
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Construction and validation of the APOCHIP, a spotted 
oligo-microarray for the study of beta-cell apoptosis
Nils E Magnusson*1, Alessandra K Cardozo3, Mogens Kruhøffer1, 
Decio L Eizirik3, Torben F Ørntoft1 and Jens L Jensen1,2

Address: 1Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Denmark, 2Department of 
Theoretical Statistics, Department of Mathematical Sciences, Aarhus University, Denmark and 3Laboratory of Experimental Medicine, Université 
Libre de Bruxelles, B-1070 Brussels, Belgium

Email: Nils E Magnusson* - nm@ki.au.dk; Alessandra K Cardozo - akupperc@ulb.ac.be; Mogens Kruhøffer - mkr@ki.au.dk; 
Decio L Eizirik - deizirik@ulb.ac.be; Torben F Ørntoft - orntoft@ki.au.dk; Jens L Jensen - jlj@imf.au.dk

* Corresponding author    

Abstract
Background: Type 1 diabetes mellitus (T1DM) is a autoimmune disease caused by a long-term
negative balance between immune-mediated beta-cell damage and beta-cell repair/regeneration.
Following immune-mediated damage the beta-cell fate depends on several genes up- or down-
regulated in parallel and/or sequentially. Based on the information obtained by the analysis of
several microarray experiments of beta-cells exposed to pro-apoptotic conditions (e.g. double
stranded RNA (dsRNA) and cytokines), we have developed a spotted rat oligonucleotide
microarray, the APOCHIP, containing 60-mer probes for 574 genes selected for the study of beta-
cell apoptosis.

Results: The APOCHIP was validated by a combination of approaches. First we performed an
internal validation of the spotted probes based on a weighted linear regression model using dilution
series experiments. Second we profiled expression measurements in ten dissimilar rat RNA
samples for 515 genes that were represented on both the spotted oligonucleotide collection and
on the in situ-synthesized 25-mer arrays (Affymetrix GeneChips). Internal validation showed that
most of the spotted probes displayed a pattern of reaction close to that predicted by the model.
By using simple rules for comparison of data between platforms we found strong correlations
(rmedian= 0.84) between relative gene expression measurements made with spotted probes and in
situ-synthesized 25-mer probe sets.

Conclusion: In conclusion our data suggest that there is a high reproducibility of the APOCHIP
in terms of technical replication and that relative gene expression measurements obtained with the
APOCHIP compare well to the Affymetrix GeneChip. The APOCHIP is available to the scientific
community and is a useful tool to study the molecular mechanisms regulating beta-cell apoptosis.

Background
Type 1 diabetes mellitus (T1DM) is an autoimmune dis-
ease caused by the selective destruction of the pancreatic

beta-cells causing impaired insulin secretion. Beta-cell
dysfunction and death in T1DM is the result of direct con-
tact with activated macrophages and T-lymphocytes, and/
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or exposure to soluble mediators secreted by these cells,
such as cytokines, oxygen free radicals and nitric oxide
(NO) [1]. There is increasing evidence that apoptosis is
the main cause of beta-cell death at the onset of T1DM [1-
4] and after islet transplantation [1,5,6] Apoptosis is a reg-
ulated process, affected by expression of diverse pro- and
anti-apoptotic genes [1,7,8] Cytokines play a role in the
inflammatory destruction of islet grafts immediately after
transplantation [9-11] a process that hampers the success
of islet transplantation in patients with T1DM. In vitro
beta-cell exposure to the cytokine interleukin (IL)-1β
induces functional impairment, whereas exposure to IL-
1β in combination with interferon (IFN)-γ and/or tumor
necrosis factor (TNF)-α, induces beta-cell death by apop-
tosis in rodent and human islet cells after a period of 3–9
days [1-3] These cytokines modify the expression of sev-
eral hundreds of genes in beta-cells, including stress
response genes that are either protective or deleterious for
beta-cell survival, whereas genes related to differentiated
beta-cell functions are mostly down-regulated [12,13]

DNA microarrays have become a standard tool for several
applications in molecular biology and provide a way to
monitor the expression of thousands of genes in a single
assay. The two major microarray platforms presently in
use are the high density microarrays produced by in situ
synthesis and the arrays produced by deposition of pre-
synthesized DNA onto a solid surface. One widely used
implementation is the Affymetrix GeneChip which uses
photolithography and solid-phase chemistry to produce
high density arrays of 25-mer oligonucleotides [14]. Spot-
ted long oligonucleotides arrays were recently introduced
as an alternative to cDNA arrays and in situ synthesized
oligonucleotide arrays [15]. Utilizing this technology we
have prepared a custom oligonucleotide array represent-
ing 574 genes chosen for their putative involvement in
beta cell death, the APOCHIP. Gene selection was based
on the analysis of a large number of array determinations

of cytokine- and double stranded RNA-treated primary
beta cells or insulin-producing INS-1 cells using Affyme-
trix chips [5,16-18]. This targeted and low cost array to be
made freely available to the research community will
allow the performance of detailed time-course studies and
thus contribute to the understanding of the molecular
events leading to beta cell dysfunction and death in diabe-
tes mellitus.

To evaluate the performance of the spotted oligonucle-
otide array, we presently used two approaches. First we
investigated the ability of the individual probes to
respond to changes in target concentration. We expected
that the M-value (log2 fold-change of test versus reference)

Representation of the APOCHIP and GeneChip microarraysFigure 1
Representation of the APOCHIP and GeneChip 
microarrays. Representation of genes on the two array 
types illustrating the number of genes represented by at least 
one probe or probe set on each array type and the total 
number of genes present on the arrays. A total of 515 genes 
were represented on both array types.

Table 1: Standard deviations for the various random terms in the log2 fold-change for all the chips in the dilution series.

concentration µg/20 µL σωm σs σc median f.c. Observed 
concentration

1/3 0.10 0.12 0.36 0.53 0.35
0.12 0.12 0.38 0.52

1 0.09 0.13 0.18 1.54 1.00
0.08 0.11 0.18 1.45

2 0.08 0.14 0.17 2.53 1.72
0.08 0.14 0.18 2.61

3 0.08 0.12 0.17 4.03 2.72
0.08 0.12 0.18 4.10

4 0.08 0.13 0.19 4.60 3.00
0.08 0.12 0.19 4.32

The first column σωm is the average measurement error, the second σs is the spot variation, and the third σc is the channel variation. The fourth 
column is the median fold-change, exp [(ζ1j - ζ2j) ln(2)], between the two channels. The last column is the ratio of median fold-change to median 
fold-change for concentration 1.
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would be proportional to the target concentration on a
logarithmic scale and that slopes ideally would be close to
one. We performed a weighted regression of M on concen-
tration (log2 scale) using data from hybridisations at five
different target concentrations. Next we used ten dissimi-
lar RNA samples to compare the gene expression between
the spotted array and Affymetrix platforms. We expected
that this would yield a sufficient number of differentially
expressed genes to allow for meaningful conclusions to be
drawn about the concordance between the two platforms.

Our data suggest a good reproducibility for technical rep-
lications both within and between chips. High concord-
ance to the Affymetrix GeneChip in terms of relative gene
expression indicates that the APOCHIP is a reliable tool
for studying the molecular mechanisms involved in beta
cell apoptosis.

Results
The Model based approach
Internal replication
The results of the internal replicates are shown in Table 1.
The spot variation was roughly 1.5 fold as large as the
measurement variation. This shows that there are moder-
ate variations in the replicated spots within a chip. The
channel variation was of the same order of magnitude as
the spot variation except for the lowest target concentra-
tion, where it was much larger (~3 fold). The origin of the
channel variation remains to be clarified, but it may be
due to intensity dependent properties between the two
channels. By normalising the two channels against one
another, block wise, we obtained only a small reduction
in the channel variance (data not shown). The two chips
with the lowest concentration generally showed higher
variance values than at the higher concentrations, and
may reflect that the target concentration for the test sam-
ple (1/3 µg/20 µL) is close to the lower detection limit of
this system, a hypothesis supported by the substantial
increase in "bad" and "not found" calls around this con-
centration (data not shown).

External replication
Table 2 shows the estimated additional variance as com-
pared to that predicted by the model when calculating
log2 fold-changes from technical replications. Most of the
estimates are negative, showing that there is no additional
variance and indicating a good reproducibility for techni-
cal replication (Figure 2).

The spot variance provides information on the difference
between using a one-colour system as opposed to a two-
colour system. In a two-colour system the spot variance
terms for each channel within a chip cancel when using
ratios. Thus a log2 fold-change obtained from two chips
in a one colour system will have a variance of at least 2σs2
+ 2σ2ω2 compared to a two colour system where it is 2σs2
(Table 3 and Additional file 2). As depicted in Table 3 the
estimated one-colour variance was comparable to the spot
variance when print-tip differences were accounted for in
the normalisation.

Comparison of gene expression measurements illustrating the technical reproducibility of the spotted long oligonucle-otide arrayFigure 2
Comparison of gene expression measurements illus-
trating the technical reproducibility of the spotted 
long oligonucleotide array. The upper left subplot shows 
technical replication between spotted arrays within print 
batches. The upper right subplot shows technical replication 
between replicated spots within arrays. The lower left sub-
plot shows a self-self hybridisation (the sample is labelled to 
both Cy3 and Cy5 separately and hybridised together) illus-
trating the reproducibility between Cy3 and Cy5 fluorofores. 
Data was normalised using a lowess transformation imple-
mented in the MIDAS software. Pearson correlation coeffi-
cients (r) are shown for each comparison and are 
representative (mean) of at least four independent experi-
ments. Lines are lines of equality.

Table 2: Additional variance when determining fold-changes on 
two chips (technical replication).

concentration µg/20 µL Extra variance 2σ2ωm
2

1/3 -0.001 0.024
1 -0.001 0.015
2 0.003 0.012
3 -0.004 0.012
4 -0.003 0.012

The first column is the additional variance where a positive value 
indicates additional variance. The last column is the variance of the 
measurement error obtained from Table 1 and is included for 
comparison.
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Fold-change regression
The result of the regression is illustrated in Figure 3. If the
fold-change is proportional to the concentration the slope
β in the regression of log2 fold-changes is 1. As can be seen
in Figure 3 most slopes are in the range 0.8–1.2 (78%).
Interestingly, there seems to be a spread around 1 suggest-
ing that each gene has its own sensitivity to changes in the
concentration. A formal test at level 5% for the slope
being equal to one gives acceptance in only 25% of the
genes. Furthermore, as the lower left subplot of Figure 3
shows, when the signal intensity is very high all slopes are
either larger than 1 or very small. Also, a small value of the
slope does not imply that the probe does not respond at
all, rather the sensitivity to changes in the concentration is
limited. The physical origin of these phenomena is
unclear. Using the linear relation between the measured
log2 fold-changes and the log2 concentration we may ask
for which probes are we able to detect a true fold-change
of a certain size. Using average properties and considering
only internal replication we found in our experiments that
for a true log2fold-change λ the measured log2 fold-change
is roughly normally distributed with mean βλ and stand-
ard deviation 0.09. If we want the measured log2 fold-
change to be larger than αλ, for some chosen value of α,
the probability of this event is the probability that a stand-
ard normal variate is bigger than (α-β) λ/0.09. As an
example, if we require this latter probability to be bigger
than 0.5, we find that we can use the probes with β > α.
Elaborating on this example, if we take α = 0.5, there are
in our experiment 97 % of the probes satisfying β > 0.5,
with 34 probes only left out.

As depicted in Table 1 we observed a discrepancy between
the log2 concentration and the median log2 fold-change.
This may partly be accounted for by the scanner settings
which were set to fixed but arbitrary values. Considering
the self-self hybridisations (concentration 1, Table 1) it is
evident that the settings for the test channel were too high
compared to the settings for the reference channel. This
effect may be minimized by using automated settings gen-
erated by the scanning software (data not shown). How-
ever, the ratios between two consecutive concentrations
are close to the expected values except for the highest con-
centration where it is lower than expected (Table 1).

Cross platform comparison
We compared the relative expression of 515 genes present
on both the APOCHIP and Affymetrix GeneChip 230A
arrays. These genes, corresponding to 949 probes on the
APOCHIP, were used to compare the relative gene expres-
sion profiles in ten rat RNA samples. On average, 93 % of
the spots were called "good" by the Scanarray Express soft-
ware and 7 % was called either "bad" or "not found". The
samples and the pooled reference was analysed separately
on GeneChip 230A arrays, since this system utilizes single

colour hybridisations. Normalised M-values (sample vs.
reference) were calculated for each probe set on the array
using RMA [19] and Affymetrix MAS 5.0 algorithm that
compares signal intensity from perfect-match and mis-
match 25-mers [14]. On average, 65 % of the genes sur-
veyed on these arrays were called "present" and 34 % were
called "absent" and the remainder "marginal" using MAS
5.0. This software also reports calls for "increased" (I),
"decreased" (D) and "no change" (NC) for the relative
gene expression. To take into account possible differences
due to normalisation methods we compared the results
obtained by our approach (MAS 5.0/median centering) to
those obtained using RMA and a LOWESS (LOcally
WEighted Scatterplot Smoothing) procedure imple-
mented in MIDAS [20]. We found similar results particu-
larly when low intensity data was excluded, as described
below (data not shown).

As low intensity data are prone to increased variation [21]
and therefore less reliable we set the following criteria for
the comparison: a. Affymetrix array: 1. For "NC" calls both
test and reference pool signal should be called "present",
2. For "I" calls the test signal value should be called
"present", 3. For "D" calls the reference pool signal should
be called "present"; b. APOCHIP: Measurements associ-
ated with "not found" or "bad" were excluded. We then
focused on the remaining 496 probes that fulfilled the
above criteria in all ten measurements on both platforms.
The results are listed in Table 4 and illustrated in Figure 4
and Figure 5.

Without this quality filtering of the probes the median of
the weighted Pearson correlation was 0.39, whereas the
filtering increased this value to 0.64 (first two lines of
Table 4). A further filtering of the probes may be relevant.
If a gene has no differential expression between the ten
samples there is no possibility of estimating the correla-
tion. Similarly, if the probe does not respond at all in one
of the two platforms, the estimated correlation is unrelia-
ble. In an attempt to avoid this we removed probes that
had a low variation over the ten samples in either one or
both of the two platforms. The Affymetrix GeneChips
showed the largest range of the log2 ratios. To compare a
large number of probes and include only the most varying
we set an arbitrary cut-off of 0.25 for the Affymetrix plat-
form. To include a similar number of probes for the APO-
CHIP we set an arbitrary cut-off of 0.0625 for the variance
of this platform. This reduced the number of probes to
267 (164 genes) (Figure 4). For this reduced set of probes
the median correlation was 0.84 (Table 4), indicating a
tight concordance between the two array types.

The distribution of the genes excluded from the analyses
is illustrated in Figure 6. Of the 164 most varying genes, 9
gave discordant results exhibiting a negative correlation
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(Table 5). Further analysis of these genes revealed that in
most instances the signal intensities were below the mean
signal intensity on either one or both platforms. Moreo-
ver, two of these genes displayed variations close to the
lower limits for one or both platforms as described above,
indicating that the correlations obtained for these genes
may be less reliable (Table 5). To further address this issue
we performed a BLAST [22] search based on the long oli-
gonucleotide sequences. We then mapped these probes
and corresponding Affymetrix probe-sets to the mRNA
sequence on which the APOCHIP probe was based. Sec-
ond, we checked for sequence overlap between the probes
of the corresponding platforms. As depicted in Table 5 we
found that six of the Affymetrix probe-sets mapped to the
APOCHIP mRNA but only one probe-set (Affymetrix ID:
1367713_at) showed overlap with the APOCHIP oligonu-
cleotide probe sequence. For two of the remaining probes
the Affymetrix probes did not properly match the APO-
CHIP mRNA, suggesting that these sequences interrogate
different sequences for these genes. For the last APOCHIP
probe (GenBank ID: XM_213699) the mRNA annotation
was changed and the 60-mer did not match the transcript
perfectly. In cases where both platform sequences align
perfectly to the APOCHIP mRNA other factors such as dif-
ferences in specificity and sensitivity, RNA splice variants,
and RNA structure of the probes may be important.

Discussion
Microarrays have been widely used for expression profil-
ing [14,23], discovery of gene function [24,25], pathway
dissection [26], classification of clinical samples [27,28]
as well as investigation of RNA splice variants [29]. Several
studies have been conducted comparing gene expression
across platforms with varying results [30-39]. Whereas

quantitative RT-PCR are usually found to agree well with
corresponding array data concerns have been raised in
some studies comparing different array formats
[29,32,33,37]. Thus, Kuo et al. [32] compared cDNA and
Affymetrix 25-mer arrays and reported little concordance.
The data in this study, however, was originated from two
different laboratories and it is not clear whether the poor
agreement was due to differences in the array types. More-
over, these results were based on absolute measurements
which may be misleading [40]. Li et al. [29] and Koth-
apalli et al. [33] also used cDNA and Affymetrix arrays and
in both cases found substantial discrepancies; based on
these findings, it was inferred that cDNA arrays often fail
to identify differentially expressed genes. On the other
hand, strong support for the use of long oligonucleotide
microarrays comes from two independent studies [30,34],
and several recent studies suggest a robust concordance
between the different microarray platforms [40-42].
Hughes et al. [30] reported high concordance utilizing
data from 60-mer oligonucleotide arrays synthesized by
an ink-jet oligonucleotide synthesizer, cDNA arrays and
Affymetrix GeneChip arrays. Barczak et al. [34] compared
relative gene expression measurements of a large collec-
tion of spotted 70-mers against Affymetrix GeneChips
and found good agreement.

Although, the majority of the most differentially
expressed probes yielded high correlations, there were
exceptions (Table 5). There was also a group of genes
exhibiting relatively large log2 fold-change variation in
one, but not the other, platform (Figure 6). These findings
may partly be explained by differences in sensitivity and
specificity and other probe specific effects. Of note, in
some cases differences in transcript annotation and/or

Table 3: Variance in a one-colour system.

concentration µg/20 µL One-color variance One-color variance, block 2σs
2

1/3 0.093 0.056 0.027
1 0.057 0.053 0.029
2 0.101 0.044 0.040
3 0.048 0.030 0.027
4 0.046 0.033 0.031

In the first column a global median centering is used, and in the second a median centering for each of the 8 blocks is used. The last column gives 
2σs

2 for comparison.

Table 4: Representation of the cross-platform comparisons.

Criteria Probes/Genes Coefficient of correlation rmedian

1. All data 949/515 0.39
2. No data associated with absent, bad, not 
found

496/308 0.64

3. Most varying probes 267/164 0.84

The first column show the different steps of the data filtering, the second show the number of probes and genes compared, and the third show the 
median coefficient of correlation.
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RNA splicing may be more important than discrepancies
in array performance. Several factors may influence the
reproducibility when comparing data across platforms.
Proper gene identification is essential as genes can only be
compared if they are accurately identified on both plat-
forms [43]. This can be difficult as transcript information
often comes from different sources and are continuously
being improved. The starting material must be consistent
and procedures for RNA handling standardized. There are

several labelling procedures in use, amplification versus
no amplification, direct versus indirect dye incorporation
which may contribute to downstream biases [43]. In this
study the samples were treated identically prior to RNA
amplification and similar amplification and labelling pro-
tocols were used for both array types. Pre-processing and
methods for data handling may also influence the final
results [44]. As stated in the Results section, there were dif-
ferences using different spot identification software and

Representation of the APOCHIP linear regression for the dilution seriesFigure 3
Representation of the APOCHIP linear regression for the dilution series. The upper left subplot shows a histogram 
of all the slopes from the linear regression, and the upper right subplot shows the slopes as a function of the position on the 
chip. The lower left subplot gives the slopes as a function of the average intensity. For high intensity values the slopes are either 
large or small. In the lower right subplot are the variance terms σf

2 as a function of the slopes.
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normalisation algorithms, but these differences were sub-
stantially reduced by removing low intensity data and by
comparing only the most varying genes (data not shown).
Moreover, when comparing gene expression data across
platforms it is essential to do so using relative measure-
ments, since absolute measurements are affected by probe
and platform specific properties that may cause mislead-
ing interpretations [40]. As discussed above, low signal
intensities are prone to increased variation [21] a phe-
nomenon that is well established for most array formats,
including spotted 30 mer arrays [45], in situ synthesized
24 mer arrays [46] and GeneChips [47,48]. Thus, it was
not surprising to find that the correlation between differ-
ential measurements improved significantly when low-
intensity measurements were excluded. Although intensi-
ties between two identical samples labelled to different
dyes are rarely equal across all spots, we find that much of
this variation is removed after proper normalisation (Fig-
ure 4 subplot 3). Two-colour hybridisations are generally
used for spotted arrays, and many study designs involve
comparison of the test sample to a common reference
sample. Accurate quantification of a particular gene

requires that the reference sample contains sufficient RNA
to produce a clear signal for the corresponding probe. Ref-
erence samples may be generated from a pool of several
cell lines, or as here, by pooling of all samples obtained
from different tissues. The rationale for pooling the sam-
ples is that differentially expressed transcripts will also be
present in the reference. Reference pools may not always
produce sufficient signal intensity to allow for accurate
quantification of some of the probes. When using Affyme-
trix MAS 5.0 software to analyse the pool reference for the
subset of genes associated to both platforms, 76 % of the
probe sets were called "present", as compared to 65 %
"present" calls on average in the present data. Different
designs such as a reference-free setup where pairs of test
samples are compared directly may be preferable depend-
ing on the application [49].

Oligonucleotide probe design may also be important for
signal intensity and for measuring differential gene
expression. Oligonucleotide probes are designed on the
basis of sequence. Several criteria, such as GC content and
melting point, are used in the design but it is not possible
to accurately account for differences in structure which
may lead to unwanted steric effects. We observed that
there were sometimes large numerical differences in the
signal intensity of different spotted probes corresponding
to the same gene (data not shown) a phenomenon that
has been noted by others [14,34]. In a few cases long oli-
gonucleotides representing the same gene gave discordant
results. Such differences between probes may depend on
several factors, including low sensitivity of some probes,
alternative splicing, nucleic acid structure, distance from
the 3' end of the RNA transcripts, GC content, and cross-
hybridisation to unknown or poorly characterized
mRNAs including pseudo genes and non-coding RNAs.
Hence, the use of standardised sets of probes and proto-
cols is an important issue when data from different labo-
ratories and array platforms are compared [40-42,50,51].
Selection of a suitable microarray platform is influenced
by several considerations. The Affymetrix system has been
widely used for several applications and holds the advan-
tage of standardisation in terms of probes and hybridisa-
tion protocols and, to some extent, data quantification
[40]. However, this technology has been limited by cost
considerations for projects involving a large number of
samples. Spotted arrays are labour intensive, but they can
be made in large quantities by individual laboratories at a
lower cost. Moreover, sequences with high homology to
other genes can be avoided and probes for novel genes
and gene variants may readily be designed.

In conclusion, we have constructed and validated the
APOCHIP, a spotted microarray designed for the study of
beta cell death in diabetes mellitus that may be of use to
the scientific community. Designing and printing in-

Distribution of probes according to log2 fold-change variationFigure 4
Distribution of probes according to log2 fold-change 
variation. Representation of the distribution of probes 
according to log2fold-change variation (on a log2 scale) within 
the 10 arrayed RNAs. A. GeneChip B.APOCHIP. Genes 
exhibiting a variation > -2 (Affymetrix) and > -4 (APOCHIP) 
were included in the comparison.
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house arrays offers a flexible mean to carry out combina-
tions of extensive multipoint and detailed time course
gene expression analysis, following exposure of pancreatic
beta-cells to different pro-apoptotic stimuli. We expect
that this array will help research in the field enabling the
performance of more detailed and complete experiments.

Conclusion
We have validated a rat oligonucleotide microarray con-
structed for the study of beta cell death in diabetes melli-
tus. We evaluated the technical reproducibility of the array
by estimating the variance associated with the internal

and external replication. We then used a fold-change
regression model to estimate the ability of the probes to
respond to changes in target concentration. Finally, we
used ten dissimilar RNA samples to compare the relative
gene expression between the spotted array and Affymetrix
platforms. We found a high reproducibility for technical
replications both within arrays and between arrays, with
most oligonucleotide probes responding to target concen-
tration in a manner close to that predicted by the model.
There was a clear relation between successive data filtering
and concordance between the two array types; by compar-
ing only the most variable genes on both platforms we
found that there was a high concordance between the
APOCHIP and the GeneChip platform, supporting the
validity of this approach.

Methods
Isolation of total RNA
Total RNA was isolated from snap frozen cells and tissue
using Trizol. Each sample was dissolved in 1 mL Trizol®

reagent (Invitrogen) on ice and homogenised using a Fast-
prep homogeniser (Bio 101 Savant Instruments Inc.)
according to the manufacturer's instructions. Trizol was
removed by addition of chloroform followed by isopro-
panol precipitation. The precipitates were washed using
75 % ethanol. The amount and purity of RNA was quan-
tified photo-spectrometrically by measuring the optical
density at 260 and 280 nm and the integrity was checked
by agarose gel electrophoresis.

cRNA preparation
Affymetrix arrays
For each hybridisation reverse transcription was per-
formed on 5 µg total RNA for 1 hour at 42°C using a T7
oligo(dT)24-primer and reverse transcriptase (SuperScript
II; Life Technologies Inc.). Second-strand cDNA synthesis
was performed for 2 hours at 16°C using Escherichia coli
DNA polymerase I, DNA ligase, and RNase H (Life Tech-
nologies Inc.) followed by incubation in 50 mM NaOH
and 0.1 mM EDTA for 10 minutes at 65°C to degrade the
RNA. After phenol-chloroform extraction and ethanol
precipitation, in vitro transcription was performed for 6
hours at 37°C using biotin-16-UTP and biotin-11-CTP
with an RNA transcript labelling kit (BioArray; Enzo Diag-
nostics). cRNA was purified on RNeasy spin columns
(Qiagen), followed by fragmentation for 30 minutes at
95°C.

Spotted oligonucleotide chip
Total RNA extraction, reverse transcription on 5 µg total
RNA and second strand cDNA synthesis were performed
as described above. In vitro transcription was performed
for 6 h at 37°C using amino-allyl-UTP and T7 Megascript
Kit (Ambion). The produced cRNA was purified using
Rneasy spin columns (Quiagen) followed by coupling of

Cross-platform comparison illustrating the correlations between the APOCHIP and the Affymetrix arrayFigure 5
Cross-platform comparison illustrating the correla-
tions between the APOCHIP and the Affymetrix 
array. The upper left subplot illustrates the raw data. The 
upper right subplot corresponds to data were low intensity 
data was removed. The lower left subplot corresponds to 
the most varying genes in the comparison.
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Cy3 and Cy5 fluorescent dyes in water-free DMSO for 2.5
h at room temperature. The labelled cRNA was frag-
mented for 30 min at 60°C in a 50 mM ZnCl2 solution
and excess dyes were removed by ethanol precipitation of
the cRNA.

Spotted oligonucleotide microarray procedures
Oligonucleotide probe design
The genes on the spotted array were selected based on our
large data set obtained with GeneChip (Affymetrix) anal-
yses of two different treatments that induce beta cell apop-
tosis, namely cytokines and double stranded RNA [13,16-
18]. We used three criteria to select genes to grid in our
custom microarray: First, largest numerical alterations in
gene expression; Second, representing informative gene
clusters (e.g. genes involved in NO production, signal
transduction/transcription factors, bcl-2 family, ER stress,
etc); Third, genes showing distinct expression patterns
over a time course (identified by self organizing maps).
The complete list of genes present in the APOCHIP is pro-
vided in Additional file 1. Moreover a number of genes
were selected for normalisation purposes. These genes
were chosen to cover a range of signal intensities from
low, medium to high. For each gene on the array one to
three 60-mer oligonucleotides were designed using the
Array Designer software (Premier Biosoft International).

Hybridisation, washing and scanning
The probes were spotted in duplicate on Codelink slides
(Amersham Biosciences Inc.) at 30 % relative humidity
and 20°C using a VersArray Chipwriter from BioRad. For
a standard hybridisation one µg of each Cy3 and Cy5
labelled target sample was applied to the microarray slide
in a volume of 20 µL for 16 h at 42°C. Before scanning all
slides were washed as previously described [30]. The two
replicates were spotted below one another on the chips
and all hybridisations were carried out twice on separate
arrays. The samples were labelled with Cy3 and a com-
mon reference pool was labelled with Cy5. Following
scanning of the glass slides the fluorescent intensities were
quantified and background adjusted using an "adaptive
circle" method implemented in the Scanarray Express
software (PerkinElmer). Data was normalised by a block-
wise median centering within individual hybridisation
pairs and mean log2-expression ratios were calculated
from the four measurements of each probe. Probes exhib-
iting expression values higher than 60000 (arbitrary
units) in one chip within any comparison were discarded
from the analyses. Probes exhibiting negative expression
values in more than four chips were discarded from the
analyses and remaining negative values were set to 1.

Experimental design
A model-based approach for internal validation of spotted 
oligonucleotide probes
Dilution series hybridisations
Total RNA and cRNA from rat kidney, heart, liver, and
muscle tissue was prepared as described above. Equal
amounts of cRNA from all samples were pooled and
divided for fluorescent labelling to the dyes Cy3 and Cy5
as described above. Hybridisations were performed at five
concentrations of Cy3 labelled target (0.3 µg/20 µL, 1 µg/
20 µL, 2 µg/20 µL, 3 µg/20 µL, 4 µg/20 µL). The Cy5 mate-
rial was used as reference and was kept at constant concen-
tration of 1 µg/20 µL in all hybridisations. Arrays were
scanned at identical laser (100 %) and PMT (50 for Cy5
and 65 for Cy3) settings.

In the spotted array the total variation contains contribu-
tions from: a. variations in the spots; b. variations in the
two channels; c. variations between arrays. To study the
variation in the system we modelled the log2 expression
value xgcj for gene g, channel c = 1, 2, and internal replicate
j = 1, 2 as a sum of terms representing the different varia-
tions. Terms that are used to model the mean value struc-
ture are denoted levels and terms that are used to model
the variance structure are called random. We wrote the log
expression as a gene level (µg), plus an overall channel
and replication level (ψcj), plus a random spot variation
(ugj with variance σ2

s), plus a random gene specific chan-
nel difference (υgc with variance σ2

c), plus, finally, a ran-
dom measurement error (εgcj with variance σ2ωgcj

2, where

Representation of the excluded genes that did not exhibit high variation of log2 fold-change (on a log2 scale) on both platformsFigure 6
Representation of the excluded genes that did not 
exhibit high variation of log2 fold-change (on a log2 
scale) on both platforms. A; Genes that showed high var-
iation of fold-change only on the long oligonucleotide array 
(log2 fold-change variation: long oligonucleotide array > -4/
GeneChip < -2). B; Genes exhibiting low variation on both 
platforms (log2 fold-change variation: long oligo array < -4/
GeneChip < -2) C; Genes exhibiting high variation of fold-
change only on the GeneChip array (log2 fold-change varia-
tion: long oligonucleotide array < -4/GeneChip > -2).
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ωgcj
2 is a known term). Here σ2

s (s for spot) reflects the dif-
ference in morphology of the spots and is not related to
the gene. Similarly, σ2

c (c for channel) reflects that the two
channels react differently depending on the gene, the var-
iation in this gene specific channel difference is then given
by σ2

c.

Mathematically we write the model as xgcj = µg + ξcj + ugj +
λgc + εgcj. As suggested by Churchill et al. [52], we model
some of the variation as random components. To take
into account the larger variances associated with small
expression values [21] we scaled the variances using the
standard deviations sgcj for the pixel intensities of each
spot supplied by the software. Transforming sgcj to the log2
scale we used ωgcj = sgcj/[exp(xgcj ln(2))ln(2)]. The overall
levels xicj were estimated by median values and we let ygcj
= xgcj-xicj be the remainder when the estimated overall
level was subtracted.

Internal replication
We first considered the variance of the measurement error.
The measurement variance can be evaluated by looking at
the difference dg = (yg11 - yg21) - (yg12 - yg22) between the
two log2 fold-changes corresponding to the internal repli-
cation. The variance of this difference is σ2sg

2 where sg
2 is

the sum of the four terms of ωgcj
2 for gene g. A natural esti-

mate for σ2 is then the average of the squared scaled differ-
ences dg/sg.

Having estimated the measurement variance we could
next estimate the spot variance σs

2 and the channel vari-
ance σc

2. For the spot variance we considered the sum over

the two channels of the difference between the two repli-
cates: (yg11 - yg12) + (yg21 - yg22). The variance of this term
is 8σs

2 + σ2sg
2, and having found the measurement vari-

ance σ2 above we then used the observed variance of these
terms to estimate the spot variance σs

2. Similarly, for the
channel variance we considered the sum over the two
internal replicates of the log2 fold-changes (yg11 - yg21) -
(yg12 - yg22), which has variance 8σc

2 + σ2sg
2. As above we

estimated σc
2 from the observed variance of these terms.

External replication
To examine the reproducibility of the external replication
we calculated a log2 fold-change for each of the two chips
and considered the difference of these. We compared the
variance of these differences with that predicted by the
model.

Fold-change regression
For each probe and concentration we calculated a com-
mon log2 fold-change from the two internal and the two
external replicates. The variances of these are τg

2 rgi
2, where

g is gene and i is concentration, and where rgi
2 is given

through σ2ω2 above. Next, for each gene we performed a
regression of log2 fold-change against the median of the
log2 fold-changes, where the factor τg

2 in the variance
describes how well the linear relation fits the data.

Cross platform comparison of gene expression
Total RNA and double stranded cDNA from ten dissimilar
rat tissues were prepared as described above. To minimise
the variation associated with preparation of double
stranded cDNA, each sample of double stranded cDNA

Table 5: Representation of the spotted probes exhibiting negative correlation coefficients with Affymetrix probes.

Long oligonucleotide sequence 5'-3' GenBank accession no. Probe Set ID RAE230A Correlation coeficient

CACAGAAGATGGAGAAAATCTAAAG-
TGAAAGTGCGCGTGACACACATGCA

cXM_213699
*NM_001011901

c1388898_at -0.37107

CAGACCTTCATCGCTCTGTGTGCTACCGA-
CTTCAAGTTTGCCATGTACCCGCCATCGA

cD16308 c1370810_at -0.24892

GGACATCTGAGTTGAGACCCAGTTGTTAC-
TAACCTTATTGTGAATTGCCTGATCTACA

a,bM11794 a,b1371237_A_AT -0.13854

ATTCTCTGGTCTAATGTCTGGCTGGGGT-
TCTCCGTCTGCTTCCTGTATCTATATTCT

bM15562 b1370883_AT -0.43223

ACTTACAAGGACCAAATACCAAACTAGAAG-
AAAAGATAGACATGGTGCCTATTGACTTTC

cM63101 c1387835_AT -0.93746

CTAAAATTGGGCTTGCGGTTTTCATTTCTG-
ATGTCTCTGGATTGGCACCCTTATGGTTTA

a,b,dNM_019356 b,d1367713_at -0.88595

GTCTGTAAAATAACCATCAGTTCCTTCAC-
CCACCCTCTTCCCCTTAACACTCAGC

bXM_340904
*NM_012809

b1387897_at -0.6239

TGTAAATTACACCACGGACTTCATCTACC-
AGCTCTACTCAGAGGAAGGGAAAGGAG

a,bL25387 b1372182_at -0.37801

GTCTTGACAATGTTCACAAACAGAGAGT-
GGCTGAAGTGCTAAATGACCCTGAGAA

a,b,dXM_216792
*XM_343114

a,b1370886_a_at -0.82769

a. Low signal intensity (signal below mean of all arrays); b. Affymetrix and long oligonucleotide probes mapped to the APOCHIP target mRNA; c. 
Affymetrix and long oligonucleotide probes mapped partly or not at all to the APOCHIP target mRNA; d. Probes exhibiting variation close to the 
lower limits shown in Figure 4. *. New annotation obtained by BLAST.
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was divided in two equal volumes that were used to pre-
pare cRNA for hybridisation to Affymetrix GeneChips-
RAE230A and for hybridisation to the spotted arrays.

Affymetrix arrays
A common reference pool was prepared by pooling equal
amounts of cRNA from all samples investigated. We ana-
lysed 10 samples and common reference cRNA on Gene-
Chips RAE-230A (Affymetrix Inc.). These arrays were
hybridised with 15 µg of labelled cRNA for 16 h at 45°C
while rotating. The chips were stained in an Affymetrix
Fluidics station with streptavidin/phycoerythrin, followed
by staining with an antistreptavidin antibody and strepta-
vidin/phycoerythrin. The chips were scanned using a HP-
laser scanner and the readings from the quantitative scan-
ning were analyzed by the Affymetrix Gene Expression
Analysis microarray Suite Software (MAS) 5.0. Each
microarray was scaled to "150" as previously described
[53]. Data was also normalised using the Robust Multi-
array Analysis (RMA) normalisation approach in the Bio-
conductor Affymetrix package to the R project for
statistical computing [19].

Spotted oligonucleotide chip
A common reference pool was prepared by pooling equal
amounts of cRNA from all investigated samples. The ref-
erence pool was labelled to Cy5 and the ten samples were
labelled to Cy3 as described above. For each sample one
µg of each Cy3 and Cy5 labelled target was applied to the
microarray slide. Data was normalised as described in the
Hybridisation, washing and scanning section.

Comparison of relative gene expression between platforms
To identify genes common to both platforms we used a
combination of publicly available databases, DAVID [54]
and Affymetrix [55], to identify UniGene clusters (build
99) and GenBank accessions. Based on this information,
we were able to compare gene expression measurements
for 515 genes represented on both platforms (Figure 1).
For each gene we calculated the correlation between the
values from the two platforms using a weighted Pearson
correlation. The weighted Pearson correlation is obtained
from the usual Pearson correlation by replacing all the
sums entering this formula by weighted sums, using the
same weights as those used in the regression above (see
Additional file 2). These weights were obtained from the
spotted arrays and are also used for the GeneChip values.

Authors' contributions
NEM initiated the present study and was responsible for
the design and construction of the APOCHIP and for the
handling of microarrays. TFØ and MK supervised the
microarray procedures. NEM, AKC and DLE selected the
genes for the APOPCHIP. JLJ did the mathematical/statis-
tical work. NEM and JLJ interpreted the results and wrote

the article. DLE, TFØ, and AKC made improvements and
suggestions to the manuscript.

Additional material

Acknowledgements
This work was supported by a grant from the Juvenile Diabetes Foundation 
International to Decio L. Eizirik and Torben Ørntoft. We gratefully 
acknowledge Ms. Hanne Steen and Ms. Gitte Høj at the Molecular Diagnos-
tic Laboratory, University Hospital of Aarhus, for excellent technical assist-
ance.

References
1. Eizirik DL, Mandrup-Poulsen T: A choice of death-the signal-

transduction of immune-mediated beta-cell apoptosis.  Dia-
betologia 2001, 44(12):2115-33. Review. Erratum in: Diabetologia.
2002 Jun;45(6):936.

2. Suarez-Pinzon W, Sorensen O, Bleackley RC, Elliott JF, Rajotte RV,
Rabinovitch A: Beta-cell destruction in NOD mice correlates
with Fas (CD95) expression on beta-cells and proinflamma-
tory cytokine expression in islets.  Diabetes 1999, 48(1):21-8.

3. Kurrer MO, Pakala SV, Hanson HL, Katz JD: Beta cell apoptosis in
T cell-mediated autoimmune diabetes.  Proc Natl Acad Sci U S A
94(1):213-8. 1997 Jan 7

4. O'Brien BA, Harmon BV, Cameron DP, Allan DJ: Apoptosis is the
mode of beta-cell death responsible for the development of
IDDM in the nonobese diabetic (NOD) mouse.  Diabetes 1997,
46(5):750-7.

5. Moriwaki M, Itoh N, Miyagawa J, Yamamoto K, Imagawa A, Yamagata
K, Iwahashi H, Nakajima H, Namba M, Nagata S, Hanafusa T, Matsu-
zawa Y: Fas and Fas ligand expression in inflamed islets in pan-
creas sections of patients with recent-onset Type I diabetes
mellitus.  Diabetologia 1999, 42(11):1332-40.

6. Davalli AM, Scaglia L, Zangen DH, Hollister J, Bonner-Weir S, Weir
GC: Vulnerability of islets in the immediate posttransplanta-
tion period. Dynamic changes in structure and function.  Dia-
betes 1996, 45(9):1161-7.

7. Biarnes M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E:
Beta-cell death and mass in syngeneically transplanted islets
exposed to short-and long-term hyperglycemia.  Diabetes
2002, 51(1):66-72.

8. Friedlander RM: Apoptosis and caspases in neurodegenerative
diseases.  N Engl J Med 348(14):1365-75. 2003 Apr 3

9. Newmeyer DD, Ferguson-Miller S: Mitochondria: releasing
power for life and unleashing the machineries of death.  Cell
112(4):481-90. 2003 Feb 21. Review. Erratum in: Cell. 2003
Mar21;(112)6:873.

Additional File 1
Table S1. Complete list of genes represented on the APOCHIP. Columns 
1–12: Probe sequences and Gene annotations. Columns 13–22: Log2 

fold-change GeneChip. Columns 23–32: Log2 fold-change APOCHIP. 
33–41: Correlation coefficients, Log2 fold-change variation, and dilution 
series data.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-311-S1.pdf]

Additional File 2
Estimation of varation-detailed. Detailed description of the variation in 
the APOCHIP two-colour system.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-311-S2.xls]
Page 11 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-6-311-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-6-311-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9892218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9892218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9892218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8990188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8990188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9133540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9133540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9133540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10550417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10550417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10550417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8772716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8772716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11756324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11756324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11756324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12600312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12600312


BMC Bioinformatics 2005, 6:311 http://www.biomedcentral.com/1471-2105/6/311
10. Suarez-Pinzon W, Rajotte RV, Mosmann TR, Rabinovitch A: Both
CD4+ and CD8+ T-cells in syngeneic islet grafts in NOD
mice produce interferon-gamma during beta-cell destruc-
tion.  Diabetes 1996, 45(10):1350-7.

11. Sandberg JO, Eizirik DL, Sandler S: IL-1 receptor antagonist inhib-
its recurrence of disease after syngeneic pancreatic islet
transplantation to spontaneously diabetic non-obese dia-
betic (NOD) mice.  Clin Exp Immunol 1997, 108(2):314-7.

12. Eizirik DL, Darville MI: beta-cell apoptosis and defense mecha-
nisms: lessons from type 1 diabetes.  Diabetes 2001, 50(Suppl
1):S64-9.

13. Kutlu B, Cardozo AK, Darville MI, Kruhoffer M, Magnusson N, Orn-
toft T, Eizirik DL: Discovery of gene networks regulating
cytokine-induced dysfunction and apoptosis in insulin-pro-
ducing INS-1 cells.  Diabetes 2003, 52(11):2701-19.

14. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS,
Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expres-
sion monitoring by hybridization to high-density oligonucle-
otide arrays.  Nat Biotechnol 1996, 14(13):1675-80.

15. Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ:
Assessment of the sensitivity and specificity of oligonucle-
otide (50 mer) microarrays.  Nucleic Acids Res 28(22):4552-7.
2000 Nov 15

16. Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, Eizirik DL:
IL-1beta and IFN-gamma induce the expression of diverse
chemokines and IL-15 in human and rat pancreatic islet cells,
and in islets from pre-diabetic NOD mice.  Diabetologia 2003,
46(2):255-66.

17. Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhof-
fer M, Orntoft T, Eizirik DL: A comprehensive analysis of
cytokine-induced and nuclear factor-kappa B-dependent
genes in primary rat pancreatic beta-cells.  J Biol Chem
276(52):48879-86. 2001 Dec 28

18. Rasschaert J, Liu D, Kutlu B, Cardozo AK, Kruhoffer M, ORntoft TF,
Eizirik DL: Global profiling of double stranded RNA- and IFN-
gamma-induced genes in rat pancreatic beta cells.  Diabetolo-
gia 2003, 46(12):1641-57.

19. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ,
Scherf U, Speed TP: Exploration, normalization, and summa-
ries of high density oligonucleotide array probe level data.
Biostatistics 4:249-264.

20. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J,
Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A,
Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A,
Trush V, Quackenbush J: TM4: a free, open-source system for
microarray data management and analysis.  Biotechniques 2003,
34(2):374-8.

21. Yang MC, Ruan QG, Yang JJ, Eckenrode S, Wu S, McIndoe RA, She
JX: A statistical method for flagging weak spots improves
normalization and ratioestimates in microarrays.  Physiol
Genomics 7(1):45-53. 2001 Oct 10

22.  [http://www.ncbi.nlm.nih.gov/BLAST/].
23. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitor-

ing of gene expression patterns with a complementary DNA
microarray.  Science 270(5235):467-70. 1995 Oct 20

24. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Her-
skowitz I: The transcriptional program of sporulation in bud-
ding yeast.  Science 282(5389):699-705. 1998 Oct 23. Erratum in:
Science 1998 Nov 20;282(5393):1421.

25. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour
CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer
MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D,
Chakraburtty K, Simon J, Bard M, Friend SH: Functional discovery
via a compendium of expression profiles.  Cell 102(1):109-26.
2000 Jul 7

26. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett
HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C,
Friend SH: Signaling and circuitry of multiple MAPK pathways
revealed by a matrix of global gene expression profiles.  Sci-
ence 287(5454):873-80. 2000 Feb 4

27. Khan J, Simon R, Bittner M, Chen Y, Leighton SB, Pohida T, Smith PD,
Jiang Y, Gooden GC, Trent JM, Meltzer PS: Gene expression pro-
filing of alveolar rhabdomyosarcoma with cDNA microar-
rays.  Cancer Res 58(22):5009-13. 1998 Nov 15

28. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov
JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD,

Lander ES: Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring.  Science
286(5439):531-7. 1999 Oct 15

29. Li J, Pankratz M, Johnson JA: Differential gene expression pat-
terns revealed by oligonucleotide versus long cDNA arrays.
Toxicol Sci 2002, 69(2):383-90.

30. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW,
Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis
C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A,
Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Lin-
sley PS: Expression profiling using microarrays fabricated by
an ink-jet oligonucleotide synthesizer.  Nat Biotechnol 2001,
19(4):342-7.

31. Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC: Accuracy
and calibration of commercial oligonucleotide and custom
cDNA microarrays.  Nucleic Acids Res 30(10):e48. 2002 May 15

32. Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS: Anal-
ysis of matched mRNA measurements from two different
microarray technologies.  Bioinformatics 2002, 18(3):405-12.

33. Kothapalli R, Yoder SJ, Mane S, Loughran TP Jr: Microarray results:
how accurate are they?  BMC Bioinformatics 3(1):22. 2002 Aug 23

34. Barczak A, Rodriguez MW, Hanspers K, Koth LL, Tai YC, Bolstad BM,
Speed TP, Erle DJ: Spotted long oligonucleotide arrays for
human gene expression analysis.  Genome Res 2003,
13(7):1775-85.

35. Carter MG, Hamatani T, Sharov AA, Carmack CE, Qian Y, Aiba K, Ko
NT, Dudekula DB, Brzoska PM, Hwang SS, Ko MS: In situ-synthe-
sized novel microarray optimized for mouse stem cell and
early developmental expression profiling.  Genome Res 2003,
13(5):1011-21.

36. Wang HY, Malek RL, Kwitek AE, Greene AS, Luu TV, Behbahani B,
Frank B, Quackenbush J, Lee NH: Assessing unmodified 70-mer
oligonucleotide probe performance on glass-slide microar-
rays.  Genome Biol 2003, 4(1):R5. Epub 2003 Jan 6.

37. Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lem-
picki RA, Raaka BM, Cam MC: Evaluation of gene expression
measurements from commercial microarray platforms.
Nucleic Acids Res 31(19):5676-84. 2003 Oct 1

38. Shi L, Tong W, Fang H, Scherf U, Han J, Puri RK, Frueh FW, Goodsaid
FM, Guo L, Su Z, Han T, Fuscoe JC, Xu ZA, Patterson TA, Hong H,
Xie Q, Perkins RG, Chen JJ, Casciano DA: Cross-platform compa-
rability of microarray technology: intra-platform consist-
ency and appropriate data analysis procedures are essential.
BMC Bioinformatics 6(Suppl 2):S12. 2005 Jul 15

39. Shippy R, Sendera TJ, Lockner R, Palaniappan C, Kaysser-Kranich T,
Watts G, Alsobrook J: Performance evaluation of commercial
short-oligonucleotide microarrays and the impact of noise in
making cross-platform correlations.  BMC Genomics 5(1):61.
2004 Sep 2

40. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabri-
elson E, Garcia JG, Geoghegan J, Germino G, Griffin C, Hilmer SC,
Hoffman E, Jedlicka AE, Kawasaki E, Martinez-Murillo F, Morsberger
L, Lee H, Petersen D, Quackenbush J, Scott A, Wilson M, Yang Y, Ye
SQ, Yu W: Multiple-laboratory comparison of microarray
platforms.  Nat Methods 2005, 2(5):345-50. Epub 2005 Apr 21.

41. Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J: Independ-
ence and reproducibility across microarray platforms.  Nat
Methods 2005, 2(5):337-44. Epub 2005 Apr 21.

42. Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Brad-
ford BU, Bumgarner RE, Bushel PR, Chaturvedi K, Choi D, Cunning-
ham ML, Deng S, Dressman HK, Fannin RD, Farin FM, Freedman JH,
Fry RC, Harper A, Humble MC, Hurban P, Kavanagh TJ, Kaufmann
WK, Kerr KF, Jing L, Lapidus JA, Lasarev MR, Li J, Li YJ, Lobenhofer
EK, Lu X, Malek RL, Milton S, Nagalla SR, O'malley JP, Palmer VS, Pat-
tee P, Paules RS, Perou CM, Phillips K, Qin LX, Qiu Y, Quigley SD,
Rodland M, Rusyn I, Samson LD, Schwartz DA, Shi Y, Shin JL, Sieber
SO, Slifer S, Speer MC, Spencer PS, Sproles DI, Swenberg JA, Suk WA,
Sullivan RC, Tian R, Tennant RW, Todd SA, Tucker CJ, Van Houten
B, Weis BK, Xuan S, Zarbl H, Members of the Toxicogenomics
Research Consortium: Standardizing global gene expression
analysis between laboratories and across platforms.  Nat
Methods 2005, 2(5):351-6. Epub 2005 Apr 21.

43. Park PJ, Cao YA, Lee SY, Kim JW, Chang MS, Hart R, Choi S: Cur-
rent issues for DNA microarrays: platform comparison, dou-
ble linear amplification, and universal RNA reference.  J
Biotechnol 112(3):225-45. 2004 Sep 9
Page 12 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8826970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8826970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8826970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9158104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9158104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9158104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11272205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11272205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9634850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9634850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9634850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11687580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11687580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11687580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14600816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14600816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595791
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9784122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9784122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9823299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9823299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9823299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12377987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12377987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12194703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12194703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12805270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12805270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16026597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16026597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313001


BMC Bioinformatics 2005, 6:311 http://www.biomedcentral.com/1471-2105/6/311
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

44. Jarvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kallioniemi
OP, Monni O: Are data from different gene expression micro-
array platforms comparable?  Genomics 2004, 83(6):1164-8.

45. Ramakrishnan R, Dorris D, Lublinsky A, Nguyen A, Domanus M,
Prokhorova A, Gieser L, Touma E, Lockner R, Tata M, Zhu X, Patter-
son M, Shippy R, Sendera TJ, Mazumder A: An assessment of
Motorola CodeLink microarray performance for gene
expression profiling applications.  Nucleic Acids Res 30(7):e30.
2002 Apr 1

46. Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Rich-
mond T, Gorski T, Berg JP, Ballin J, McCormick M, Norton J, Pollock
T, Sumwalt T, Butcher L, Porter D, Molla M, Hall C, Blattner F, Suss-
man MR, Wallace RL, Cerrina F, Green RD: Gene expression anal-
ysis using oligonucleotide arrays produced by maskless
photolithography.  Genome Res 2004, 12:1749-1755.

47. Mills JC, Gordon JI: A new approach for filtering noise from
high-density oligonucleotide microarray datasets.  Nucleic
Acids Res 2001, 29:e72.

48. Grundschober C, Malosio ML, Astolfi L, Giordano T, Nef P, Meldolesi
J: Neurosecretion competence. A comprehensive gene
expression program identified in PC12 cells.  J Biol Chem 2002,
277:36715-36724.

49. Yang YH, Speed T: Design issues for cDNA microarray experi-
ments.  Nat Rev Genet 2002, 3(8):579-88.

50. Wright MA, Church GM: An open-source oligomicroarray
standard for human and mouse.  Nat Biotechnol 2002,
20:1082-1083.

51. Li F, Stormo GD: Selection of optimal DNA oligos for gene
expression arrays.  Bioinformatics 2001, 17:1067-1076.

52. Kerr MK, Martin M, Churchill GA: Analysis of variance for gene
expression microarray data.  J Comput Biol 2000, 7(6):819-37.

53. Thykjaer T, Workman C, Kruhoffer M, Demtroder K, Wolf H,
Andersen LD, Frederiksen CM, Knudsen S, Orntoft TF: Identifica-
tion of gene expression patterns in superficial and invasive
human bladder cancer.  Cancer Res 2001, 61(6):2492-2499.

54.  [http://david.niaid.nih.gov/david/ease.htm].
55.  [http://www.affymetrix.com].
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11470887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11470887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12070162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12070162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12154381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12154381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12410248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12410248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11382364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11382364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11289120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11289120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11289120
http://david.niaid.nih.gov/david/ease.htm
http://www.affymetrix.com
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	The Model based approach
	Internal replication
	External replication
	Fold-change regression

	Cross platform comparison

	Discussion
	Conclusion
	Methods
	Isolation of total RNA
	cRNA preparation
	Affymetrix arrays
	Spotted oligonucleotide chip

	Spotted oligonucleotide microarray procedures
	Oligonucleotide probe design
	Hybridisation, washing and scanning

	Experimental design
	A model-based approach for internal validation of spotted oligonucleotide probes
	Dilution series hybridisations
	Internal replication
	External replication
	Fold-change regression
	Cross platform comparison of gene expression
	Affymetrix arrays
	Spotted oligonucleotide chip
	Comparison of relative gene expression between platforms



	Authors' contributions
	Additional material
	Acknowledgements
	References

