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Abstract

Background: Elucidating the dynamic behaviour of genetic regulatory networks is one of the most
significant challenges in systems biology. However, conventional quantitative predictions have been
limited to small networks because publicly available transcriptome data has not been extensively
applied to dynamic simulation.

Results: We present a microarray data-based semi-kinetic (MASK) method which facilitates the
prediction of regulatory dynamics of genetic networks composed of recurrently appearing network
motifs with reasonable accuracy. The MASK method allows the determination of model
parameters representing the contribution of regulators to transcription rate from time-series
microarray data. Using a virtual regulatory network and a Saccharomyces cerevisiae ribosomal
protein gene module, we confirmed that a MASK model can predict expression profiles for various
conditions as accurately as a conventional kinetic model.

Conclusion: We have demonstrated the MASK method for the construction of dynamic
simulation models of genetic networks from time-series microarray data, initial mRNA copy
number and first-order degradation constants of mMRNA. The quantitative accuracy of the MASK
models has been confirmed, and the results indicated that this method enables the prediction of
quantitative dynamics in genetic networks composed of commonly used network motifs, which
cover considerable fraction of the whole network.

the behaviour of genetic regulatory networks has been one
of the most significant milestones in systems biology [9-

Background
With the advent of high-throughput biotechnologies in

the last decade of the 20th century, enormous amounts of
data have been generated on intracellular molecules [1-5].
The ongoing accumulation of such large-scale informa-
tion presents a significant challenge to the scientific com-
munity: Namely, to understand the cell-wide molecular
network as a living system [6-8]. In particular, modelling

12]. In many previous studies, the dynamic behaviours of
genetic networks were quantitatively predicted and ana-
lyzed in terms of non-linear ordinary differential equa-
tions based on reaction kinetics [13-15]. However,
because it is arduous to obtain a complete set of suffi-
ciently accurate kinetic properties of molecular interac-
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Validation results of the MASK method using the virtual genetic network. (a) Part of the virtual genetic network
shown in Ref. [21]. The regulation of gene G by gene C was employed to compare the MASK method and conventional kinetic
model. (b) A log-log scatter plot of the R values of gene C and G. (c) The training data used in estimating the MASK model
parameters. (d) The test data used for the validation of the MASK model. Applied to the same gene C expression time series,
the MASK model calculated the time course of gene G as accurately as the original kinetic model. The model parameters were

not changed.

tions, the application of this method is limited to small
regulatory networks, such as the tryptophan operon [15]
and the lysis / lysogeny circuit of the bacteriophage
lambda[13,14].

Recently, there have been a few attempts to construct
mathematical models of gene expression from large-scale
data sets. These include generating reproductions of time
series microarray data by 'time translation matrix'[16], a
parameterization of the E. coli SOS module model using
green fluorescent protein (GFP) reporter plasmids[17], a
qualitative simulation method based on piecewise linear
differential equations[18] and network model inferences
from microarray data using a dynamic Bayesian net-
work[19] or a system identification technique[20]. How-
ever, each of these approaches has limitations. Time
translation matrix models are incapable of explaining
dynamic gene expression patterns beyond the actual train-
ing data set, i.e. the expression profiles used to generate
the matrix models themselves. The usefulness of the GFP
approach is restricted to groups of genes regulated by one
regulator. By definition, qualitative simulation is not

capable of predicting quantitative dynamics. Finally, it is
not clear how kinetic models that are inferred via a
dynamic Bayesian network or a system identification
method can generate accurate, quantitative predictions
even though they could infer regulatory connections of
genetic networks. Hence, the establishment of dynamic
simulation methods for large-scale genetic regulatory net-
works remains a challenging problem in systems biology.

Here, we present a microarray data-based semi-kinetic
(MASK) method for dynamic simulation of genetic regu-
latory networks composed of common network motifs.
The quantitative accuracy of the MASK method was vali-
dated using a virtual genetic network described in a previ-
ous study[21], as well as genetic module of Saccharomyces
cerevisiae inferred from expression profiles and genome-
wide location analysis data[22]. The virtual genetic net-
work and the yeast network were employed to test the
applicability of the MASK method to the frequently
appearing network motifs: Single input motifs (SIMs) and
multi-input motifs (MIMs), respectively. The yeast genetic
module model is composed of 13 ribosomal protein (RP)
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genes regulated by Fhll, Gal4 and Rapl. Recent experi-
mental studies confirmed that Fhll and Rapl bind
upstream of yeast RP genes[4,23]. With respect to the
galactose-sensitive regulator Gal4, it has been reported
that galactose addition triggers a three- to five-fold
increase in the mRNA levels of RP genes|9].

The MASK model accurately predicted not only the train-
ing data sets, but also the test data sets. A test data set com-
prises microarray data that is not used for model
estimation. Since SIMs and MIMs appear recurrently in
genetic regulatory networks[4,7], the results support the
contention that the MASK method is applicable to a large
fraction of the whole network.

Results

Method validation using a hypothetical model

Initially, the accuracy of the MASK method was evaluated
by comparison with a hypothetical regulatory network
model based on conventional reaction kinetics[21]. The
SBML format model of the network was imported from
the supplementary website of Ref.[21]. In the MASK ver-
sion model, the original rate equations for transcription
of genes C and G (Figure 1a) were replaced with Eq. (1),
which is shown in Methods. The dissociation constant of
RNA polymerase to DNA was set at K, = 0.1 uM. The first-
order decay constant of the original kinetic model was
employed for the mRNA degradation of genes C and G.
The R term (See Methods for detail) of the transcription
rate equation for gene G was approximated by a power-
law function of the R term of gene C, as shown in Eq. (2).
Translation and dimerization of C in the original kinetic
model were abstracted using a power-law function. A
computer simulation was performed to obtain a training
data set to estimate the coefficients of Eq. (2). These coef-
ficients define the quantitative regulatory relationship
between genes C and G. Calculated time courses of mRNA
abundance were normalized to the initial copy numbers
of each mRNA. We employed these normalized transcript
time courses (12 time points, sampling interval = 3 min-
utes) as an alternative to time-series microarray data. The
coefficients of Eq. (2) for genes C and G were estimated by
regression analysis of these 'virtual microarray data' after
correcting for time delay, estimated by the local clustering
method[24].

The R values of gene C in the MASK version of the model
were adjusted to reproduce the expression levels repre-
sented in the original data. This meant that the accuracy of
the MASK method could be evaluated by mean relative
error of the target gene, G, under the same conditions as
the original kinetic model (See Additional Text 1 for the
detailed procedure of R value adjustment). The mean rel-
ative errors of gene G generated by both the original

http://www.biomedcentral.com/1471-2105/6/299

kinetic model and the MASK model were calculated with
respect to 12 points sampled from the time courses.

Next, the inferred MASK model was applied to predict an
expression time course of gene G in another condition,
without any parameter change. Note that this 'test data set'
was not used to train the MASK model. As well as the pre-
vious comparison of the predicted time course of gene G
to the training data set, the mean relative error of gene G
was calculated under identical regulatory conditions.

Both in the training and the test data sets, the expression
time course of gene G generated by the MASK model was
similar to that of the original model (Figures 1c and 1d).
A regression analysis using the training data sets (Figure
1b) revealed that the relationship between the R terms of
genes C and G was R; = 1.15 R - 0.81(¢-190 min). The
mean relative error over the time series was 3.95% in the
training data set. This MASK model was then employed
for the prediction of time evolutions in another condition
to validate whether a MASK model can perform accurate
computer simulations of various states, other than those
represented by the training data sets. As mentioned above,
the predicted time course of gene G mRNA was very simi-
lar for the MASK and the original kinetic models (Figure
1d). In the test data set, the mean relative error of the gene
G time series expression profile was 4.19%.

Application to a yeast genetic module using microarray
data

The MASK method was employed to predict expression
profiles of a RP gene module of Saccharomyces cerevisiae.
This genetic regulatory module is a MIM involving 13 tar-
get genes (RPL12A, RPL12B, RPL13A, RPL18A, RPL20B,
RPL31A, RPL40A, RPL42B, RPP2A, RPS6B, RPS15,
RPS23B, RPS24A and TEF1) which, on the basis of
genome-wide location analysis data and expression pro-
filing, are considered to be regulated by Fhl1, Gal4 and
Rap1 (Figure 2a)[22]. The first order degradation constant
(k4q) for each gene was obtained by comprehensive meas-
urement of yeast mRNA degradation|[25]. The concentra-
tion of RNA polymerase II holoenzyme was set at 10,000
molecules/cell based on the reported value from a proxi-
mal species, Schizosaccharomyces pombe[26]. The dissocia-
tion constant of RNA polymerase to DNA was set at K, =
0.1 uM. An expression profile of 'alpha-factor block'[27]
was employed as the training data to estimate the model,
owing to its abundant time points measured in a uni-
formly sampled time interval (18 time points with 7 min
interval), which the local clustering method requires[24].
For the test data set, a microarray data set measured by
Zhu et al.[28] was employed. The R values of the regulator
genes were adjusted to reproduce the original expression
levels of the regulators. Mean relative errors between the
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Validation results of the MASK method using yeast RP genes. (a) A genetic regulatory module of yeast RP genes
described in Ref.[22]. Our model included |3 target genes of this module. (b) A comparison of the training microarray data
[27] and a time course calculated by the MASK model. The mean relative error of RPL40A time series was | 1.4%. (c) A com-
parison of the test data [28] and a calculated time series. The mean relative error of the RPL40A time series was 12.1%.

original microarray data and the simulation results were
evaluated for each target gene.

Importantly, MASK modelling of the 13 Saccharomyces cer-
evisiaze RP genes predicted similar temporal patterns of
mRNA expression to both the training and test microarray
data (Figure 2b and 2c). For the MASK model, the average

Table I: Mean relative error of the RP genes.

mean relative error of the 13 target genes was 10.6% and
26.3% in comparison to the training data set (‘alpha-fac-
tor block' by Spellman et al.[27]) and the test data set
(Zhu et al.|28]), respectively. The mean relative error of
each gene is shown in Table 1.

Training data[27] Test data[28]
RPLI2A 0.13 0.10
RPLI2B 0.08 0.39
RPLI3A 0.13 0.09
RPLISA 0.09 0.22
RPL20B 0.09 0.19
RPL3IA 0.13 0.16
RPL40A 0.11 0.12
RPL42B 0.13 0.15
RPP2A 0.09 0.39
RPSI5 0.10 0.38
RPS23B 0.09 0.22
RPS24A 0.11 0.34
RPS6B 0.08 0.35
TEFI 0.11 0.32
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A prediction of RP gene transcription in the fhllA
strain. (a) The R value of FHLI was changed to realize
depletion of FhIl mRNA. The transcription rates of the other
two regulators were unchanged. (b) Calculated RP mRNA
levels in the wild-type (WT) and fhl| A strains. The 40-60%
decrease is in agreement with a previous observation [29].

A simulation experiment was performed to determine
whether the yeast RP gene module model is capable of
predicting data other than microarray data. Specifically,
we attempted to calculate transcript levels of the RP genes
in the fhl1A strain, as these had been measured
recently[29]. The deletion of thll was represented by
reducing the initial R value of Fhll from 1.0 to 0.1,
thereby leading to depletion of Fhl1 mRNA (Figure 3a).
Transcript levels of the RP genes were calculated at two
time points; the initial steady-state level and another
steady-state level after perturbation of Fhll. The simula-
tion results of the RP gene MASK model were consistent
with recent experimental observations. It had been
reported that transcript levels of two representative RP
genes (RPL9A and RPL30) in the fhl1A strain were approx-
imately 40-60% of those in the wild-type[29] and similar
decreases in mRNA levels were predicted by the model
(Figure 3b).
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Discussion

The MASK model reproduced the dynamic behaviour of
the virtual network and the yeast genetic module with a
sufficient degree of accuracy. Since the tested networks are
examples of network motifs including a SIM and a MIM,
the coverage of the MASK method is as wide as the fre-
quency of the motifs. This successful example of a MIM
regulated by Rap1, Fhl1 and Gal4 supports the contention
that the MASK method is capable of representing synergis-
tic effects between multiple co-regulators, since it has
been reported that Rap1 binding at promoters is required
for Fhll binding|30]. Furthermore, it has been theoreti-
cally demonstrated that the power-law equation can cap-
ture synergism of non-linear equations which are
comprised of sums and products of elementary functions
i.e. nearly all types of rate equations[31]. Presumably, the
3-5% errors observed between the mathematical models
of the virtual genetic network are attributable to power-
law approximation, microarray sampling interval and
abstraction of translation by time delay. In particular, the
error caused by power-law approximation may reflect the
residuals of each data point from the regression line (Fig-
ure 1b). With respect to the RP gene module model, the
mean relative errors between the prediction and the exper-
imental time series are larger than those observed in the
comparative study of the conventional kinetic and MASK
models. We consider that the error increment is due to
measurement errors in the microarray data, which does
not occur in the 'virtual microarray data'. Examining rep-
licated microarray data, such as that presented in
Refs.[32,33], it is observed that on average, relative errors
between the replicates are in the range 20-50% (data not
shown), whereas the error between replicated GFP meas-
urements is approximately 10%[17,34]. We did not
employ replicated time series microarray data in this
study, because no such data sets were found in the data-
bases. Despite having a smaller measurement error than
microarray data, the kinetic model based on GFP time
series data still exhibited mean relative errors of 10-
20%][17]. Thus, it is satisfactory that a microarray data-
based model predicts gene expression dynamics with an
error level of 10-30%. Moreover, microarray is signifi-
cantly superior to GFP in terms of availability and com-
prehensiveness of data. This provides a rationale for
immediate application of the MASK method to regulatory
networks in as large a scale as microarray data allow.

Microarray data sets for training a MASK model should
preferably have prominent variations in expression level
and many time points within a short time interval. These
desirable features of microarray data restrain the represen-
tation space of a MASK model. If the time series expres-
sion profile of both a regulator and its target gene are
almost flat, it is obvious that their data points will not pro-
vide a significant regression line. For a meaningful regres-

Page 5 of 9

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:299

a Activated (larger R)

— — — -

g

/‘
/ Basal level

— = — —— —
——

Transcription rate

[RNAP]

Ky
RNAP + DNA —= RNAP-DNA

[

RNAP + DNA + RNA

Figure 4

A reaction mechanism postulated by Eq.(1). (a) Varia-
tion of transcription rate defined by Eq,(l). Transcript rate is
saturated as RNA polymerase increases. The R value deter-
mines maximum transcription rate. (b) A reaction scheme of
RNA synthesis.

sion, expression levels should be widely distributed by
dynamic variations in transcription to provide sufficiently
long confidence bands (e.g. Figure 1b), which guarantee
broad representation space of the model. For microarray
data, the resolution of time delay is restrained by time
interval duration. This reflects the fact that the local clus-
tering method quantifies the time delay by the number of
time intervals. Therefore, short time intervals are prefera-
ble for quantifying time delays precisely.

Network architecture also restrains the application of the
MASK method. The MASK method implicitly assumes
that transcription rates of regulator genes are independent
of those of target genes. Therefore, it is not appropriate in
principle to employ the MASK method on particular
genetic networks in which target genes largely influence
the expression of their regulators - for example a pair of
mutually regulating genes or a ‘'multi-component
loop'[4]. Fortunately, this restriction does not substan-
tially constrain the extensive application of the MASK
method because only three multi-component loops have
so far been identified in a yeast genome-wide location
analysis[4].

As a consequence, it is plausible that there will be a drastic
reduction in the requirement for detailed kinetic data

http://www.biomedcentral.com/1471-2105/6/299

given that all yeast genes in SIMs and MIMs, with the
exception of regulators, could be modelled without
kinetic data. Thus, the MASK method facilitates the pre-
diction of quantitative, dynamic behaviour of gene net-
works with sufficient accuracy.

Conclusion

We have demonstrated a novel method for the construc-
tion of dynamic simulation models of gene networks
from time-series microarray data, initial mRNA copy
number and first-order degradation constants of mRNA.
An appropriately trained MASK model calculated time-
series gene expression profiles as accurately as a conven-
tional kinetic model, in both a training and a test data set.
The microarray data-based model also predicted expres-
sion profiles of yeast RP genes, controlled by multiple reg-
ulators, under various conditions. These validation results
indicate that once a MASK model has been estimated from
a microarray data set in which expression levels vary
widely, that model is applicable to broad conditions.
Thus, the MASK method will facilitate the prediction and
elucidation of dynamic behaviours of genetic regulatory
networks, which will be a major methodological advance
in systems biology.

Methods

A rate equation for RNA synthesis

The RNA synthesis rate was assumed to be a product of the
basal level transcription rate (L) and magnitude of regula-
tion (R). The basal level transcription rate is hyperbolic
with respect to RNA polymerase concentration (Figure
4a). The rate equation is as follows:

L-R

[ k,[RNAP]
Kg +[RNAP]

where [RNAP], [Act] and [Rep] denote the concentration

of RNA polymerase, activator and repressor, respectively.
The kinetic parameters, K, and k,, represent the dissocia-

, (1)
R([Act],[Rep])

tion constant of RNA polymerase to DNA and the rate
constant for RNA synthesis from the DNA-RNA polymer-
ase complex, respectively (Figure 4b).

With respect to regulator genes, the R term is a function of
their activators or repressors which should be described in
terms of reaction kinetics. On the other hand, the R term
of a target gene is defined as a power-law function of the
R values of its regulators (Eq. (2)).

Ry(1) = a [R(t -7} (2)
i=1
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Procedure for estimating the parameters of Egs. (2) and (4). The time derivative of an RNA level is the sum of the
transcription rate and the degradation rate of RNA (top centre). The degradation rate is the product of the RNA level and the
first-order degradation constant (centre left). Subtracting the degradation rate from the time derivative of microarray data,
results in the RNA synthesis rate (centre). The time-series of R values are yielded by normalizing the synthesis rate as R(t = 0)
= | (centre right). Eq. (3) is a mathematical representation of this procedure. Provided the time-series of the R values of regu-
lators and target genes, the time delay T; between the regulators and the target genes are calculated using the local clustering
method[24]. Finally, a regression analysis of the time delay-corrected R time-series (bottom right) provides least-squares esti-
mate of the coefficients in Egs. (2) and (4) (bottom left).
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where R,(t) and R,(t-1;) denotes the R value of a target gene
g at time t and that of the ith regulator at time ¢-t;, respec-
tively. The term 7, represents time delay for transmitting
regulatory effect of the ith regulator to the target gene g.
The coefficients a and b; are parameters which can be esti-
mated from microarray data. Regulatory effects at the
translational level are abstracted by the coefficients of the
R terms, such as exponential parameters and time delays.
These equations were implemented on E-Cell Simulation
Environment version 3.1.102 for Linux (Fedora Core 2/
i386)[35].

Parameter estimation from microarray data

A multiple regression analysis of time series of R values
provides the coefficients in Eq. (2). A time-series of R val-
ues is obtained by following the data processing steps
summarized in Figure 5: (i) differentiation of time-series
microarray data with respect to time (ii) calculation of
RNA degradation rate from first-order degradation con-
stant (iii) summing up degradation rate and time deriva-
tive of expression level to obtain RNA synthesis rate (iv)
normalizing RNA synthesis rate as rate = 1 at initial condi-
tion. Consequently, the R value at time t can be calculated
by following Eq. (3) (See Additional Text 2 for deriva-
tion):

Aarray(t)

R( ) At

0= (3)
%ﬁw +kgegarray(0 <t <1)

+ kgegarray(t)

Aarray(0 <t <1)
At

ative expression level at time point t, the time difference

of the first and second time points and the first order deg-

radation constant of mRNA, respectively. Taking the natu-

ral logarithm of Eq. (2), we obtain,

where array (t), and kg,, denotes the rel-

n
InRy(t) =Ina+Y b;InR;(t-1;) (4)

i=1
Note that multiple regression analysis of the time series of
InR yields an equation in the same form as Eq. (4). Thus,
the least square estimates of In a and b; were obtained via
regression analysis of InR time series data which are read-
ily calculable from time series microarray data via Eq. (3).
Target genes with regression p-values of more than 0.05
were not included in the mathematical models. The
length of time delay, 1;, was calculated using the local clus-
tering method [24].

Estimation of k, from array data
The rate constant k, in Eq. (1) was determined for each
gene to minimize mean relative error between experimen-

http://www.biomedcentral.com/1471-2105/6/299

tal data and predictions. The mean relative error E of the
two time series data sets was defined as follows:

X

1| X; —P
E== i ——
where X; and P; denote the expression level at the ith time
point of experimental data and predicted data, respec-
tively. The symbol n represents the total number of time
points. See Additional Text 3 for the detailed algorithm to
calculate an optimal k, value for each gene.
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