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Abstract
Background: The large gap between the number of protein sequences in databases and the
number of functionally characterized proteins calls for the development of a fast computational tool
for the prediction of subnuclear and subcellular localizations generally applicable to protein
sequences. The information on localization may reveal the molecular function of novel proteins, in
addition to providing insight on the biological pathways in which they function. The bulk of past
work has been focused on protein subcellular localizations. Furthermore, no specific tool has been
dedicated to prediction at the subnuclear level, despite its high importance. In order to design a
suitable predictive system, the extraction of subtle sequence signals that can discriminate among
proteins with different subnuclear localizations is the key.

Results: New kernel functions used in a support vector machine (SVM) learning model are
introduced for the measurement of sequence similarity. The k-peptide vectors are first mapped by
a matrix of high-scored pairs of k-peptides which are measured by BLOSUM62 scores. The kernels,
measuring the similarity for sequences, are then defined on the mapped vectors. By combining
these new encoding methods, a multi-class classification system for the prediction of protein
subnuclear localizations is established for the first time. The performance of the system is evaluated
with a set of proteins collected in the Nuclear Protein Database (NPD). The overall accuracy of
prediction for 6 localizations is about 50% (vs. random prediction 16.7%) for single localization
proteins in the leave-one-out cross-validation; and 65% for an independent set of multi-localization
proteins. This integrated system can be accessed at http://array.bioengr.uic.edu/subnuclear.htm.

Conclusion: The integrated system benefits from the combination of predictions from several
SVMs based on selected encoding methods. Finally, the predictive power of the system is expected
to improve as more proteins with known subnuclear localizations become available.

Background
The cell nucleus is a highly complex organelle that organ-
izes the comprehensive assembly of our genes and their
corresponding regulatory factors. Accordingly, the cell
nucleus reflects the intricate regulation of various biolog-
ical activities. Although protein complexes disperse

throughout the entire organelle, it is known that many
nuclear proteins participating in related pathways tend to
concentrate into specific areas [1,2]. For example, the
rDNA processing and ribosome biogenesis often occur
within the nucleolus and the proteins responsible for pre-
splicing appear to concentrate into multiple nuclear
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speckles, even while they are migrating in the nucleus. The
confinement of biomolecules within specific compart-
ments is crucial for the formation and function of the cell
nucleus; in contrast, the mis-localization of proteins can
lead to both human genetic disease and cancer [3].

Accordingly, information on protein subnuclear localiza-
tion is essential for a full understanding of genomic regu-
lation and function. Advances in experimental technology
have enabled the large-scale identification of nuclear pro-
teins. However, at the same time, the sequencing of both
the human and mouse genomes has generated an enor-
mous inventory of primary sequences with unknown
functions. A faster and cheaper bioinformatics tool is
required for the annotation of these exponentially accu-
mulating sequences. A computational prediction of pro-
tein subnuclear compartments from primary protein
sequences can provide important clues to the function of
novel proteins.

A host of systems for the prediction of protein subcellular
localizations has emerged over the last two decades [4-
23]. This list includes several web-based predictors that
have a broad coverage of subcellular localizations at the
genomic level, such as PSORT [4], SubLoc [7], Proteome
Analyst [15], CELLO [16], PSORTb v.2.0 [17], and LOC-
tree [21]. The development led to the ability to predict the
particular subcellular compartment, in which a given pro-
tein resides within a cell, with a steadily increasing accu-
racy. The predictions for eukaryotic organisms, however,
have certain limitations. They can provide information on
whether a protein localizes in the nuclear compartment,
but they can not discriminate among the sub-compart-
ments in which it functions.

The prediction of protein localization at the subnuclear
level is challenging compared with that at the subcellular
level. Three facts contribute to the difficulty: (1) proteins
within the cell nucleus face no apparent physical barrier
like a membrane [24]; (2) the nucleus is far more compact
and complicated in comparison with other compartments
in a cell [25]; and (3) protein complexes within the cell
nucleus are not static [1,24,25]. Recent developments in
live-cell imaging have revealed that nuclear processes may
rely on a constant flow of molecules between dynamic
compartments created by relatively immobile binding or
assembly sites. As proteins diffuse through the nuclear
space, they appear to alter their compartments during dif-
ferent phases of the cell cycle or accompanying differenti-
ation [3]. For instance, some nucleolar proteins are
continually exchanging between the nucleoplasm and the
nucleolus. Proteomic studies have also highlighted the
dynamic nature of the nucleolar proteome [3].

Employing the database Nuclear Protein Database (NPD)
developed by Dellaire, Farrall and Bickmore [26], Bick-
more and Sutherland [27] recently addressed the charac-
teristics of the primary sequences of nuclear proteins, such
as the molecular weight, isoelectric point, and amino acid
composition for proteins in different subnuclear compart-
ments. They also found that motifs and domains are often
shared by proteins co-localized within the same subnu-
clear compartment. Furthermore, certain generally abun-
dant motifs/domains are lacking from the proteins
concentrated in some specific areas of the nucleus. Based
on these findings, it should be possible to combine total-
ity of this information in a manner that will enhance the
prediction of compartmental-specific nuclear localiza-
tions of the protein constituents listed in genome data-
bases.

Encouraged by our previous success in the design of a met-
ric for the biological similarity of protein sequences
[22,23], a prediction system is developed based on sup-
port vector machines (SVMs), one of the most advanced
machine learning methods [28,29]. The principal feature
of our mode of analysis is the introduction of new kernel
functions which are effective in capturing the subtle differ-
ence between sequences originated from two distinct
nuclear compartments.

Results and Discussion
Normally, conventional k-peptide encoding vectors (k = 1,
2, 3) are used for the description of a protein sequence.
Successful applications include (1) the protein fold recog-
nition [30,31], and (2) the prediction of subcellular local-
ization [5,7,16]. The basic concept of the new kernels
proposed in our previous work [22,23] is the measure-
ment of biological similarity for k-peptides, having either
none or a few shared residues, with the incorporation of
evolutionary information. Our finding indicates that the
mapping of conventional k-peptide encoding vectors by a
matrix formed with high-scored pairs of k-peptides can
facilitate the construction of a suitable metric. The score of
a pair of k-peptides is calculated by the BLOSUM scores of
residues and, therefore, the evolutionary information of
the residues is embedded into the sequence description. A
related concept that links two k-peptides with a small
number of mutated residues has been presented by Leslie
et al. [32] for protein homology detection.

This study presents the performance of conventional k-
peptide encoding methods and the new proposed kernels
for the prediction of protein subnuclear compartments.
Furthermore, with the use of the jury voting scheme devel-
oped in [31], an integrated system was built by combining
binary prediction outcomes obtained from different
sequence encoding schemes. The results demonstrate that
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the integrated system enhances the overall performance of
the system.

The dataset used in this study was extracted from the
Nuclear Protein Database (NPD) [26] using a Perl script.
The NPD is a curated database that stores information on
more than 1000 vertebrate proteins, chiefly from human
and mouse, which are reported in the literature to be
localized in the cell nucleus. Since certain proteins associ-
ate with more than one compartment, a test dataset con-
sisting of proteins with multiple localizations was first
extracted out. These proteins have the same SwissProt ID
or Entrez Protein ID though localized in different com-
partments. This preparative procedure resulted in 92 pro-
teins that are localized within the six compartments
described below. The majority is localized in 2 compart-
ments and the remaining portion is localized in 3 or 4
compartments.

After excluding the multi-localization proteins, a non-
redundant dataset was further constructed by PROSET
[33] to ensure low sequence identity (<50%). In order to
have sufficient number of proteins for training and test-
ing, only six localizations were selected for evaluation.
These are PML BODY (38), Nuclear Lamina (55), Nuclear
Splicing Speckles (56), Chromatin (61), Nucleoplasm
(75), and Nucleolus (219). Each of these proteins has a
single localization and the total number is 504.

It should be noted that the multi-localization proteins are
not included in the set of 504 single-localization proteins
for the leave-one-out cross-validation (LOOCV). There-
fore, the multi-localization dataset is essentially an inde-
pendent testing set. The summary of the datasets is
presented in Table 1.

The evaluations of the predictive power of the methods
were performed on the datasets. Since there are 6 localiza-

tions in the dataset, the one-versus-one multi-class classi-
fication system led to 6*(6-1)/2 = 15 SVM models for one
single encoding method (see Methods for details). Three
encoding techniques corresponding to the conventional
k-peptide composition and three encoding methods
based on the new kernels were used for k = 1,2,3. SVM-
Light [34] was used as the SVM solver.

The overall accuracy for the multi-class classification pro-
posed by Rost and Sander [35] was used for the evaluation
of our system. Suppose there are m = m1 + m2 + ... + mN test
proteins, where mi is the number of proteins belonging to
class i(i = 1,...,N). Suppose further that out of the proteins
considered, pi proteins are correctly predicted to belong to
class i. Then p = p1 + p2 + ... + pN is the total number of cor-
rectly predicted proteins. The accuracy for class i is

and the overall accuracy, denoted by Qacc, is defined as

Note that acci and Qacc are respectively corresponding to

the definitions of  and Qtotal in Rost and Sander

[35]. Since the numbers of proteins for various localiza-
tions are unbalanced, the Matthew's correlation coeffi-
cient (MCC) was also employed for the optimization of
parameters and evaluation of performance [36]:

where pi is the number of correctly predicted proteins of
the location i, si is the number of correctly predicted pro-
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Table 1: The summary of the nuclear proteins

Label Compartment Number of sequences

1 PML BODY 38
2 Nuclear Lamina 55
3 Nuclear Splicing Speckles 56
4 Chromatin 61
5 Nucleoplasm 75
6 Nucleolus 219
- Multiple Localizations 92

AA – amino acid composition encoding method;
DI – di-peptide encoding method;
TRI – tri-peptide encoding method;
D1X1 – amino acid composition encoding vector transformed with D1;
D2X2 – di-peptide encoding vector transformed with D2;
D3X3 – tri-peptide encoding vector transformed with D3.
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teins not in the location i, ui is the number of under-pre-
dicted proteins, and oi the number of over-predicted
proteins.

In order to evaluate the performance of the system for
multi-localization proteins, the criterion proposed in
Gardy et al. was used [17]. More specifically, for a protein
with multi-localization, if the system validly predicts one
of the locations, then the entire prediction is considered
correct. It should be noted that this criterion overesti-
mates the performance. Since our method can only pre-
dict one localization for a given protein, other evaluation
methods for multi-localization proteins such as the one
proposed by Chou and Cai [14,18] can not be applied.

The performances for each encoding method and the
combined encoding methods are shown in Table 2 and
Table 3, respectively. The results for the single-localization
proteins were obtained from the LOOCV procedure; and
the results for the multi-localization proteins were
obtained from the final prediction system. Overall, the
single encoding methods gave an accuracy of prediction
Qacc that ranged from 47.8% to 51.4% for single-localiza-
tion proteins and from 57.6% to 64.1% for multi-locali-
zation proteins. The corresponding average MCCs ranged
from 0.203 to 0.276 for single-localization proteins and
from 0.182 to 0.401 for multi-localization proteins. The
combination of the new encoding methods D1X1, D2X2,
and D3X3 with the use of jury voting yielded an improved
performance for MCC. For example, the average MCC was
elevated from 0.266–0.276 to 0.284 for single-localiza-
tion proteins and from 0.362–0.401 to 0.420 for multi-
localization proteins. The change in Qacc was not uniform:

it decreased from the highest value 51.4% to 50.0% for
single-localization protein and increased from 64.1% to
65.2% for multi-localization proteins. The combination
of the conventional k-peptide compositions AA, DI, and
TRI did not demonstrate significant improvement. Fur-
ther optimization of the parameter for the determination
of sparsity of matrix D3 is likely to enhance the perform-
ance of the prediction system.

The final models for the prediction system are the combi-
nation of the new encoding methods D1X1, D2X2, and
D3X3, since adding any conventional k-peptide encoding
method does not improve the performance of the system.
The predictions for all the 92 multi-localization testing
proteins are detailed in Table S1 in the supplementary file
[see Additional file 1].

Conclusion
An SVM-based multi-class classification system has been
developed for the prediction of protein subnuclear locali-
zations. This is the first system designed specifically for
this task. This system, which integrates predictions from
three new encoding methods, achieves encouraging levels
of accuracy for six specific subnuclear localizations. How-
ever, compared to the prediction of protein localizations
at the subcellular level, the corresponding prediction at
the subnuclear level is far more challenging. This difficulty
arises mainly from the biological fact that each compart-
ment within the cell nucleus contains no apparent physi-
cal barrier like a membrane. Furthermore, the nucleus is a
considerably more compact and complex organelle in
comparison to other organelles in the cell. Finally, the

Table 2: Results for each individual encoding method

Method AA DI TRI D1X1 D2X2 D3X3

Compartment Accuracy % [MCC]

PML BODY 26.3 [0.144] 13.2 [0.091] 0.0 [-0.045] 31.6 [0.183] 29.0 [0.139] 10.5 [0.066]
Nuclear Lamina 40.0 [0.363] 27.3 [0.256] 40.0 [0.228] 45.5 [0.340] 41.8 [0.279] 36.4 [0.331]

Nuclear Splicing Speckles 30.4 [0.326] 32.1 [0.358] 30.4 [0.365] 33.9 [0.321] 33.9 [0.316] 33.9 [0.391]
Chromatin 14.8 [0.174] 11.5 [0.106] 13.1 [0.191] 19.8 [0.215] 21.3 [0.248] 21.3 [0.271]

Nucleoplasm 25.3 [0.189] 26.7 [0.207] 12.0 [0.123] 20.0 [0.182] 22.7 [0.246] 28.0 [0.229]
Nucleolus 78.1 [0.374] 83.1 [0.357] 85.8 [0.357] 73.5 [0.357] 72.2 [0.364] 83.1 [0.367]

Single-localization Overall Accuracy and MCC 49.2 [0.262] 49.0 [0.229] 48.4 [0.203] 48.4 [0.266] 47.8 [0.265] 51.4 [0.276]
Multi-localization Overall Accuracy and MCC 64.1 [0.365] 57.6 [0.343] 58.7 [0.182] 60.9 [0.401] 57.6 [0.362] 64.1 [0.362]

AA – amino acid composition encoding method;
DI – di-peptide encoding method;
TRI – tri-peptide encoding method;
D1X1 – amino acid composition encoding vector transformed with D1;
D2X2 – di-peptide encoding vector transformed with D2;
D3X3 – tri-peptide encoding vector transformed with D3.
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dynamic nature of the nucleolar proteome adds an addi-
tional level of complexity to the task of prediction.

Methods
Kernels based on high-scored pairs of k-peptides
Recently, Lei and Dai proposed new kernels based on
high-scored pairs of k-peptides for protein sequence
encoding [22,23] for the SVMs. Superior performance of
the SVMs with these new kernels was demonstrated
through application to the prediction of protein subcellu-
lar localization. The kernels proposed in [22,23] can be
described as follows.

A matrix Dk of high scored k-peptide pairs is defined with
a prescribed threshold. Each entry is associated with the
BLOSUM score of some pair of k-peptides. The matrix is of
dimension 21k × 21k, where 21 is the number of amino
acid symbols (normal 20 amino acids plus the special
symbol ''X''). The thresholds are set to zeroes for k = 1, 2.
Therefore, matrix D1 is the same as the BLOSUM matrix,
except that the entries with negative values are replaced by
zeroes; the entries of matrix D2 are the BLOSUM pair
scores of two di-peptides with all negative values being
replaced by zeroes. Since the size of D3 is very large and
the majority of all possible pairs is associated with lower
scores, the elimination of those pairs can reduce noise that
may confuse the prediction. Therefore, a careful thresh-
olding is necessary to ensure the sparsity of the matrix D3.
In this work, the threshold is set to 8 for k = 3. For exam-
ple, the score is 12 for an AAA-AAA pair, 11 for an AAY-
ACY pair, and 0 for a TVW-TVR pair since TVW-TVR
BLOSUM62 pair-score is 6, which is smaller than the
threshold value 8. Given the dimensional scaling, when k

> 3, such a coding scheme is less attractive from a compu-
tational point of view.

For a pair of k-peptide composition vectors xki, xkj, the new
kernels are defined as

K (xki, xkj) = exp(-γ || Dkxki - Dkxkj ||2), k = 1, 2, 3, ....

It can be considered as a Gaussian kernel for a pair of vec-
tors Dkxki and Dkxkj. These kernels define the sequence sim-
ilarity for the mapped vectors Dkxki and Dkxkj, not directly
for the k-peptide composition vectors xki and xkj. In this
study, the kernel type used for the conventional k-peptide
composition encoding methods is the radial basis kernel:
exp(-γ || xki - xkj ||2)

In the following, the concept described above is illustrated
and the comparison with the conventional k-peptide
encoding method is provided. Consider two short amino
acid sequences AAACY and AACCY. Using the input for-
mat of the SVMLight [34], the conventional tri-peptide
encoding method generates two coding vectors:

x31: 1:0.33 2:0.33 42:0.33

x32: 2:0.33 23:0.33 483:0.33

where the numbers appearing in the vectors are in the for-
mat of "index: score". It is obvious that the two sequences
share the tri-peptide "AAC", and the corresponding vector
index is 2. On the other hand, using BLOSUM62, the
transformed vectors D3x31 for x31 and D3x32 for x32 are cal-
culated as follows:

Table 3: Results using combined methods

Methods Combination of AA, DI, TRI Combination of D1X1, D2X2, and D3X3

Compartment Accuracy % [MCC]

PML BODY 13.2 [0.073] 29.0 [0.172]
Nuclear Lamina 30.9 [0.275] 43.6 [0.338]

Nuclear Splicing Speckles 32.1 [0.410] 35.7 [0.363]
Chromatin 9.8 [0.170] 19.7 [0.260]

Nucleoplasm 20.0 [0.182] 22.7 [0.206]
Nucleolus 88.1 [0.374] 76.7 [0.367]

Single-localization Overall Accuracy and MCC 50.4 [0.247] 50.0 [0.284]
Multi-localization Overall Accuracy and MCC 62.0 [0.362] 65.2 [0.420]

AA – amino acid composition encoding method;
DI – di-peptide encoding method;
TRI – tri-peptide encoding method;
D1X1 – amino acid composition encoding vector transformed with D1;
D2X2 – di-peptide encoding vector transformed with D2;
D3X3 – tri-peptide encoding vector transformed with D3.
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Example of encoding AAACY to D3x31:

D3x31: 1:6.67 2:8.33 6:2.67 16: 3.00 17:2.67 18:2.67 21:
3.67 22:6.33 23:8.00 24:3.33 25:3.67 26:5.33 27:3.33
28:5.00 29:4.00 30:3.67 ...

D3x32: 1:2.67 2:10.00 22:4.33 23:11.67 24:3.33 25:3.00
26:7.67 27:3.33 28:7.00 ...

From the list it is seen that the transformed vectors share
more common indices, such as 1, 2, 22–28 etc. Therefore,
the similarity between the two sequences is more likely to
be captured by the new methods even they do not share
explicitly those tri-peptides. The mismatch string kernels
proposed in Leslie et al. [32] also consider the similarity
between mismatch k-peptides. For example, compared
with the conventional tri-peptide encoding, the two
sequences share several more common tri-peptides, such
as AAA and AAC, AAC and ACC, ACY and CCY, if one mis-
match is allowed in two peptides. Therefore, our method
is related to the mismatch string kernel but it is different.

Multi-class classification system
The efficient extension of SVMs to the handling of multi-
ple classes has been achieved for applications to protein
fold prediction [30] and the prediction of subcellular
localization [7,16]. The one-versus-one [37] framework
was used here for the assembly of the multi-class classifier
from binary classifiers. For a classification problem of N
class, it trains every pair-wise binary classifier. This gives a
total of 1/2 * N (N - 1) classifiers. The prediction of the
label of a testing protein follows the jury voting; specifi-
cally, sum the predictions for each classifier and take the
label with the highest votes. When ties arise, the class label
is assigned to the class with the maximum value of the
sum of the function margins. This jury voting scheme is
very flexible for the assembly of the predictions obtained
from various SVM models. It can integrate not only the
outcome from binary predictors with one encoding
scheme, but also those obtained from alternative encod-
ing methods. Accordingly, the class label of the testing
protein is assigned to the class with the maximum votes.

Cross-validation and final prediction system
The generalization performance of an SVM is controlled
by the following parameters:

(1) C: the trade-off between the training error and class
separation;

(2) γ: the parameter in the radial basis functions exp(-γ ||
xi - xj ||2) or exp(-γ || Dkxki - Dkxkj ||2);

(3) J: the biased penalty for errors from positive and neg-
ative training points.

The leave-one-out cross-validation (LOOCV) was
employed for the evaluation. The LOOCV is also referred
as jackknife test, which is considered to be more rigorous
and reliable compared with other testing techniques. A
justification of the rigorousness and reliability of the
LOOCV can be found, e.g., in Chou and Zhang [38].
Assume that there are overall m proteins. Each protein was
in turn considered as a testing protein and the parameters
associated with the SVM model were optimized based on
a 5-fold cross-validation by using the remaining m - 1 pro-
teins. The criterion of the optimization is the sum of the
Matthew's correlation coefficients over all classes [36].
The final LOOCV classifiers were determined by using the
optimized parameters to train the set of the m - 1 proteins.
The search ranges corresponding to the parameters in the
5-fold cross validation optimization are the following:

(1) C: 2-2, 2-1, 1, ..., 29, 210;

(2) γ: 2-15, 2-14, 2-13, ..., 214, 215;

(3) J: 1, 2, 3, ..., 8, 9.

The labels of the training sets were arranged in a way that
the size of the negative set is always larger than that of the
positive set in our experiment. Here, the penalty term

 in the SVM is split into two terms:

. The heavier weight CJ

imposed on the errors originating from the negative
points enforces a low false positive rate for unbalanced
training sets [39].

The final prediction system was constructed as follows.
The entire set of proteins with single-localization was used
as a training set; and the optimal value for each parameter
of the SVMs for the training set was taken as the average
value of the optimal parameters obtained from the
LOOCV procedure. Using these optimized parameters,
final binary classifies were learned from the training set.
The evaluation for the set of multi-localization proteins
was based on this final prediction system. The framework
for the overall training and testing procedures is illus-
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trated in Figure S1 in the supplementary file [see Addi-
tional file 2].
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