyces cerevisiae in Fig. 6 is repeated as 
independent validation by randomly reshuffling the time order of microarray experiment but with the same 
choices of target and regulatory genes. Obviously, the proposed pathway in Fig. 6 is destroyed by the reshuf-
fling of experimental data. The related genes are represented as ovals with different colors of light blue (fermentation), 
light yellow (gluconeogenesis), and gray (other relevant genes not as target genes). There are three types of lines with colors of 
red (activation), blue (repression), and black. In addition to the black line representing the signal pipes from genes, the red lines 
are shown depending on the degree of activation whilst the blue lines are shown depending on the degree of repression. The 
black square symbol attached on the lines is the bifurcate node from the same signal source. And the circle symbol attached on 
the lines is the collecting nodes from different signal sources. The colored degree bar between activation and repression is also 
shown in the bottom of the figure.
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There are some shortcomings in our study. First, although
the time-course microarray data are available, its lower
samplings will distort the real changes of gene expres-
sions, especially for quick dynamic evolution. A more
sampling experiment with respect to the intrinsic turnover
rate is expected to have more precise analysis. Secondly, a
regulatory gene with larger activation delay would not be
recognized because the less activation delay criterion is
used, but this might be overcome by properly relaxing the
criterion. Thirdly, activation profiles under the proteome
should be highly correlated with the transcriptional pro-
files to elevate the interpretation of our system model. In
general, the synchronous time-course microarray assay is
more suitable to underlie the transcriptional binding
among causal genes, but an inference of physical interac-
tions in the post-transcriptional level also has sufficient
feasibility in our study.

In the near future, the most pressing task is to investigate
our presumed paths in the laboratory. As the pathway
construction algorithms are further developed, we expect
this system approach to have immense impact in elucidat-
ing the underlying molecular mechanisms of pathways in
a variety of organisms, especially after the maturation of
the protein chips. Ultimately, we envision that biologists
will perform routine pathway inference to seek some
novel regulations and to identify the evolutionarily con-
served links.

Methods
I. Detection of regulatory function Gi(t) in equation (1.2)
After the decomposition of Gi(t) in equation (1.2), we
substitute equation (1.2) into equation (1.1) to obtain the
following dynamic equation for the expression profile of
the i-th gene,

In the above dynamic equation, parameters ai, bi, αn, and
βn should be estimated by the time profile of microarray
data of the i-th gene, i.e. these parameters should be spec-
ified so that the simulating output Xi(t) of the dynamic
model in equation (3.1) should meet the empirical
expression profile of the i-th gene. The least-squares esti-
mation method is employed to solve this parameter esti-
mation problem.

To make the dynamic model effective, the dynamic equa-
tion in (3.1) should meet the expression profile at all time
points t = t1,…, tm and is then arranged in a vector differ-
ential form. Consequently, the vector differential form
underlined in this equation is applied to m time points in
order.

where

, , and m denotes the

number of time points.

In the next step, formula (3.2) can be translated into a dif-
ferential matrix equation as follows,

Yi = AiΦi + Ei  (3.3)

where , Φi = [ai bi α0 β0 … αN βN]T, and  are

in vector forms, while

 is a

matrix.

To estimate the relevant unknown parameters in Φi, the
least-squares method below is used to derive the optimal

parameters estimation of ,

Actually, the modeling error could be concluded into Ei as
the noise of the gene-expression profile or of the microar-
ray chips. So the consideration of modeling error makes
equation (3.3) approach more the reality. By the way, in

order to get accurate data of  and  from the expres-

sion profile of the target gene, the cubic spline should be
employed to interpolate the time profile of the target
gene. Furthermore, the choice of N is based on the trade-
off between the accuracy of approximation in (1.2) and
the complexity of parameter estimation in (3.4). In this
study N = 6 is chosen because these harmonics are enough
to approximate regulation functions.

II. Maximum likelihood Estimate of kinetic parameters Ωi 
in equation (2.4)
Maximum likelihood method for Ωi in equation (2.4) is
given as follows:
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The log-likelihood function for given m data points is
then described by

The necessary condition for the maximum likelihood esti-

mation of variance σ2 is , by which equa-

tion (2.5) is obtained.

Substituting equation (2.5) into equation (4.2) yields,

meaning that we can find the maximum likelihood esti-
mation of Ωi by minimizing the value of σ2 in equa-
tion(2.5). Then, the maximum likelihood estimate in

equation (2.6) is obtained by  in equation(2.5).
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