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Abstract
Background: One frequent application of microarray experiments is in the study of monitoring
gene activities in a cell during cell cycle or cell division. A new challenge for analyzing the microarray
experiments is to identify genes that are statistically significantly periodically expressed during the
cell cycle. Such a challenge occurs due to the large number of genes that are simultaneously
measured, a moderate to small number of measurements per gene taken at different time points,
and high levels of non-normal random noises inherited in the data.

Results: Based on two statistical hypothesis testing methods for identifying periodic time series, a
novel statistical inference approach, the C&G procedure, is proposed to effectively screen out
statistically significantly periodically expressed genes. The approach is then applied to yeast and
bacterial cell cycle gene expression data sets, as well as to human fibroblasts and human cancer cell
line data sets, and significantly periodically expressed genes are successfully identified.

Conclusion: The C&G procedure proposed is an effective method for identifying statistically
significant periodic genes in microarray time series gene expression data.

Background
Microarray experiments are widely used for gene profiling
in different cell lines, various tissues, and conditions (nor-
mal versus cancerous). High throughput microarray tech-
nologies have made it possible to study problems that
range from gene regulation and mRNA stability, to path-
ways for genetic diseases and the discovery of target sub-
populations for drug or other therapies. One frequent
application of microarray experiments is in the study of
monitoring gene activities in a cell during cell cycle or cell
division. A new challenge to statisticians for analyzing the
microarray experiments is to identify genes that are statis-
tically significantly periodically expressed during the cell
cycle. Such a challenge occurs due to the large number of
genes that are simultaneously measured, a moderate to

small number of measurements per gene taken at different
time points, and high levels of non-normal random
noises inherited in the data (Wichert [1]). Several authors,
including Spellman [2], Cho [3], Shedden and Cooper
[4,5], Whitfield [6] have noticed the presence of cyclicity
or periodicity of genes in their microarray data sets and
used a number of ways to identify periodically expressed
genes in some available yeast and human cell cycle data
sets obtained by them. There are some debates concerning
the methods those authors used in finding the cyclic genes
and how statistically significant those cyclic genes are.
Whitfield [6] established a catalog of genes periodically
expressed in the human cell cycle via a series of large-scale
microarray experiments. They introduced a statistic (peri-
odicity score) for testing the inference of a periodically
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expressed gene. The method introduced in Whitfield [6],
however, may not be effective in identifying multiple peri-
odically expressed genes, as it did not address the multiple
comparison issue and hence inflated false discovery rate
(FDR). Recently, Wichert [1] proposed to use a graphical
device, average periodogram, as an exploratory method to
signal the presence of possible periodic genes. They
showed through extensive simulations that plotting aver-
age periodogram against frequencies reveals the presence
of periodic genes in the data set if there is any. They also
applied Fisher's exact G-test statistic, along with the use of
FDR, on the periodogram to screen out statistically signif-
icantly periodically expressed genes.

In this paper, another test statistic, the Bartlett's exact C-
test statistic, for the inference of periodic time series is
introduced. By combining both the G-statistic and the C-
statistic, a novel statistical inference approach, the C&G
procedure, is proposed to effectively screen out statisti-
cally significantly periodically expressed. The approach is
then applied to yeast and bacterial cell cycle gene expres-
sion data sets, as well as to human fibroblasts and human
cancer cell line data sets, and significantly periodically
expressed genes are successfully identified.

Results
For testing the null hypothesis of a signal being a normal
white noise against the alternative hypothesis of a signal
being periodic (see Methods section), a statistical method
is to use the periodigrams of the signal (see Methods sec-
tion for details) to form a test statistic and calculate the p-
value of the test statistic. A small p-value, smaller than a
predetermined significance level, indicates the signifi-
cance of the signal being periodic rather than white noise.
Fisher [7] proposed a test statistic and derived the null dis-
tribution of the Fisher's G-statistic. In the context of
microarray gene expression data, the observed signifi-
cance value or p-value for the hypothesis testing of the
periodicity of a fixed gene g, using G-statistic as the test

statistic, denoted by , can be obtained by

where ξg is the sample realization of the G-statistic value
calculated from the Fisher's G-statistic (see equation (7) in
Methods section) divided by m, and L(ξg) is the largest
integer less than 1/ξg.

A more general setting of the hypothesis is to test whether
a signal is normal white noise or not. Bartlett [8] proposed
a test statistic, the C-statistic (see methods), to test for the

hypotheses. According to Durbin [9], the p-value for the
hypothesis testing of the periodicity of a fixed gene g using

Bartlett's C-statistic as the test statistic, denoted by , can

be found by

where ag = mCg, Cg is given in equation (10) of the Meth-

ods section, [ag] = INT{ag}, and n = m - 1. Suppose that a

large number  of genes are simultaneously observed

through a microarray experiment, and each gene is meas-
ured at a relatively short period, or at sparse intervals of
time (say at N time points). The researcher is interested in
whether any genes are expressed in a periodic pattern of
some kind. As high levels of non-normal random noise
may present in the data, some visual evidence of periodic
gene may be simply due to random noise; and as there are
usually a large number of genes (  is often from several

thousands to several hundreds of thousands), there is a
serious concern about the false discovery rate (FDR).
Therefore, a multiple comparison approach must be
employed to control the FDR level. Recently, Benjamini
and Hochberg [10] introduced a practical and powerful
approach to multiple testing by controlling the (FDR).
This approach is especially useful for multiple hypothesis
testing in microarray experiments. It is a step-down type
of multiple testing procedure in combination with Bon-

ferroni approach. In light of the p-value, , obtained

using the C-statistic, the p-value , calculated using the

G-statistic, and the multiple testing procedure controlling
FDR, the following method (called "C&G Procedure") is
proposed for the selection of periodic gene expressions of
the same period:

Step 1: Calculate , and  according to equations (1)

and (2), respectively, for g = 1, ..., .

Step 2: Let the ordered  values be 

with corresponding genes ; and let the
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Step 3: For a given FDR level of q, let iq be the largest i for

which , and let jq be the largest j for which

.

Step 4: The intersection set

 then contains

all the statistically significantly periodically expressed
genes (of the same period). The difference set

 then contains possible peri-

odic genes with different periods, or of other patterns
other than periodic.

A natural question that might come up is: What is the FDR
level of the identified periodic genes contained in set K? A
straightforward proof leads to the conclusion that the FDR
level of the identified periodic genes contained in set K of

step 4 in the C&G Procedure is at most q. In other words,
by using this procedure, the FDR level is not inflated. The
application of the C&G Procedure is illustrated in the fol-
lowing four examples.

Analysis of the bacterial cell cycle data
The gene expression data from synchronized bacterium
Caulobacter crescentus cells (Laub [11]) is analyzed for pos-
sible periodically expressed genes using the procedure
proposed in this paper. The data can be downloaded from
the Bacterial cell cycle data website [12]. It contains infor-
mation on 1474 genes over 11 equally spaced time points
(with a time interval of 15 minutes). There are 533 genes
identified as cell-cycle regulated genes in Laub [11], while
for the same data Wichert [1] claims that only 44 genes are
cyclic genes at FDR level of 0.05. Using the C&G Proce-
dure of this paper, it is found out that the C-statistic iden-
tifies 166 genes as significant non-white noise expressions
(including possible cell-cycle regulated genes) and the G-
statistic identifies 44 such genes; their intersection set con-
tains 43 significant cell-cycle regulated genes. Therefore,
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The gene (ORF00082) in Laub data that is not considered periodic in this paperFigure 1
The gene (ORF00082) in Laub data that is not considered periodic in this paper.
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we claim that there are 43 significant periodic genes (of
the same period) at FDR level of 0.05. This conclusion
matches very well with that of Wichert et al. (2004). The
one gene which is considered as a periodic gene in
Wichert [1] but not as such a gene in this paper is
ORF00082 (ABC transporter, ATP-binding protein),
whose expression plot against the time is given in Figure
1. Clearly, Figure 1 shows a fluctuation pattern rather than
a periodic pattern. The ATP-binding protein gives general
function prediction only and its biological function is
poorly categorized according to the archive information
provided on the National Center for Biotechnology Infor-
mation (NCBI) website [13].

Analysis of the yeast cell cycle data
In the second example, the gene expression data sets from
the well-known yeast Saccharomyces cerevisiae microarray
experiments of Spellman [2] are analyzed for the identifi-
cation of significantly periodically expressed genes. The
data sets can be downloaded from the Yeast cell cycle data
website [14]. These four data sets were produced by three
different cell cycle synchronization techniques: alpha fac-
tor arrest (producing the "alpha" gene expression data),
temperature arrest (producing "cdc15" and "cdc28" gene
expression data sets), and elutriation synchronization
(producing the "elution" data set). The alpha data set con-
tains complete information on 4489 genes over 18
equally spaced time points (with a time interval of 7 min-
utes). Using the C&G Procedure, it is found out that the C-
statistic identifies 1188 genes as significant non-white
noise expressions (including possible cell-cycle regulated
genes) and the G-statistic identifies 473 such genes, their

intersection set contains 471 significant cell-cycle regu-
lated genes. Therefore, we claim that there are at least 471
significant periodic genes (of the same period) at FDR
level of 0.05 in the alpha experiment data, and there are
additional 717 genes in set D that are possibly periodic
with different periods, or of other patterns other than peri-
odic.

The same procedure is applied to the cdc15, cdc28, and
elution data sets, and the genes identified by both statis-
tics, their intersection set K, and the difference set D are
summarized in Table 1. Spellman [2] originally identified
800 cell-cycle genes in all of the four experiments (alpha,
cdc15, cdc28, and elution), while Wichert [1] claimed 468
cyclic genes in alpha, 766 cyclic genes in cdc15, 105 in
cdc28, and 193 in elution. The periodic genes found by
the C&G procedure are obviously in agreement with the
findings in Spellman [2] to some extent, and agree more
with the findings in Wichert [1], but not completely agree
with theirs. The genes identified in the difference set D
worth further investigation by biologists as they may lead
to new interesting discoveries. Furthermore, the results
found in this paper are certainly improvements over their
discoveries of periodic genes. The nine most significant
periodic genes in elution data are graphed in Figures 2 for
illustration purpose. The nine most significant genes
(YDL034W, YDL055C, YNR020C, YOR362C, YER137C,
YIL070C, YDR388W, YFL042C, and YGL004C) in set D of
elution data are graphed in Figure 3. The patterns of these
nine genes in Figure 3 certainly represent a mixture of
expressions of periodic, periodic with different period(s),
or of other patterns other than periodic. The genetic foot-

Table 1: Number of Significant Periodic Genes Identified by C-statistics, G-statistic, Intersection Set K, and Difference Set D

Cell type Experiment N G NC NG NK ND

C. crescentus bacteria 11 1474 166 44 43 123

Yeast alpha 18 4489 1188 473 471 717
Yeast cdc15 24 4381 1636 788 779 857
Yeast cdc28 17 1383 292 27 27 265
Yeast Elution 14 5766 1056 769 695 361

Human fibroblasts N2 12 7077 1 2 1 0
Human fibroblasts N3 12 7077 2 0 0 2

Human HeLa Score1 12 15536 44 7 6 38
Human HeLa Score2 26 16287 1351 154 153 1198
Human HeLa Score3 48 41508 9702 6117 5770 3932
Human HeLa Score4 19 40815 52 52 17 35
Human HeLa Score5 9 35871 5 1 0 1

N: number of time points; G: number of probe sets; NC: number of significant genes picked up by C-statistic; NG: number of significant genes picked 

up by G-statistic; NK: number of significant periodic genes picked up by the intersection set K; ND: number of significant other periodic genes or 
other patterned genes picked-up by the difference set D.
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printing of YDL034W, YDL055C, YNR020C, YIL070C,
YDR388W, YFL042C, and YGL004C reveal apparent mod-
erate growth defect on YPD after 20 generations according
to the archive information provided on the yeast genome
website [15]. This means that the expressions of these
seven genes show gradual decade patterns rather than ran-
dom patterns. Hence, our findings in set D really make
biological sense. Gene YOR362C participates in
endopeptidase activity and the molecular function of gene
YER137C is still unknown.

Analysis of human fibroblasts data
In this example, the microarray data on the transcriptional
profiling of the cell cycle in human fibroblasts will be ana-
lyzed. The experiments and data sets are reported in Cho
[3]. The data is available at the Human fibroblasts data
website [16]. There are two data sets resulted from experi-
ment N2 and experiment N3 with 12 time points and
7077 probe sets. There were approximately 700 genes that
were claimed as periodic genes in Cho [3]. The claim was
based on clustering and pattern matching as described by

Cho [3]. Shedden and Cooper [4] had doubts about the
biological grounds of the data analysis results which were
claimed to be statistically significant in Cho [3]. Wichert
[1] found no significant periodic genes in these two data
sets. Applying the C&G Procedure of this paper to N2 data
set, it is found out that the C-statistic identifies 1 gene as
significant non-white noise expressions (including possi-
ble cell-cycle regulated genes) and the G-statistic identifies
2 such genes; their intersection set contains 1 significant
cell-cycle regulated gene. Therefore, we claim that there is
one significant periodic gene at FDR level of 0.05 in the
N2 data set. Similarly, for the N3 data set, the C-statistic
identifies 2 genes as significant non-white noise expres-
sions (including possible cell-cycle regulated genes), and
the G-statistic identifies 0 such gene; their intersection set
contains 0 gene. Therefore, we claim that there is no sig-
nificant periodic gene in the N3 data set. This conclusion
matches very well with that of Wichert [1]. What is more
interesting is that the two genes M19645at (or HSPA5)
and U09117at (or PLCD1) identified in set D (expressions
are shown in Figure 4) certainly show some patterns

The nine most significant periodic genes in Elution dataFigure 2
The nine most significant periodic genes in Elution data.
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which require further biological investigations. Gene
HSPA5 belongs to the heat shock protein 70 family and
probably plays a role in facilitating the assembly of mul-
timeric protein complexes inside the ER, while gene
PLCD1 participates in a protein coding process in the
organ Bos Taurus (information available at NCBI).

Analysis of human cancer cell line data
In this last example, the human cancer cell line profiling
data sets resulted from large-scale microarray experiments
given in Whitfield [6] will be analyzed by using the C&G
Procedure. The data sets can be downloaded from the
Human cancer cell line data website [17]. There were 5
experiments conducted using three different cell cycle syn-
chronization methods: a double thymidine block method
(resulting in three data sets Score 1, Score2, and Score3);
thymidine followed by arrest in mitosis with nocodazole
(resulting in data set Score4) ; and mitotic shake-off using
an automated cell shake (resulting in data set Score5). The
C&G procedure is applied to these five data sets, and the

findings are also given in Table 1. In particular, the six sig-
nificant periodic genes identified in set K of Score1 data
are graphed in Figure 5; and their periodic patterns are
quite evident. These six genes have gene symbols: H2AFX,
CKS1, BIRC3, STK9, FLJ11259, and VAV3, respectively.
According to the NCBI website, H2AFX encodes a member
of the histone H2A family, and generates two transcripts
through the use of the conserved stem-loop termination
motif, and the polyA addition motif. Gene CKS1 is a pro-
tein coding gene in a human cell division control protein
family. The BIRC3 protein coding gene is the inhibitor of
apoptosis protein 1. STK9 is also a protein coding gene
but its biological process is still unknown. FLJ11259 is a
protein coding gene foe a hypothetical protein. VAV3 reg-
ulates the B cell responses by promoting the sustained
production of PIP3 and thereby calcium flux. Therefore,
close biological research on these six genes should be very
worthy according to their detected patterns found by the
C&G procedure. The data sets analyzed by C-statistic, G-
statistic, and C&G Procedure in all above examples are

The nine most significant genes in set D for Elution dataFigure 3
The nine most significant genes in set D for Elution data.
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summarized in Table 1. It is noted that the genes in Set K
of Table 1 are claimed as periodic genes (of the same
period) by the C&G procedure. The difference set D con-
tains genes of periodic, periodic with different period(s),
or of other patterns other than periodic. Genes in set D
worth biologists' further study and discovery. Table 2
gives the comparison of the results obtained by C&G Pro-
cedure to the results obtained by the researchers who orig-
inally conducted those experiments, and to the results
obtained by Wichert [1].

Discussion
Regarding both of the test statistics, several points need to
be addressed.

First of all, the G-statistic is testing for the significance of
the maximum periodogram. When the result is signifi-
cant, the message conveyed to us is that the maximum
periodogram is significant with the possible cause of the
underlying model being periodic. On the other hand, the
C-statistic utilizes a sort of standardized cumulative perio-

dograms, and considers all periodograms' contributions
towards the periodicity of the underlying model. There-
fore, these two statistics are not exactly the same. Sec-
ondly, although both G-statistic and C-statistic can be
used as test statistics for searching periodicity in a time
series, the G-statistic method is more specific and the C-
statistic method is broader in the sense that the alternative
hypothesis to the null hypothesis is rather vague. In other

words, for a fixed gene g, when the p-value  is small

compared with a predetermined significance level, the
conclusion that this gene is a significant periodic gene
according to the G-statistic can be reached; however, when

the p-value  is small, only the claim that this gene is

not a white noise (might be of periodic, periodic with dif-
ferent period, or of other patterns other than periodic)
according to the C-statistic can be drawn. Hence, one can
anticipate that the C-statistic will pick up more significant
genes than the G-statistic. This is valuable, especially in
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The two genes in set D of N3 data.
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expensive microarray experiments, because the biologist
can use the information to possibly discover genes that are
of different periods, or of other pattern which they have
not encountered before. Thirdly, from the definitions of
the two statistics (see Methods), we can easily establish
that

Gg ≥ 1,0 ≤ Cg ≤ 1, and Gg ≥Cg.  (3)

Then, the fact that Gg is great than its threshold value does
not necessarily imply that Cg is greater than its threshold
value, and vise versa. In other words, from the fact given
by (3), it is clear that these two statistics are not equivalent
in general; there are times, however, that both tests over-
lap with each other. This is not surprising because the G-
statistic is constructed for testing normal white noise ver-
sus periodic function, and the C-statistic method is
broader in the sense that the alternative hypothesis to the
null hypothesis is rather vague. One might think that the
set of periodic signals identified by the G-statistic is con-
tained in the set of genes identified by the C-statistic. It is

not necessarily true for the reasons mentioned here in this
section.

Furthermore, the G-statistic method is sensitive to the
departure from normality as pointed in Davis [18] and
Wilks [19]. Hence, when the normality assumption on the
random errors is violated, the null distribution of the G-
statistic will not be true in general and the p-value in (1)
could be very wrong. The C-statistic method is insensitive
to the departure of normality as pointed out in Durbin
[9]. The two statistics can then be served as constraints for
each other in order to effectively search for true periodic
genes.

Moreover, the behavior of the C-statistic method, the G-
statistic method, and the C&G Procedure for identifying
periodic signals is empirically studied by means of the fol-
lowing simulation studies. To investigate the power of the
three methods under different noise conditions, a sine sig-
nal mixed with a normal white noise (with the ratio of
amplitude of signal to noise being 1 : 1) on 20 time points

The six significant periodic genes in set K of Score1 dataFigure 5
The six significant periodic genes in set K of Score1 data.
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is simulated 10,000 times, and the frequency that each of
the three methods rejects the null hypothesis (at the false
positive rate of 0.05), or identifies the signal as periodic,
is recorded. Similarly, a sine signal mixed with a skewed
noise (a chi-square distribution with 1 degree of freedom)
on 20 time points is simulated 10,000 times, and the fre-
quency that each of the three methods rejects the null
hypothesis is recorded. The empirical power of each
method is hence obtained and listed in Table 3. From
Table 3, we conclude that the empirical powers of all three
methods increase if the noise is improved from skewed
distribution to normal distribution. Under each noise
condition, the C-statistic method has higher power than
that of the other two methods. The power of C&G Proce-
dure is about the same as the G-statistic method. When
the periodic signal is stronger than the normal white noise
(with the ratio of amplitude of signal to noise being 9 : 8,
10 : 8, 11 : 8, 12 : 8, respectively), our simulation (10,000
times) of such signals on 20 time points shows that all
three methods have high powers (see Table 4). This is a
very good property of all three methods. Next, to study the
effectiveness of the methods in identifying true periodic
signals when the data is noisy, weaker sine signals mixed
with a stronger normal white noise (with the ratio of
amplitude of signal to noise being 7 : 8, 6 : 8, 5 : 8, 4 : 8
or 1 : 2, respectively) on 20 time points are simulated for
10,000 times each. The empirical powers of the C-statistic,
the G-statistic, and the C&G Procedure are given in Table
5. We conclude from Table 5 that the empirical power of
the C-statistic method is always higher than the other
methods, and the empirical power of C&G Procedure is
about the same or compatible with the G-statistic method
when the data is even very noisy (signal to noise ampli-
tude ratio being 1:2). The power of all methods decreases
when the noise dominants the true periodic signal more
and more (see the powers from row 2 to row 5 of Table 5).

As there usually are strong and weak signals in a large gene
expression dataset, knowing the behavior of all three
methods under these situations helps the biologist to
choose a right searching tool for analyzing their experi-
mental data. Although these simulation studies show that
the power of the C-statistic is higher than that of the other
two methods, we need to investigate the empirical type I
error rate, or false positive rate, of these three methods.
For this purpose, a sequence of 20 normal observations
(without any periodic signals) is simulated 10,000 times,
the frequency that each of the three methods considers the
observations as periodic signals (at the priori false positive
rate of 0.05) is recorded. Similarly, a sequence of 20 Chi-
square (1 degree of freedom) observations (without any
periodic signals) and a sequence of 20 observations (with-
out any periodic signals) from uniform (0,1) distribution
are simulated 10,000 times, and the similar frequencies
are recorded. Then the empirical false positive rates of the
three methods are obtained and summarized in Table 6. It
is clear that the false positive rate of the C-statistic is the
highest and that of the C&G Procedure is the least under
each noise scenario. All simulation studies together indi-
cate that to maintain a stable and relatively high power
and to minimize the false positive rate, the C&G Proce-
dure is a right choice. Thus, the advantage of using the
proposed C&G Procedure emerges. The simulation, as
well as all calculations in previous sections, is carried out
using Matlab and Mintab 14.

Finally, as the null distributions of these two statistics are
all exact distributions, they work well (as long as the
underlying assumptions are met) for any sample size
(small or large). This characteristic makes both tests very
valuable to microarray data sets as the observations
obtained for each gene is usually not large in a microarray
experiment.

Table 2: Number of Periodic Genes Identified by the Original Experimenters, Wichert et al. (2004), and Chen

Cell type Experiment Experimenter Wichert et al. (2004) Chen

C. crescentus bacteria Laub et al. (2000), identified 553 periodic genes 44 43

Yeast alpha Spellman et al. (1998), 468 471
Yeast cdc15 total of 800 periodic genes 766 779
Yeast cdc28 identified in all of these four 105 27
Yeast Elution yeast cell cycle experiments 193 695

Human fibroblasts N2 Cho et al. (2001), 700 periodic 0 1
Human fibroblasts N3 genes identified in N2 and N3 0 0

Human HeLa Score1 Whitfield et al. (2002), 0 6
Human HeLa Score2 total of 800+ periodic genes 134 153
Human HeLa Score3 identified in these five 6043 5770
Human HeLa Score4 Human Cancer cell line 56 17
Human HeLa Score5 experiments 0 0
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Conclusion
In this paper a statistical C&G Procedure is proposed for
identifying significantly periodically expressed genes for a
desired FDR level q. This approach uses both Bartlett's C-
statistic and Fisher's G-statistic to secure the actual peri-
odic genes existing in a microarray data set. As the search-
ing process is also a multiple testing procedure, the FDR
level is used to assure that the overall false discover rate for
the whole procedure is at most α. The G-statistic does
assume that the sequence is Gaussian, this may not be the
case for any microarray data set. Nevertheless, a log-trans-
formed expression data usually can satisfy the Gaussian
assumption. The C-statistic is more robust towards the
violation of Gaussian assumption. The advantage of the
C&G Procedure thus emerges. Although the gene expres-
sion sequences in a microarray data set are usually corre-
lated, the approach of the multiple testing with controlled
FDR level does not rely on independence assumption
heavily according to Benjamini and Hochberg [10]. There-
fore, this C&G Procedure is a promising statistical tool for
finding significantly periodically expressed genes (of the
same period) in a microarray data set. Other issues, such
as the analysis of data measured in unevenly spaced time
intervals and the size of each sequence needed for valid
statistical analysis, will be topics of future investigations
in order to more effectively search for significantly period-
ically expressed genes in a microarray data set.

Methods
Suppose that a time series is observed and one concern is
the possible periodicity of this time series. To be specific
in the context of gene expressions observed at time t for
any fixed gene g, we denote the time series (or gene expres-
sion observed in a time course) by Yg(t) for t = 1, ..., N and

g = 1, ..., . To model Yg(t) with periodicity, we can

assume:

Yg(t) = fg(t) + εgt,

where fg(t) is a periodic function with a smallest positive
period Tg for gene g, that is fg(t + Tg) = fg(t) for all t; and εgt
is a sequence of non-observable random errors with mean
0 and homogenous variance σ2 for all g and t. For a fixed
gene g, we can specifically assume that a time series gene
expression is well represented by

Yg(t) = µ + A cos (ωt) + B sin(ωt) + εgt,

where A, B, and µ (known) are constants, ω is of the form
2πk/N, for k = 0,1, ..., m, with m = (N - 1)/2 for N odd and
m = N/2 for N even. Given a finite realization of the time
series gene expressions yg(t) (sample values or microarray
expressions obtained from the experiment), we can then
view yg(t) as represented by

where ωk = 2πk/N, for k = 0,1, ..., m, ,

and

for k = 1, ..., m and g = 1, ..., . For the testing of perio-

dicity related hypotheses of a time series, the periodogram
of gene g is denned as

for k = 1, ..., m and g = 1, ..., . Under the assumption that

εgt's are identically independently distributed normal ran-

dom errors with mean 0 and homogenous variance σ2

(that is, Yg(t) is a normal white noise), Fisher [7] proposed

a G-statistic and derived the exact null distribution of G.
Suppose it is of our interest to test


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Table 5: Empirical power of C, G, and C&G on weaker signals

The ratio of amplitude of signal to noise C G C&G

7:8 96.00% 91.72% 91.72%
6:8 87.39% 78.40% 78.40%
5:8 71.95% 56.87% 56.82%
4:8 51.03% 34.30% 34.01%

Table 3: Empirical power of C, G, and C&G with the ratio of 
amplitude of signal to noise being 1 : 1

Signal type C G C&G

sine signal with skewed noise 81.66% 75.25% 75.23%
sine signal with normal white noise 99.09% 97.57% 97.57%

Table 4: Empirical power of C, G, and C&G on stronger signals

The ratio of amplitude of signal to noise C G C&G

9:8 99.78% 99.50% 99.50%
10:8 99.97% 99.93% 99.93%
11:8 99.99% 99.99% 99.99%
12:8 100% 100% 100%
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H0: Yg(t) = µ + εgt,  (5)

versus

H1: Yg(t) = µ + A cos(ωt) + B sin (ωt) + εgt,  (6)

then for a fixed gene g, the Fisher's G-statistic is given by

For details on the G test statistic, its null distribution and
the percentage points of the G test statistics, please refer to
Fisher [7], Davis [18], Wilks [19], and Priestley [20].

Other test statistics for searching "hidden periodicity" in a
time series have been proposed as part of spectral analysis
(Fuller [21]) in the literature. For the following more gen-
eral setting of hypothesis testing of

H0: Yg(t) is a normal white noise,  (8)

versus

H0: Yg(t) is not a normal white noise,  (9)

for fixed gene g, Bartlett [8] proposed to use a C-statistic as
a test statistic to fulfill the task of such hypothesis testing
procedure. For a fixed gene g, we obtain the C-statistic as

with

for g = 1, ..., . Durbin ([9,22]) provided the details of

the null distribution of the test statistic C under the nor-
mality assumption.

According to Fisher [7], the observed significance value, or

p-value , for the hypothesis testing of the periodicity of

a fixed gene g using G-statistic as the test statistic is
expressed as in (1), or again

where ξg is the sample realization of the G-statistic value

calculated from (7) divided by m, and L(ξg) is the largest

integer less than 1/ξg. Meanwhile, according to Durbin

[9], the p-value, , for the hypothesis testing of the peri-

odicity of a fixed gene g using C-statistic as the test statistic
is given in (2), or specifically,

where ag = mCg, Cg is given in (10), [ag] = INT{ag}, and n =
m - 1.

The C&G Procedure utilizes both of the test statistics and
gives a practical way for identifying significant periodic
genes in massive microarray data.
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