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Background: Detection of DNA-binding sites in proteins is of enormous interest for technologies
targeting gene regulation and manipulation. We have previously shown that a residue and its
sequence neighbor information can be used to predict DNA-binding candidates in a protein
sequence. This sequence-based prediction method is applicable even if no sequence homology with
a previously known DNA-binding protein is observed. Here we implement a neural network based
algorithm to utilize evolutionary information of amino acid sequences in terms of their position
specific scoring matrices (PSSMs) for a better prediction of DNA-binding sites.

Results: An average of sensitivity and specificity using PSSMs is up to 8.7% better than the
prediction with sequence information only. Much smaller data sets could be used to generate PSSM
with minimal loss of prediction accuracy.

Conclusion: One problem in using PSSM-derived prediction is obtaining lengthy and time-
consuming alignments against large sequence databases. In order to speed up the process of
generating PSSMs, we tried to use different reference data sets (sequence space) against which a
target protein is scanned for PSI-BLAST iterations. We find that a very small set of proteins can
actually be used as such a reference data without losing much of the prediction value. This makes
the process of generating PSSMs very rapid and even amenable to be used at a genome level. A web
server has been developed to provide these predictions of DNA-binding sites for any new protein
from its amino acid sequence.

Availability: Online predictions based on this method are available at http://www.netasa.org/dbs-
pssm/

Background The only input to the neural network in this algorithm

There has been a growing interest in the prediction of
DNA-binding sites in proteins which play crucial roles in
gene regulation [1-4]. We have previously developed a
method of predicting DNA-binding sites of proteins from
the sequence information [5]. We reported development
of a neural network and corresponding web server to pre-
dict amino acid residues which are likely to bind DNA.

was the identity of the amino acid residue and its two
sequence neighbors on C- and N- terminals. We also
developed a method to identify DNA-binding proteins
using electrical moments from structural information of
proteins [6]. On the other hand, several investigators have
reported that the use of evolutionary information in
sequence-based predictions of secondary structure and
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solvent accessibility can improve the prediction capacity
of a neural network [7-10].

Here we report the use of such evolutionary information
in improving the prediction of DNA-binding sites of pro-
teins. We note that one of the major problems in applying
evolutionary information by way of position specific scor-
ing matrices (PSSMs) for sequence based prediction is that
such matrices are generated over large data sets and take a
long time to complete. Thus large scale predictions
remain inaccessible to moderately capable computers.
This is a serious limitation in the portability of neural net-
work based predictions using PSSMs [8]. In this work, we
report that evolutionary profiles or PSSMs against much
smaller representative reference data sets may be utilized
to achieve almost the same levels of prediction as would
be obtained from alignments with large sequence data
sets representing entire available sequence space. We have
used four different reference data sets of PSSMs for 62 rep-
resentative protein sequences. These are (1) PDNA-RDN:
a data set of protein sequences from all Protein-DNA com-
plexes from the PDB, (2) PDNA-NR90: a non-redundant
data set compiled from PDNA-RDN, (3) PDB-ALL: a data
set of all amino acid sequences from PDB and (4) NCBI-
NR: a non-redundant data set of all protein sequences
taken from sequence and structure databases and com-
piled by NCBI (see Methods). We find that the net predic-
tion (an average of sensitivity and specificity) of the best
of these systems (using PIR sequence data as reference)
improves to 67.1% from the value of 58.4% reported ear-
lier for a sequence-only prediction. We also report that a
small reference data set of 375 sequences (PDNA-NR90)
can give a 64.6% net prediction - just 2.5% poorer than
the best- while reducing the PSSM calculation time from
more than two hours (against NCBI-NR) to just about one
minute. A better compromise could be the use of PDNA-
RDN data for which 65.2% net prediction #150; 1.9% less
than the best- was obtained, while about 2 and a half min-
utes are taken to generate their PSSMs. It is also reported
that the presence of redundancy is helpful in improving
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the prediction whereas presence of data not relevant for
DNA-binding may in some cases reduce predictive
performance.

Results and discussion

Position Specific Iterative BLAST (PSI BLAST) is a strong
measure of residue conservation in a given location. In the
absence of any alignments, PSI BLAST simply returns a 20-
dimensional vector representing probabilities of conser-
vation against mutations to 20 different amino acids
including itself. A matrix consisting of such vector repre-
sentations for all residues in a given sequence is called
Position Specific Scoring Matrix or PSSM. When a residue
is conserved through cycles of PSI BLAST, it is likely to be
due to a purpose i.e. biological function. It has been estab-
lished by several authors cited in the introduction that the
prediction of structural properties is significantly
enhanced by the use of PSSMs compared to predictions
based on unique representations of amino acid sequence
and its environment. Protein structure universe is vast and
a prediction of structural properties should span the entire
range of this diversity. However, the question of predict-
ing DNA-binding sites is much narrower and hence the
significance of conservation of residues at specific loca-
tions may be limited to a subset of this protein space. Such
reduction in the protein search space or the reference data
sets against which PSSM-based predictions should be
attempted is desired for a rapid prediction of binding sites
as well as portability of prediction methods. Compact ref-
erence data size can not only answer these questions of
speed and portability but also try to minimize noise in
information contents and improve prediction quality.

Table 1 shows the results of DNA-binding site prediction
using different sets of PSSMs as the neural network inputs.
The best net prediction results were 67.1% which is 8.7%
better than the predictions with sequence information
only. These results were obtained for PSSMs against PIR
sequence data. An even larger NCBI-NR data set showed a
slightly smaller (66.7%) net prediction. The fact that

Table I: Prediction results for binding sites in 62 Proteins with different data sets used for generating PSSM.

Reference Data Overall Correct predictions (%)

Sensitivity (S1) %

Specificity (S2) % Net Prediction (S1+S2)/2 %

Sequence only (No PSSM) 73.6 40.6
PDNA-NR90 375 sequences 63.8 65.9
PDNA-RDN 386 sequences 64.0 67.1
NCBI-NR 1,547,365 sequences  66.7 69.5
PDB-ALL 47,179 sequences 62.6 65.6
PIR 283,177 sequences 66.4 68.2

76.2 58.4(2.5)
63.4 64.6(2.1)
63.3 65.2(2.1)
63.9 66.7(1.4)
618 64.7(1.8)
66.0 67.1(2.7)

PDNA refers to sequences from Protein-DNA complexes in the Protein Data Bank; NR90 means non-redundant at 90% sequence identity; RDN
means data is redundant because similar proteins have not been removed. Values in the brackets show the standard deviation in values obtained
from six cross-validation sets. Note that the sensitivity and specificity values shown in this table only refer to those values which sum up to give the
best net prediction. These two scores can be mutually adjusted by changing cutoff threshold as described in the text and hence comparison
between the data sets should only be made for the net prediction value (the last column) which is the score optimized during training.
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NCBI-NR reference data sets produce somewhat worse
results than PIR sequence suggests that the redundancy
present in the PIR sequence data could be the factor
responsible for giving better PSSMs than those of a non-
redundant NCBI sequence data. Thus an overall redun-
dancy in the data turns out to be helpful in improving the
prediction of binding sites. The question is how rapidly
the prediction ability will fall if we reduce the redundancy
even further, replacing the larger data sets with smaller
ones until a small representative data set is left. This ques-
tion is partly answered by first using a sequence database
of the entire protein data bank (PDB-ALL), which gives an
accuracy of 64.7% (about 2.4% poorer than the best). Fur-
ther reducing the data set to protein sequences from only
the Protein-DNA complexes surprisingly increases the net
prediction to 65.2%. We suggest that the increase in net
prediction on the PDNA-RDN over the entire PDB is
caused by the fact that PDNA-RDN contains all the data
from PDB which is relevant for the DNA-binding. How-
ever, an additional data in the PDB-ALL represents conser-
vation scores in regions not involved in DNA-binding and
hence lead to a somewhat lower net prediction. Going fur-
ther down from a redundant (PDNA-RDN) to a non-
redundant (PDNA-NR90) sequence data of Protein-DNA
complexes, we observe a 0.6% fall in net prediction- just
about the same we observed from PIR to NCBI-NR. We
attribute this fall in net prediction to the reduction in the
redundancy in the sequence data sets, which is concluded
to be useful in better prediction of DNA-binding sites.

In terms of CPU time, it may be noted that the time taken
by 62 protein sequences used here is about one hour for
the best (PIR) data sets. These times are prohibitively large
for making predictions at a genomic scale or for providing
rapid web services. A compromise could be obtained by
using PDNA-RDN instead, which reduces the CPU time
by a factor more than 8. The loss of net prediction for this
compromise is about 1.9%, which is still 6.8% better than
the predictions obtained from sequence information
only. PSSMs against this data set for a typical protein of
500 residues can be generated in about 1 s, making it pos-
sible to run large scale predictions. A smaller size of refer-
ence data and high speed of PSSMs also make this method
portable and light weight with a strong predictive ability.

Binary decision function of the neural network (see Meth-
ods) assigns a value of zero (not binding) or 1 (binding)
based on a threshold on the real value output received at
the output node. Most of the accuracy scores presented
here have been obtained by using 0.5 as the cutoff (mid
point of the transfer function range). By changing this
threshold from 0.5 to higher and lower values, the bal-
ance between sensitivity and specificity can be adjusted. In
our online prediction we also present the scores obtained
for a ROC analysis of such adjustments (Figure 2). ROC
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for only one reference data set has been shown here as
most other graphs show a similar behavior.

Online predictions

We have provided online predictions based on the above
method at our web site [16]. The raw probability scores,
their annotations at different sensitivity thresholds, and a
reference scale for expected sensitivity and specificity have
been provided. In addition, results of sequence align-
ments obtained after PSI BLAST iterations against a refer-
ence data (PDNA-RDN) are also provided. This allows us
to have a complete picture of similarity of a given
sequence with known DNA-binding proteins and predic-
tions based on neural network using alignment profiles in
the form of PSSM. The only input to this neural network
is the amino acid sequence of the protein. The web server
will automatically generate PSSMs of the given sequence
against a reference data and use them as the input to a
neural network, trained for predictions of 62 DNA-bind-
ing proteins.

Conclusion

A PSSM-based neural network method for predicting
DNA-binding sites in proteins has been developed. PSSMs
were developed against different data sets and it was
observed that significant computer time can be saved by
replacing the reference data sets with much smaller refer-
ence data sets without loss of much prediction ability.
Redundant reference data sets show a better prediction
than the non-redundant data sets. A web server was devel-
oped to provide prediction of DNA-binding sites based on
this method. In addition, the web server provides BLAST
alignments against a reference data set of known DNA-
binding proteins.

Methods

Data sets

PDNA-62

This is the (non redundant) target data set of 62 DNA-
binding proteins from Protein Data Bank (PDB) [11]. The
same data set has been used in our related studies [5,12].

PDNA-RDN

This is a new data set, developed for this work. We have
selected all Protein-DNA complexes from PDB and sepa-
rated their chains. 1386 protein chains were obtained in
this way. FASTA formatted sequences were subsequently
formatted using formatdb program of the BLAST package
[13].

PDNA-NR90

The data set (PDNA-RDN), obtained from the procedure
mentioned above was filtered to remove redundancy at
90% sequence identity level by using sequence clustering
program BLASTCLUST [13]. Resulting data set now con-
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Figure 2

ROC analysis of binding site prediction using PSSMs against PDNA-RDN reference data set, compared with results obtained
from sequence based predictions. The sensitivity of the prediction could be adjusted by changing the threshold on predicted
probabilities, to annotate that residue to be DNA-binding or otherwise. As may be noted the area under the PSSM based pre-
diction curve is significantly greater than that obtained from sequence based predictions. In addition, sensitivity versus specifi-
city values also seems to be difficult to manipulate in case of sequence based predictions as points on the curve are very closely
spaced. PDNA-RDN curve also shows the levels of prediction scores expected on our web-based predictions.

tains 375 sequences which are formatted for use as a ref-
erence data set using formatdb. This data set is called
PDNA-NR90.

Other data sets

PDB-ALL (47,189 sequences) is a data set of all protein
sequences obtained from NCBI. PIR is the sequence data
set (283,177 sequences) of Protein Information Resource
at Georgetown University [14]. NCBI-NR is a non-redun-
dant data set of all protein sequences compiled from
GeneBank, PIR, SwissProt, PDB and other resources by
NCBI [17].

Generation of PSSMs

Target sequences are scanned against the reference data
sets to compile a set of alignment profiles or position spe-
cific scoring matrices (PSSMs) using Position Specific Iter-
ative BLAST (PSI BLAST) program [15]. Three cycles of

PSI-BLAST were run for each protein and the scores were
saved as profile matrices (PSSMs).

Neural network

Neural network inputs

Conservation scores in 20 amino acid positions for every
residues form 20 columns (column 3 onwards) of corre-
sponding row in a PSI-BLAST PSSM. For every residue, we
make a binary or real-value (interpreted as probability)
prediction of that residue being a binding site or not.
Input for every prediction is the PSSM score on the row
corresponding to this target residue and two more rows
on either side, totaling 20 x 5 = 100 inputs (Figure 1).

Network architecture and transfer function

We use a neural network with one hidden layer (two
nodes) in addition to the input layer described above and
a single node output layer. Large number of units in the
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Last position-specific scoring matrix computed, weighted observed percentages rounded down, information per position, and relative weight of gapless real matches to pseudocounts
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Figure |

Rows of Position Specific Scoring Matrices selected for neural network input: Network inputs consist of the PSSM of the target
residue and its two neighboring residues on C- and N-terminals. Each residue is thereby represented by a 20 dimensional vec-
tor with integer values. These values represent (logarithmic) effective frequencies of occurrence at respective positions in a
multiple alignment. Neural network input layer is therefore made of 20 x 5 = 100 units. Two units in the only hidden layer and
one unit in the output layer add up to a total of 202 neural units to be trained in the fully connected neural network.

hidden layer and additional layers were not tried because
the data size does not justify an unreasonably large neural
network. Network signal is transferred to subsequent lay-
ers by an algebraic summation of inputs from the previ-
ous layer. Total signal in the last unit is transformed to a
real output by a binary decision function much in the
same way as in our previous work except that the input to
the network is now replaced by PSSM scores rather than
20 bit binary coding [5].

Training and validation

A six-fold cross-validation has been used in this work. Out
of 62 proteins, 10 were removed at one time and the
remaining 52 were trained until the accuracy on the left-
out 10 also improved. Six random sets are created in this
way and the figures in Table 1 report the averages on all
six runs of each set of 10 proteins.

Training error function and measure of prediction quality

Data imbalance in the two binary categories for this neu-
ral network makes the choice of error function particularly
important. We have used an accuracy score called Net Pre-
diction, which is the average of sensitivity and specificity
values defined below. Neural network learns to maximize
this accuracy score rather than minimizing an error
function.

Sensitivity is defined as the number of correct prediction
in the binding category relative to total number of such
items in the original data and specificity is the number of
correctly rejected residues in this category relative to the
total number of non-binding residues in the original data.

Sensitivity (S1) = 100 * TP/(TP+EN) (1)

Specificity (S2) = 100 * TN/(TN+FP) (2)
where TP: True Positive; TN: True Negative; FP: False Pos-
itive; FN: False Negative

Relative number of true positive (TP) values in the predic-
tion was termed as accuracy in our previous work. We
have avoided using that term here, as we prefer a more
operational definition of accuracy measures here. The
imbalance of sensitivity (S1) and specificity (S2) is taken
care of by comparing the Net Prediction of the models
which gives a better comparison when S1 and S2 vary
from one sample to the other. Thus,

Net Prediction (NP) = (S1+S2)/2  (3)
List of abbreviations
PSSM: Position Specific Substitution Matrix

PSI BLAST: Position Specific Iterative Basic Local Align-
ment Search Tool
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