
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
The distance-profile representation and its application to detection 
of distantly related protein families
Chin-Jen Ku and Golan Yona*

Address: Department of Computer Science, Cornell University, Ithaca, NY, USA

Email: Chin-Jen Ku - kucj@ece.cornell.edu; Golan Yona* - golan@cs.cornell.edu

* Corresponding author    

Abstract
Background: Detecting homology between remotely related protein families is an important
problem in computational biology since the biological properties of uncharacterized proteins can
often be inferred from those of homologous proteins. Many existing approaches address this
problem by measuring the similarity between proteins through sequence or structural alignment.
However, these methods do not exploit collective aspects of the protein space and the computed
scores are often noisy and frequently fail to recognize distantly related protein families.

Results: We describe an algorithm that improves over the state of the art in homology detection
by utilizing global information on the proximity of entities in the protein space. Our method relies
on a vectorial representation of proteins and protein families and uses structure-specific
association measures between proteins and template structures to form a high-dimensional feature
vector for each query protein. These vectors are then processed and transformed to sparse feature
vectors that are treated as statistical fingerprints of the query proteins. The new representation
induces a new metric between proteins measured by the statistical difference between their
corresponding probability distributions.

Conclusion: Using several performance measures we show that the new tool considerably
improves the performance in recognizing distant homologies compared to existing approaches
such as PSIBLAST and FUGUE.

Background
The ongoing sequencing efforts continue to discover the
sequences of many new proteins, whose function is
unknown. Currently, protein databases contain the
sequences of about 1,800,000 proteins, of which more
than half are partially or completely uncharacterized [1].
Typically, proteins are analyzed by searching for homolo-
gous proteins that have already been characterized.
Homology establishes the evolutionary relationship
among different organisms, and the biological properties
of uncharacterized proteins can often be inferred from

those of homologous proteins. However, detecting hom-
ology between proteins can be a difficult task.

Our ability to detect subtle similarities between proteins
depends strongly on the representations we employ for
proteins. Sequence and structure are two possible repre-
sentations of proteins that hinge directly on molecular
information. The essential difference between the repre-
sentation of a protein as a sequence of amino acids and its
representation as a 3D structure traditionally dictated dif-
ferent methodologies, different similarity or distance
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measures and different comparison algorithms. The
power of these representations in detecting remote
homologies differ markedly. Despite extensive efforts,
current methods for sequence analysis often fail to detect
remote homologies for sequences that have diverged
greatly. In contrast, structure is often conserved more than
sequence [2-4], and detecting structural similarity may
help infer function beyond what is possible with sequence
analysis. However, structural information is sparse and
available for only a small part of the protein space.

One may argue that the weakness of sequence based
methods is rooted in the underlying representation of
proteins, the model used for comparison and/or the com-
parison algorithm, since in principle, according to the
central dogma of molecular biology, (almost) all the
information that is needed to form the 3D structure is
encoded in the sequence. Indeed, in recent years better
sequence-based methods were developed [5-8]. These
methods utilize the information in groups of related
sequences (a protein or domain family) to build specific
statistical models associated to different groups of pro-
teins (i.e. generative models) that can be used to search and
detect subtle similarities with remotely related proteins.
Such generative models assume a statistical source that
generates instances according to some underlying distri-
butions, and model the process that generates samples
and the corresponding distributions.

When seeking a new similarity measure for proteins that
departs from sequence and structure, a natural question is
what is the "correct" encoding of proteins? Several works
studied the mathematical representation of protein
sequences based on sequence properties such as amino
acid composition or chemical features [9-12]. However,
these representations had limited success, since they did
not capture the essence of proteins as ordered sequences
of amino acids.

Recently, alternative representations of protein sequences
based on the so-called kernel methods were proposed.
These methods are drawn from the field of machine learn-
ing and strive to find an adequate mapping of the protein
space onto the Euclidean space where classification tech-
niques such as support vector machines (SVM) or artificial
neural networks (ANN) can be applied. Under the kernel
representation, each protein is typically mapped to a vec-
tor in a (high-dimensional) feature space, and the resulting
vector is termed feature vector. Subsequently, an inner
product is defined in the feature space in order to estimate
the (dis)similarity among different proteins. A major
advantage of the kernel methods is that with an adequate
choice of the kernel function, the feature vectors need not
be computed explicitly in order to evaluate the similarity
relationships. In addition, the users may build a specific

feature space such that the kernel function directly esti-
mates these relationships. However, string kernels do not
easily lend themselves to this property, and therefore they
need to be computed explicitly. The main difference
between the different kernel methods reside in the defini-
tion of feature elements which are either related to the
parameters of some generative process for each group of
related proteins or some measure of similarity among the
protein sequences.

For instance, the SVM-Fisher algorithm [13] uses the
Fisher kernel which is based on hidden Markov models
(HMMs). The components of the feature vector are the
derivatives of the log-likelihood score of the sequence
with respect to the parameters of a HMM that has been
trained for a particular protein family. Tsuda et. al. [14]
implemented another representation based on marginal-
ized and joint kernels and showed that the Fisher kernel is
in fact a special case of marginalized kernel. They also
experimented with the marginalized count kernels of dif-
ferent orders, that are similar to the spectrum kernel which
was first introduced by [15]. The spectrum kernel is evalu-
ated by counting the number of times each possible k-
long subsequence of amino acids (k-mer) occurs in one
given protein. The marginalized count kernel takes into
account both the observed frequency of different subse-
quences and the context (e.g. exon or intron for DNA
sequences). The mismatch-spectrum kernel [16] is a general-
ization of the spectrum kernel that considers also muta-
tion probabilities between k-mers which differ by no
more than m characters. The homology kernel [17] is
another biologically motivated sequence embedding
process that measures the similarity between two proteins
by taking into account their respective groups of homolo-
gous sequences. It can be thought of as an extension of the
mismatch-spectrum kernel by adding a wildcard character
and distinguishing the mismatch penalty between two
substrings depending on whether the sequences are
grouped together or not.

The covariance kernel is another type of kernel that uses a
framework similar to the one employed by our method.
The covariance kernel approach is probabilistic and much
work is focused on the implementation of the generative
models. In [18], the covariance kernel is based on the
mutual information kernel which measures the similarity
between data samples and a certain generative process.
The generative process is characterized by a mediator dis-
tribution defined between the (usually vague) prior and
the posterior distribution. On the other hand, [19] focuses
on the representation of biological sequences using the
probabilistic suffix tree [20] as the generative model for
different groups of related proteins. The proposed kernel
generates a feature vector for protein sequences, where
each feature corresponds to a different generative model
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and its value is the likelihood of the sequence based on
that model. Finally, we mention another related work
[21] that uses the notion of pairwise kernel. Under this
framework, each protein is represented by a vector that
consists of pairwise sequence similarities with respect to
the set of input sequences. It is also worth mentioning the
many related studies in the field of natural language
processing and text analysis. For example, an approach
that in some ways is similar to the pairwise and covariance
kernels and in other ways is related to the spectrum kernel
approach, is used in [22] to represent verbs and nouns in
English texts, with nouns represented as frequency vectors
over the set of verbs (based on their association with dif-
ferent verbs) and vice versa. The nouns and verbs are then
clustered based on this representation. Studies that
attempted to devise automatic methods for text categori-
zation and web-page classification often use similar tech-
niques, where the text is represented as a histogram vector
over a vocabulary of words (e.g. [23]).

Here we study a general framework of protein representa-
tion called the distance-profile representation, that utilizes
the global information in the protein space in search of
statistical regularities. The representation draws on an
association measure between input samples (e.g. proteins
and protein families) and can use existing measures of
similarity, distance or probability (even if limited to a sub-
set of the input space for which the measure can be
applied). This representation induces a new measure of
similarity for all protein pairs based on their vectorial rep-
resentations. Our representation is closely related to the
covariance and pairwise kernels described above. How-
ever, it is the estimation of pvalues through statistical
modeling of the background process, coupled with the
transformation to probability distributions, the noise
reduction protocols and the choice of the distance func-
tion that result in a substantial impact on the perform-
ance, and we demonstrate how an adequate choice of the
score transformation and the distance metric achieves a
considerable improvement in detection of remote homol-
ogies.

This paper is organized as follows. We first introduce the
notion of distance-profile. We describe how to process the
feature vectors through noise reduction, and pvalue transfor-
mation followed by normalization. We compare the per-
formance of our new method against several standard
algorithms by testing them on a large set of protein fami-
lies.

Results
The distance-profile representation
Our goal is to seek a faithful representation of the protein
space that will reflect evolutionary distances even if unde-
tectable by means of existing methods of comparison. We

explore a technique based on the distance-profile tech-
nique described in [25] and its derivative as applied to
protein sequences in [26]. The power of the representa-
tion stems from its ability to recover structure in noisy
data and boost weak signals [25,26].

The distance-profile representation is simple and can be

applied to arbitrary spaces ,  if there exist an associ-

ation measure between instances of  and instances of

 such as a distance function, similarity function or a
probability measure. Given an instance X in the input

space , a reference set {Y1, Y2, ... Yn} of entities in 

(e.g. proteins or protein families, sequences or generative
models) and an underlying association measure, we asso-
ciate with the instance X a position in a high dimensional
space, where every coordinate is associated with one
member of the reference set and its value is the similarity
with that particular reference object. I.e., we map X to a
vector of dimension n in the host space

This simple representation leads to the definition of a new
distance or similarity measure among samples based on
their vectorial representation, and when the reference set

is identical to the input space (  = ), an iterative
application of this representation can be used to form
hierarchical clustering over the input samples [25]. In this
paper we demonstrate the application of this method to
the problem of homology detection between distantly
related proteins.

One might observe the resemblance of our method with
pairwise kernels and covariance kernels mentioned in the
'Background' section. However, it is the processing of the
feature vectors and the choice of the metric, as is laid out
next, which are the crucial ingredients that differentiate
our method from the previous studies. As exemplified in
this paper, under the proper transformations the distance-
profile representation has mathematical and statistical
interpretations that have other implications, and it is
these transformations that deem this method very effec-
tive for homology detection, database search and cluster-
ing.

The reference set
Remotely related proteins usually share little sequence
similarity, however, they are expected to have similar
structures. Therefore, as a reference set for our experiments
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we chose a non-redundant structure library consisting of
domain structures that represent the current protein struc-
ture space. The set is derived from the SCOP database
[27], release 1.57. Specifically, we used the Genetic
Domain Sequence dataset that we downloaded from the
Astral webpage [28]. The dataset is obtained from 14,729
entries in the Protein Data Bank (PDB) [29] and contains
only protein domains with less than 40% identity
between pairs of sequences. Our library consists of 3,964
distinct SCOP domains covering in total 644 folds, 997
superfamilies, and 1,678 families. For notation purpose,
we denote this library of template proteins by SCOP-DB.

The association measure

We rely on "structure-aided" sequence alignment to
bridge the gap between the sequence space and structure

space. Given the library of structures  = {Y1, Y2, Y3, ...,

Yn}, every protein sequence P is mapped to a structure-spe-

cific n-dimensional feature vector, as is described above,
where the association measure S(P, Yi) is the similarity

score of the sequence-structure alignment between the
sequence P and the template structure Yi, computed with

the FUGUE threading algorithm [30] (see Appendix).
From this point on we discuss the application of the dis-
tance-profile representation with threading-based associa-
tion measures. However, we note that the methods
described in this paper can be used to process feature vec-
tors using other association measures. In the 'Discussion'
section we show that a similar approach applied to
sequence-profile alignment scores also produces a consid-
erable improvement in detecting remote homologies.

Processing feature vectors: pvalue conversion and 
normalization
The choice of the underlying association function S(P, Yi)
can have a drastic impact on the effectiveness of the repre-
sentation and we tested several variations.

The score association measure

A possible choice is obviously the score reported by the

algorithm that compares entities of  with entities of .
(for example, the zscore reported by the FUGUE threading
algorithm). We denote feature vectors that are based on
the score association measure by Pscore.

The pvalue association measure
If the association measure is distributed over a wide range,
the most significant scores will inevitably shadow other
numerically less important but still significant matches,
thus reducing the sensitivity of the representation. This is
the case with most types of similarity scores, including the
threading zscores assigned by the FUGUE program.

To address this problem we convert the zscores to their
underlying cumulative distribution function (cdf) value,
where the amplitude of outlier zscores is reduced to
within a reasonable range. As was shown in [31], the
zscores of local alignment scores follow the extreme value
distribution (EVD), see Figure 1, whose cumulative func-
tion F(x) takes the form

F(x) = Prob(x' ≤ x) = e-φ(x)  where  φ(x) = e-λ(x-µ).  (2)

Based on this background distribution we replace the
original zscores with a new association measure such that
S'(P, Yi) = F(S(P, Yi)) where S(P, Xi) is the similarity zscore
reported by FUGUE. With this transformation, all coordi-
nates are bounded between 0 and 1, with high zscores
transformed to values close to 1. Note that the pvalue of a
given zscore x is pvalue(x) = 1 - F(x). We denote feature
vectors that are based on the F(x) association measure by
Ppvalue. It should also be noted that in practice F(x) = 1 -
pvalue(x) = 1 for large x because of machine precision lim-
itations. Therefore, the pvalues that are associated to sig-
nificant zscores (typically above 5) are approximated by
their empirical distribution, thus allowing distinction
between a pair of highly significant yet numerically dispa-
rate zscores, e.g. 10 versus 60.

The probability association measure
the third variation we tested is based on a simple normal-
ization of each feature vector to form a probability distri-
bution. This transformation enables us to explore distance
measures that are suited for probability vectors, as
described in section 'Metrics and score functions'. Indeed,
in this representation, the normalized vector entries can



 

The empirical cdf of the zscores obtained by FUGUE and the fitted EVD cdf with parameters λ = 2.0665 and µ = 1.3611Figure 1
The empirical cdf of the zscores obtained by FUGUE and the 
fitted EVD cdf with parameters λ = 2.0665 and µ = 1.3611.
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be considered as the coefficients of a mixture model where
the components models are the protein structures, each
one inducing a different probability distribution over the
protein sequence space. This interpretation emphasizes
the similarity with covariance methods which also resort
to a probabilistic representation of different protein fami-
lies as described in the 'Background' section. We denote
feature vectors that are based on this association measure
by Pprob.

Reducing noise: sparse feature vectors

Our reference set is composed of proteins that belong to
different protein families and folds (see section 'The refer-
ence set'). Within that data set no two proteins share more
than 40% sequence identity. Therefore, for a given query
protein we expect to observe only a few significant simi-
larity values in the vector P. That is, the entries that corre-
spond to the structural templates of protein families that
are related to the query. In other words, the feature vectors
contain many entries that are essentially random and
meaningless. These random numbers will contribute to
the differences between feature vectors, thus masking pos-
sibly significant similarities. To reduce noise due to unre-
lated proteins we eliminate all entries with zscore below a

certain threshold τ, or pvalue above a certain threshold τ',
to reflect the fact that the corresponding sequence-struc-
ture pair is considered irrelevant (Another alternative is to
weight the differences by the significance of the measure-
ments. However, to speed up the processing and compar-
ison of feature vectors we adopted the threshold

approach.) The parameter τ (or τ') is optimized to maxi-
mize performance, as described in section 'Parameter
optimization'. Note that entries with low zscores that are
filtered in this step (assigned 0 zscore) remain zero under

the transformation to the cdf pvalue as described above.

The processed feature vector is denoted by .

The noise reduction is applied to the original feature vec-
tors and is followed by the pvalue conversion and the nor-
malization to yield new feature vectors Ppvalue and Pprob,
respectively. To illustrate the impact of our procedures on
the distance profiles, let us consider the example of two
closely related proteins d1qmva_(Thioredoxin peroxidase 2)
and d1hd2a_ (Peroxiredoxin 5) that belong to family
c.47.1.10 under the SCOP denomination. The sequences
were threaded against the SCOP library of structural
domains, and feature vectors were compiled from the
zscores reported by FUGUE. In Table 1 we report the
2163th up to the 2169th entries of their original feature
vectors as well as their transformations after noise reduc-
tion, pvalue conversion and normalization. As this exam-
ple demonstrates, the zscore entries are noisy and spread
over a wide numerical range. For instance, the 2167th
entry of both vectors correspond to their threading score
versus the structure of d1prxa_ (HorF6 peroxidase), another
protein that is in the same SCOP family c.47.1.10. While
the zscore reaches 15.79 for d1qmva_, it is only 6.38 for
d1hd2a_. These large differences will inevitably result in
large distances between the feature vectors despite the fact
that they have significant zscore values in the same posi-
tions. The pvalue conversion and normalization (third
and fourth rows in the table) resolve this problem by res-
caling scores to within a fixed interval.

Metrics and score functions
Under the distance-profile representation, the similarity
(distance) between two protein sequences P and P' is
defined as the similarity (distance) of their corresponding
feature vectors

S(P, P') = f(P, P')

P̂score

Table 1: Illustration of noise reduction, pvalue conversion and normalization on the feature vectors associated with proteins d1qmva_ 
(Thioredoxin peroxidase 2) (denoted by c.47.1.10.3) and d1hd2a_ (Peroxiredoxin 5) (denoted by c.47.1.10.4). We display the 2163th up to 
the 2170th entries of the different feature vectors. The zscore cutoff value τ is set at 3.5. The feature vector for c.47.1.10.3 reaches its 
maximum at the 2165th position which corresponds to the self-alignment zscore.

Representat
ion

Sequence 2163th to 2170th entries of the feature vectors

Pscore c.47.1.10.3 0 5.170 63.210 6.420 15.790 4.150 0 1.590
c.47.1.10.4 1.980 1.730 7.070 53.530 6.380 3.290 0 0
c.47.1.10.3 0 5.170 63.210 6.420 15.790 4.150 0 0
c.47.1.10.4 0 0 7.070 53.530 6.380 0 0 0

Ppvalue c.47.1.10.3 0 0.998916 0.999921 0.999163 0.999619 0.996863 0 0
c.47.1.10.4 0 0 0.999234 0.999888 0.999158 0 0 0

Pprob c.47.1.10.3 0 0.052803 0.052856 0.052816 0.052840 0.052694 0 0
c.47.1.10.4 0 0 0.077210 0.077260 0.077204 0 0 0

P̂score
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The function f can be a similarity function or a distance
function and we considered several different variants. We
tested the L2 norm (the Euclidean metric) and the L1 norm
(the Manhattan distance). For probability distributions
we also tested the Jensen-Shannon (JS) measure of diver-
gence [34]. Given two probability distributions p and q,
for every 0 ≤ λ ≤ 1, their λ-Jensen-Shannon divergence is
defined as

where DKL [p||q] is the Kullback-Leibler (KL) divergence

[35] defined as  and r = λp +

(1 - λ)q can be considered as the most likely common

source distribution of both distributions p and q, with λ
as a prior weight (without a priori information, a natural

choice is λ = 1/2). Unlike the Kullback-Leibler measure,
the JS measure is symmetric and bounded. It ranges
between 0 and 1, where the divergence for identical distri-
butions is 0. This measure has been used successfully in
[7,36,37] to detect subtle similarities between statistical
models of protein families and in [38] for automatic
domain prediction from sequence information.

As an alternative approach to assess the similarity of a pair
of proteins based on their distance-profile representation
we propose the pvalue-distance (PD) function. This func-
tion assesses the distance between two proteins by esti-
mating the probability to observe a random protein with
a feature vector inside the volume delimited by their two
feature vectors. The smaller the volume is, the more simi-
lar are the two vectors. The function operates on the pval-
ues used to form the feature vectors Ppvalue. Given two
feature vectors P and Q that correspond to proteins P and
Q, we consider one coordinate i at a time and estimate the
total probability mass of samples whose i-th feature is
bounded between the feature values pi and qi as is illus-
trated in Figure 2a. Since each representative in the refer-
ence set induces a complex high-dimensional distribution
over the protein sequence space, the one-dimensional
pvalue measure pi can only serve to approximate a certain
perimeter in the sequence space of sequences that are as
similar or more similar to the i-th source than the protein
P. Therefore, we use the least significant pvalue of pi and qi
as an upper bound estimator of the volume of relevant
instances, as illustrated in Figure 2b. The total volume is
computed by taking the product over all coordinates.

Formally, consider the two pvalue feature vectors
 and  that are

obtained by mapping each zscore zi to its pvalue pi using
the EVD background distribution as described in section

'Processing feature vectors'. Their pvalue distance is
defined as

In practice, the PD score is evaluated through its loga-
rithm:

(It should be noted that here the measure pvalue(z) is used
directly to define the feature values, as opposed to F(z) =
1 - pvalue(z) that was used before when compiling the fea-
ture vectors Ppvalue. However, to simplify notation we also
refer to these feature vectors as Ppvalue.)

To distinguish all the measures discussed in this section
from the association measures discussed in section
'Processing feature vectors', we refer to all of them from
now on as distance metrics, although they are not neces-
sarily metrics or distance functions.

Discussion
Dataset preparation
We use the SCOP classification of protein structures [27]
as our benchmark. The SCOP database is built mostly
based on manual analysis of protein structures and is
characterized by a hierarchy with four main levels: class,
fold, superfamily and family. Proteins that belong to the
same family display significant sequence similarity that
indicates homology. At the next level (superfamily), fam-
ilies are grouped into superfamilies based on structural
similarity and weak sequence similarity (e.g. conserved
functional residues). Proteins that belong to different
families within the same superfamily are considered
remotely related. It is this level that has been used in many
studies to evaluate sequence comparison algorithms (e.g.
[7,39,40]). The challenge is to automatically detect simi-
larities between families within the same superfamily,
that were established manually by the SCOP experts.

To determine the optimal parameters for the distance-pro-
file representation and compare its performance to other
algorithms, we split the library SCOP-DB into a training
set and a test set. Since our purpose is to test the ability to
find remotely related proteins at the superfamily and fold
levels, we first discard all proteins that have fewer than 5
remote homologs in SCOP-DB (i.e. are in superfamilies of
size 5 or less). From the remaining 2,570 sequences we
randomly select 100 for the training set, and the rest
(2,470 sequences) are compiled into the test set.

D D DJS KL KL
λ λ λ[ || ] [ || ] ( ) [ || ]p q p r q r= + −1

D p
p

q
KL

i
i

i
i

[ || ] logp q = ∑ 2
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Performance indices
To evaluate the performance of a given method for a spe-
cific query protein we compare the protein against SCOP-
DB, sort the results and assess the correlation of the sorted
list with established homology relations. In our experi-
ments we consider two proteins to be related (a positive
pair) if they belong to the same SCOP superfamily. All
other pairs are treated as negatives. We also consider a
more relaxed definition, where proteins are deemed
related if they belong to the same SCOP fold.

A popular measure of performance used in signal detec-
tion and classification is the ROCk measure [41]. This is
the cumulative count of positive samples detected until k
negative samples are met in the sorted list of results. We
use four different indices to assess performance, all are
variations on commonly used sensitivity and accuracy
measures. These indices measure the ability of a given
algorithm to recognize different levels of structural simi-
larity between protein sequences and within neighbor-
hoods of varying sizes:

• The ROC1 superfamily index (ROC1-S).

• The ROC1-fold index (ROC1-F).

• The top-superfamily-superfamily index (TSS).

• The top-fold-fold index (TFF).

Given the sorted list of results for a query protein p, the
ROC1-S index totals the number of proteins in the same
superfamily as p that are observed from the top of the
sorted list until the first false match (i.e. different super-
family) appears. Likewise, the ROC1-F index is defined by
counting the number of proteins in the same fold as p from
the top of the sorted list until the first match that involves
two proteins with different folds. The last two indices are
characterized by the following generic definition: the top-
X-Y index for a protein p counts the total number of pro-
teins sharing the same Y SCOP denomination among the
nX closest sequences of p, where nX is the total number of
sequences in the library that have the same X SCOP
denomination as p itself (For example, to compute the
top-fold-fold index for a query protein that belongs to a
SCOP fold containing n proteins, we look at the top n pro-
teins in the sorted list and count how many of them are

The pvalue distanceFigure 2
The pvalue distance. Left: Often is the case that the distance between two measurements depends not only on the relative 
nominal difference between the measurements but also on the absolute magnitude of the each one of the measurements. For 

example, two measurements z1 and  are statistically more similar to each other than the two measurements z2 and . That 

is to say that there are fewer measurements with score as high as z1 and  and therefore fewer instances that have similar 

properties. The measurements in our case are the zscores that indicate the significance of the match between a sequence and 
a structural template (the source). For a given zscore z, the pvalue measure pvalue(z) is an estimate of the total probability mass 
in the protein sequence space of sequences that match the structural template with zscore ≥ z. Right: The least significant 
pvalue of the two associated with the two measurements is an estimate of the mass of sequences with similar properties (note 
pvalue1 <pvalue2).
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actually in the same fold as the query protein). Self-simi-
larity is ignored in the assessment of all performance indi-
ces.

Note that all these indices are closely related to sensitivity
measures at different levels, however, the relevant neigh-
borhood is calibrated on a per-superfamily/fold basis.
And while the two ROC indices stop as soon as one false
match is encountered, the top-X-Y indices credit a method
that detects many true positives at the top even if mixed
with a few false positives. Therefore, a method yielding a
lower ROC1 index but higher TSS (or TFF) should be still
considered successful since it clusters the query close to a
larger number of related objects.

To obtain the overall performance of a method with
respect to a set of queries, we simply take the sum of all
their corresponding performance indices as the global
result. I.e. given a query set Q = {q1, ..., qn}, the perform-
ance of a method M, using index I is

where I(M, qi) is the performance of the method M for the
protein qi (for example, TFF(FUGUE, qi) is the TFF per-
formance of FUGUE on protein qi).

Normalized performance indices
The global performance indices might be affected by the
specific make up of the query set, since superfamilies and
folds vary greatly in size. In order to reduce a potential
bias due to large superfamilies/folds that perform very
well, we use also normalized performance indices. To
compute these, we divide each index by its upper bound,
i.e. the total number of proteins in the SCOP-DB library
that are classified to the same superfamily/fold as the
query (except itself). For example, for a query protein q
that belongs to a fold F of size nF the normalized TFF
measure is given by

TFFN (M, q) = TFF (M, q)/(nF - 1)

This ratio is essentially the sensitivity of the method M on
the query q, over a match list of size nF. The size of the rel-
evant match list changes with each query.

The resulting ratios are then averaged at the superfamily
level so as to obtain a representative average performance
index per protein superfamily that is bounded between 0
and 1. Finally, the final index is computed by averaging
over all the representative indices. I.e. given a query set Q
= {q1, ..., qn} that are classified to k different superfamilies
F1, ..., Fk with ni queries in superfamily Fi, then the overall

performance of a method M, using the normalized index
IN is given by

Parameter optimization
Our method depends on three parameters: the noise
reduction level (the z-score cutoff threshold), the associa-
tion measure and the distance metric. We consider all pos-
sible combinations among five zscore cutoff values (τ =
2.5 to 4.5 by increment of 0.5), three association meas-
ures that are Pscore (zscore), Ppvalue (pvalue) and Pprob (prob),
and four distance metrics: L1, L2, the JS divergence meas-
ure and the new pvalue-distance (PD) measure. Note that
the JS measure is only applicable to normalized vectors
since it requires the input vector to represent a probability
distribution and the PD measure is only applicable to the
pvalue vectors.

To find the best parameters we first establish the feature
vectors for each sequence in SCOP-DB. Each combination
of an association function (zscore, pvalue, prob) and a
noise threshold τ leads to a different set of feature vectors.
Next, we compute the distance between the feature vector
of each training sequence and the vectors of all sequences
in SCOP-DB, using one of the distance metrics of section
'Metrics and score functions'. Each combination of feature
vectors and a distance metric results in a different set of
"match lists". These sets are then evaluated using the per-
formance indices described above. The results are
reported in Table 2. For clarity, the best combination of
parameters is printed in boldface for each index. To deter-
mine the optimal set of parameters, we first examine the
effect of the association function. The results are unani-
mous with all five performance indices: the pvalue associ-
ation measure achieves the best performance, followed by
the prob association measure. However, the pvalue associ-
ation measure is only effective when coupled with the PD
distance metric, while the prob association measure seems
to produce good results with all distance metrics and espe-
cially with L1 and the JS divergence measure. As for the dis-
tance metric, its influence depends on the association
function. The PD measure is applicable only to the pvalue
vectors but it produces excellent results, much better than
the traditional L1 and L2 metrics. Under the prob associa-
tion measure, LI and JS metrics produce the best results
while L2 leads to significantly worse performance. With
the two other association measures L1 and L2 metrics yield
similar results. Finally, the optimal value of τ is approxi-
mately around 3.5 for most combinations.

In conclusion, these results suggest that the best perform-
ance is achieved with the pvalue association measure, the
pvalue-distance (PD) metric and a zscore cutoff threshold
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τ = 3.5. The same conclusions are reached when using the
normalized performance indices. It should be noted that
although the prob association measure is not as good as
the pvalue measure (combined with the PD metric), it still
produces very good performance overall (with the JS or
the L1 metrics), further justifying the statistical interpreta-
tion of our representation and its equivalence with the
coefficients of a mixture model over independent sources
(as discussed in section 'Conclusions').

Figure 3a,b illustrate the distribution of the pairwise L1-
distances between proteins under the representations Pscore

and Pprob, respectively. We observe that the pairwise dis-
tance between feature vectors Pscore spreads over a very
large range and it is difficult to set a natural threshold
below which feature vectors can be considered similar. In
contrast, for Pprob, about 95% of the pairwise distances are
equal to 2, the maximum L1 distance. This is the distance
between pairs of normalized feature vectors (probability
distributions) whose set of non-zero features do not over-
lap. The distribution shown in Figure 3b only focuses on
those pairwise distances smaller than 2. The combination
of noise reduction, pvalue conversion and normalization
procedures effectively delimits the range of the pairwise
distances, and any distance smaller than 2 indicates com-
mon features between the feature vectors.

Figure 3c shows the empirical distribution of the PD
measure between feature vectors Ppvalue. The distribution is
multi-modal (see Appendix for a more detailed discus-
sion). This emirical distribution is used to estimate the
significance of the PD measure.

Performance Comparison
We compare the performance of our algorithm against
several existing algorithms, namely FUGUE [30], BLAST
[42] and PSIBLAST [5]. Table 3 reports the results for all
algorithms based on the training sequences. The DP algo-
rithm was run with the optimal parameters that were
determined in the previous section. With BLAST, we sim-
ply compare the query sequence with all sequences in
SCOP-DB. With FUGUE, we thread the query sequence
into each one of the structural templates of the proteins in
SCOP-DB. For reference, we also list the results obtained
with the structure comparison algorithm URMS [43]. The
URMS results provide a rough upper bound on the
expected performance since the algorithm is directly using
the structural information which underlies many of the
homology relationships in SCOP.

As Table 3 shows, FUGUE improves the ROC1-S and
ROC1-F indices by 6 and 9% over PSIBLAST while the TSS
and TFF indices are increased by a magnitude of 24 to

Table 2: Parameter optimization of the distance-profile method: performance indices based on the training set. The normalized 
performance indices are given in parentheses and expressed in percentages. For instance, the ROC1-S and TFF indices obtained under 
the Ppvalue representation with zscore threshold τ = 4 and L2 distance metric amount to 267 and 363, respectively. The PD measure was 
evaluated only for τ = 3 to 4.5.

Index τ Association measure/Distance metric

zscore pvalue prob

L1 L2 L1 L2 PD L1 L2 JS

ROC1-S 2.5 30 (2.38) 133 (13.87) 10 (0.14) 12 (0.16) 309 (21.67) 75 (1.11) 333 (22.62)
3 90 (7.95) 156 (16.88) 59 (2.14) 59 (2.14) 453 (41.60) 365 (29.91) 146 (4.75) 375 (30.00)

3.5 134 (11.98) 164 (18.25) 184 (13.23) 188 (13.55) 479 (44.63) 442 (40.04) 262 (16.33) 438 (39.95)
4 167 (16.82) 164 (18.71) 262 (28.28) 267 (29.00) 475 (44.53) 449 (42.32) 373 (33.58) 438 (42.09)

4.5 180 (19.75) 159 (18.31) 290 (34.20) 299 (35.35) 467 (42.65) 443 (41.23) 373 (35.86) 427 (41.02)
ROCI-F 2.5 31 (2.38) 138 (11.99) 11 (0.16) 13 (0.17) 426 (18.78) 149 (1.31) 460 (20.16)

3 92 (7.16) 160 (14.43) 59 (2.03) 59 (2.03) 585 (34.69) 478 (26.15) 246 (4.79) 497 (26.30)
3.5 137 (10.80) 166 (15.23) 185 (12.00) 189 (12.30) 594 (36.60) 530 (33.44) 386 (14.49) 536 (33.27)
4 168 (14.06) 165 (15.39) 264 (23.75) 272 (24.47) 575 (36.40) 477 (34.70) 514 (27.89) 455 (34.04)

4.5 181 (16.43) 160 (15.24) 295 (28.41) 306 (29.52) 540 (34.97) 461 (33.36) 492 (29.56) 446 (32.89)
TSS 2.5 96 (5.38) 183 (17.06) 68 (1.62) 73 (1.78) 433 (29.71) 156 (3.49) 449 (31.46)

3 144 (9.91) 193 (19.18) 119 (4.10) 119 (4.10) 545 (46.70) 503 (40.85) 209 (7.03) 506 (40.30)
3.5 174 (13.55) 193 (19.78) 232 (14.84) 234 (15.07) 546 (47.81) 526 (45.53) 294 (18.12) 531 (45.95)
4 195 (18.07) 180 (19.46) 306 (31.34) 313 (31.77) 545 (48.11) 530 (47.40) 382 (33.80) 530 (47.18)

4.5 203 (20.74) 172 (18.96) 325 (36.22) 343 (37.64) 509 (45.21) 511 (45.29) 396 (36.67) 509 (45.73)
TFF 2.5 171 (5.75) 301 (15.48) 126 (2.00) 136 (2.31) 892 (28.59) 383 (4.41) 915 (30.44)

3 220 (9.66) 301 (17.02) 150 (4.15) 151 (4.16) 963 (41.52) 908 (36.98) 448 (7.52) 913 (36.47)
3.5 260 (13.22) 302 (17.42) 263 (14.08) 267 (14.32) 875 (40.64) 818 (38.86) 556 (16.84) 831 (39.42)
4 277 (15.98) 297 (17.40) 350 (26.28) 363 (26.94) 762 (40.05) 751 (39.60) 633 (28.87) 777 (39.38)

4.5 295 (18.42) 288 (17.14) 401 (30.29) 395 (31.26) 613 (37.55) 616 (37.51) 618 (30.84) 664 (38.03)
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60%. The distance-profile method DP-FUGUE improves
over PSIBLAST by more than 60% on all indices. With
respect to FUGUE, it increases by 62 and 94% the ROC1-
S, ROC1-F indices and about 30% for both the TSS and
TFF indices. This margin of improvement over FUGUE is
also maintained over the test set (Table 4). Quantitatively,
the ROC1-S and ROC1-F are improved by about 90% and
the TSS, TFF indices by about 42%. This is a substantial
improvement that is larger than the relative improvement
of PSIBLAST with respect to BLAST or that of FUGUE with
respect to PSIBLAST, thus indicating that the statistical fin-
gerprints of the distance-profile representation encode
more information and are more sensitive than a direct
comparison of the objects they operate on.

Figure 4 displays the ROC50 curve for each algorithm. As
opposed to the previous indices that are computed per
query and then averaged, these ROC curves are generated
by aggregating all pairwise similarities computed with a
given method and sorting the list in descending order of
significance. Each curve plots the cumulative number of

positives versus the cumulative number of negatives until
50 negatives are observed (where positives are set at the
superfamily level). The results agree with the previous
indices, and the distance-profile method significantly out-
performs all other methods as the amount of positives
detected reaches almost 12,500 (compared to 8,000 with
FUGUE and 7,000 with PSIBLAST) when the number of
negatives reaches 50. A similar ROC50 curve is observed
at the fold level as well. The results above demonstrate
that our method can effectively detect remote homolo-
gies. However, an interesting question that one might
raise is: under what scenarios the distance-profile repre-
sentation can improve the results over the original
method from which it is derived. To answer this question,
we contrast the performance of DP-FUGUE and FUGUE
for individual queries. Specifically, for each query in the
test set we plot the normalized TSS index of DP-FUGUE
vs. the TSS index of FUGUE for the same query. As the
graph shows, in most cases the improvement occurs when
the TSS index of the original method is above 20%, and
on average one may expect an improvement if it is above

Left: Distribution of pairwise distances between feature vectors Pscore (τ = 3.5, L1 metric)Figure 3
Left: Distribution of pairwise distances between feature vectors Pscore (τ = 3.5, L1 metric). Middle: Distribution of pairwise 
distances between feature vectors Pprob (τ = 3.5, L1 metric, distance 2 ignored). Right: Distribution of the PD measure for fea-
ture vectors Ppvalue (τ = 3.5). The last distribution is plotted in logscale for distances smaller than 40.
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Table 3: Comparison between BLAST, PSIBLAST, FUGUE, DP-FUGUE (τ = 3.5, PD, pvalue) and URMS on the training set. The 
normalized indices (in percentages) are given in parentheses. PSIBLAST's parameters were set to h = 1e-5, e = 100 and j = 10 (although 
no improvement was observed after the fourth iteration). FUGUE was run using the default parameters.

Index BLAST PSIBLAST (2 to 4 iterations) FUGUE DP-FUGUE URMS

2 iterations 3 iterations 4 iterations

ROC1-S 212 (25.64) 265 (29.80) 281 (30.91) 279 (30.68) 296 (35.03) 479 (44.63) 610 (60.20)
ROC1-F 212 (21.65) 265 (24.58) 281 (25.23) 279 (25.12) 306 (28.64) 594 (36.60) 719 (51.58)
TSS 278 (29.32) 315 (33.48) 335 (34.54) 335 (34.54) 422 (40.20) 546 (47.81) 797 (69.07)
TFF 344 (24.76) 386 (28.08) 410 (28.84) 409 (28.81) 659 (34.72) 875 (40.64) 1681 (67.30)
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10% (i.e. if as little as 10% of the superfamily are observed
in the proximity of the query within a neighborhood as
big as the superfamily).

The distance-profile representation over sequence-profile 
metrics
To test the effectiveness of the distance-profile method on
other types of input we applied it to feature vectors that
were generated with PSIBLAST, a sequence to profile
alignment algorithm [5]. The feature values are set to the
log (evalue) of the similarity score, as reported by PSI-
BLAST after four iterations, unless the program converged
before (as Table 3 demonstrates, the performance pla-
teaus after four iterations). The PSIBLAST evalue-based
feature vectors are processed in a similar fashion to the
FUGUE zscore-based feature vectors. Each evalue e is
mapped to its corresponding pvalue pvalue(e) = 1 - exp(-e)
as in [44] and the value of the corresponding feature is
defined as 1 - pvalue(e) = exp(-e). If the evalue is greater
than a given threshold τ' then we reset the value of the fea-

ture. Finally, the normalization converts the resulting fea-
ture vectors to probability distributions.

The parameters are optimized using a similar procedure to
the one described in section 'Parameter optimization'. The
optimal parameters are sought among the combinations
of 4 evalue cutoff thresholds (τ' = 0.01, 0.1, 1, 10), two
association measures (Ppvalue (pvalue), Pprob (prob)) and
three possible metrics (L1, L2 and JS divergence measure).
In this case, the best combination based on the training
set is (τ' = 10, L1, prob).

Table 5 compares the performance indices associated to
PSIBLAST after 4 iterations with DP-PSIBLAST with
parameters (τ' = 10, L1, prob). The distance-profile repre-
sentation clearly improves the performance compared to
PSIBLAST (increases the indices by about 20% to 38%)
and even to FUGUE in some cases, but is not as powerful
as the distance-profile representation when applied to
FUGUE (compare to the results of Table 3). It is also inter-
esting to note that the overall improvement of DP-PSI-
BLAST over PSIBLAST seems smaller than that of DP-
FUGUE over FUGUE. As we showed at the end of the pre-
vious section, the magnitude of improvement depends on
the initial success of the association measure among the
queries and the reference set. Since PSIBLAST yields less
instances with performance that exceeds the minimal
threshold (i.e. cases that can be improved using the DP
representation), it follows that the overall improvement
of DP representation on PSIBLAST is less significant com-
pared to that over FUGUE. Detailed examples are dis-
cussed in the Appendix.

Table 5: Comparison between PSIBLAST4 (PSIBLAST with 4 
iterations) and DP-PSIBLAST (τ' = 10, L1, prob) based on the 
training set. The normalized indices (in percentages) are given in 
parentheses.

Index PSIBLAST4 DP-PSIBLAST

ROC1-S 279 (30.68) 339 (35.16)
ROC1-F 279 (25.12) 339 (28.86)
TSS 335 (34.54) 462 (39.63)
TFF 409 (28.81) 510 (33.06)

Table 4: Comparison between BLAST, PSIBLAST, FUGUE and DP-FUGUE (τ = 3.5, PD, pvalue) on the test set. The normalized indices 
(in percentages) are given in parentheses.

Index BLAST PSIBLAST FUGUE DP-FUGUE

ROC1-S 6658 (24.42) 9266 (28.75) 12143 (35.10) 23307 (45.55)
ROC1-F 6694 (18.86) 9319 (21.93) 12620 (26.91) 24693 (35.21)
TSS 11379 (28.51) 15149 (32.62) 21176 (41.03) 30238 (49.62)
TFF 13986 (22.72) 18172 (25.85) 28473 (33.68) 40376 (40.66)

ROC50 curves over the test setFigure 4
ROC50 curves over the test set. Along each curve we 
indicate the e-value (or z-score) at different rates of false 
positives. Thus, at each significance threshold one can esti-
mate the ratio between the number of true and false 
matches.
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The effect of multiple sequence alignment on the 
performance
All our experiments were performed in a single-query
mode. I.e. in each test case a single query sequence is com-
pared against the database. However, there are multiple
reports [40,45,46] that suggest that significant perform-
ance gain can be obtained when using a multiple
sequence alignment (MSA) or a sequence profile as a
query.

To test the effect of MSA on the performance we had the
change our experimental setup. We tested the impact of
the new setting on PSIBLAST and FUGUE based on 7
SCOP families that were randomly chosen from all fami-
lies for which the performance of PSIBLAST and FUGUE
was poor. For each family we generated a MSA of all
sequences in the family using CLUSTALW [47]. Each MSA
was also converted to a position specific scoring matrix
(profile). These MSA were used as queries for FUGUE
(instead of the individual sequences) and the profiles as
input for PSIBLAST, in search for related sequences in
SCOP-DB. To fairly compare the results of PSIBLAST and
FUGUE in the MSA mode to the DP method we had to run
our method under a similar setup. The "MSA" mode of the
DP method utilizes the information from all the
sequences in a protein family in the same spirit a MSA
does so, by combining the distance profiles associated to
each member of the SCOP family. For each sequence in
SCOP-DB, we take the average of its distance versus each
member of the family in question in order to compute the
"family-specific" distances with respect to SCOP-DB.

In Table 6, we summarize for each of the SCOP families
the performance of FUGUE, PSIBLAST and DP-FUGUE
under the MSA-query mode. Family members are not
counted since they were already used to build the MSA.
The adjusted indices thus indicate how many remote
homologs are discovered in the MSA-query mode. For
comparison we also report the average performance under
the single-query mode. As the results demonstrate, the
MSA mode improves over the standard single mode, and
in most cases our method performs better than FUGUE
and PSIBLAST, in particular in terms of the TSS index
(reflecting how well remote homologs are clustered at the
top of the ranked list). It should be noted that when we
analyzed FUGUE in a similar manner to DP-FUGUE (i.e.
by averaging over the individual family members) the
results improved over the MSA mode of FUGUE, but not
as much as DP-FUGUE in MSA mode.

We should comment that the MSA setup differs from our
original idea of using the DP representation to perform
unsupervised clustering of objects based on their distance
profile. In the unsupervised learning mode we do not
have information on the family association of each

sequence, and therefore it is difficult to define the exact set
of related sequences from which to generate a multiple
sequence alignment.

Superfamily and fold prediction with the distance-profile 
method
We tested the power of our method on a new set of pro-
tein sequences that were added to SCOP after we com-
piled our benchmark. Our goal was to test if the method
can classify new sequences to their correct class. The new
set consists of proteins in release 1.67 of SCOP that were
not included in our SCOP-DB dataset (based on release
1.57 of SCOP) and either belong to new families within
existing superfamilies, new superfamilies within known
folds or completely new folds. For instance, the family
b.2.3.4 did not exist in the SCOP 1.57 database. This fam-
ily is part of the b.2.3 superfamily that in release 1.57 con-
tains the families b.2.3.1, b.2.3.2, b.2.3.3 and a total of 5
representatives in our reference set.

In total we found 624 sequences belonging to 453 new
families within known superfamilies, 267 sequences asso-
ciated to 182 new superfamilies within known folds and
375 sequences in 245 new folds, all with less than 40%
identity between pairs of sequences. Each one of these
new sequences was compared against all the sequences in
SCOP-DB using all of the methods evaluated in this paper,
and the matches were sorted based on the score or dis-
tance, as before. To apply the distance-profile method the
sequences were first processed and mapped to feature vec-
tors as described in section 'Results'.

Table 7 summarizes the results using our four perform-
ance indices. We note that only the ROC1-F and TFF indi-
ces are reported for sequences belonging to new
superfamilies within known folds (since none of these
new sequences have superfamily members in the refer-
ence set). As the table demonstrates, for sequences
belonging to new families, our method consistently
improves homology detection. The improvement over
FUGUE is significant with the ROC1-S and ROC1-F indi-
ces increasing by more than 100% (40% with normalized
measures) while the TSS and TFF indices are improved by
more than 30% (15% in normalized form). For sequences
belonging to new superfamilies DP-FUGUE also improves
over the three other methods, however, the improvement
is smaller. As for the sequences in new folds, our experi-
ment indicates that in most cases DP-FUGUE cannot
improve the results, the reason being that FUGUE itself
typically is unable to detect any significant match with
members of our reference set. Finally, we conducted
another experiment to study the performance of our
method in detecting distant homologs that share little
sequence identity. In order to do so, we selected from the
new SCOP sequences those having less than 20%
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sequence identity with respect to the proteins in our refer-
ence set. We obtained 277 such sequences associated to
new families and 103 to new superfamilies. Table 8 again
shows that our method outperforms BLAST, PSIBLAST
and FUGUE, with the exception of the TFF index over
sequences that belong to new superfamilies within known
folds, where a slight decrease is observed. This can be
explained by the fact that FUGUE itself does not perform
satisfactorily (the normalized TFF is only about 2.4%).

Conclusion
We study a new method for remote homology detection
that utilizes global information on the proximity of enti-
ties in the protein space. Our method relies on the dis-
tance-profile representation of proteins and protein
families that maps each query protein to a high-dimen-
sional feature space, where the coordinates are deter-
mined by some association measures with respect to a
reference set. These vectors are then processed and trans-
formed to sparse feature vectors that are treated as statisti-
cal fingerprints of the query proteins. We experimented
with several different types of association measures and
demonstrated how an adequate choice of distance metric
combined with a proper transformation of the feature vec-
tors through noise reduction, pvalue conversion and nor-
malization can greatly increase the performance of
homology recognition (or prediction) compared to the
existing approaches.

Interestingly, excellent performance is obtained with nor-
malized feature vectors that correspond to probability dis-
tributions. The success of the distance-profile method in
general and especially when using probability distribu-

tions suggests a relation to mixture models [48]. Specifi-
cally, one can consider this representation as the
coefficients of a mixture model or of a functional expan-
sion, similar to the Taylor polynomial expansion. Given a
set of basis functions such as polynomial functions one
can span the complete space of continuous well-behaved
functions with the right coefficients. The same principle
applies here as our reference set essentially defines a set of
basis functions. In statistical terms, each element of the
reference set induces a different probability distribution
over the protein sequence space. In our experiments the
reference set is composed of protein structures, each one
can be perceived as a different generative model. The like-
lihood of generating a sequence according to a model can
be estimated by computing the probability that the
sequence will fold into the corresponding structure, as
measured with the pvalue association measure over the
threading similarity score. Although these probability dis-
tributions (that correspond to different elements in the
reference set) do not necessarily meet the requirement of
orthogonality to be considered "basis functions", a suffi-
ciently diverged set of proteins is expected to have the
desired properties. It has yet to be defined more precisely
what sufficiently diverged means and the minimal
required diversity.

One intriguing aspect that has not been fully addressed is
the interaction between the association function, the dis-
tance metric and the zscore cutoff value. In some cases the
coupling is not surprising. For example, when the prob
association function is used, the L2 metric clearly under-
performs compared to L1 and JS metrics, as expected, since
the vectors compared correspond to probability distribu-

Table 6: Performance indices of FUGUE, PSIBLAST and DP-FUGUE under the single and the MSA query modes. The counts exclude 
those sequences in the SCOP family in question (that were used to build the MSA). In single query mode we report the average 
performance. Results are reported using the ROC1-S and the TSS indices. Similar trends were observed with the ROC1-F and the TFF 
indices.

Family Mode ROC1-S TSS

FUGUE PSIBLAST DP-FUGUE FUGUE PSIBLAST DP-FUGUE

a.3.1.1 single 0.4 0.4 2.6 2.8 1.7 3.5
MSA 0 2 4 2 3 4

a.3.1.4 single 2.3 1.6 11 6.3 5.3 12.3
MSA 1 4 12 4 7 12

a.39.1.5 single 2.8 5 12 7.7 9.5 13.4
MSA 15 5 14 16 9 15

b.47.1.4 single 1.6 0 22.3 8.6 1.6 22.3
MSA 3 1 23 17 5 23

c.2.1.3 single 0.2 0.1 3.1 7.6 5.4 15.4
MSA 2 0 0 14 6 26

c.3.1.2 single 1.8 0.7 9 8.7 5.5 14.1
MSA 1 3 12 20 8 19

c.47.1.2 single 4.1 2.3 16.1 8.8 4.8 19.3
MSA 12 5 24 19 7 25
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tions. With the other association measures, L1 and L2 per-
form similarly. Study of the theoretical aspect of this
phenomenon will help understand how to take further
advantage of these feature vectors to cluster the protein
sequences more accurately.

A word of caution is in order here regarding the evalua-
tion. While SCOP is considered the gold standard, it is not
perfect and often one can find mis-classifications
[7,24,49]. While it is hard to estimate the exact rate of
errors, it is unlikely that they exceed thousands and we do
not anticipate the results to change drastically even if
these mis-classification were corrected.

We should also mention that the DP representation is not
effective for detailed, atom-resolution prediction of 3D
structure or for site-specific functional annotation, since it
cannot produce alignments. Another weakness is that the
distance-profile representation and the new pvalue-dis-
tance measure may fail to distinguish two proteins if they
have almost identical "preferences" for the known struc-
tures but different preferences for other, unknown struc-
tures that are yet to be determined. However, given the
current size of the protein structure space, it is expected
that for most proteins the available structural information
(as embodied in our reference set) is sufficient to estimate
their proximity. Indeed, only 20% of the new SCOP 1.67
sequences were assigned to new folds, Clearly, as more
structures are determined and integrated into the refer-

ence set, the distance-profile representation is expected to
improve.

One potential contribution of this work is the possibility
of combining the transformations described in section
'Processing feature vectors' to the feature vectors used by
existing kernel methods. These techniques can effectively
reduce noise and increase the accuracy of classification of
the feature space. In addition, since the feature vectors are
typically sparse after noise reduction, an efficient compu-
tation of the kernel function can be implemented in a
high-dimensional feature space.

Finally, a major advantage of the distance-profile repre-
sentation is in its great flexibility. The underlying associa-
tion measure can be based on sequence, structure,
predicted function, threading, or any other similarity
measure. Clearly, more distinctive association measures
will create better representations. Indeed, the FUGUE
zscore is clearly a better choice than the PSIBLAST evalue
since FUGUE exploits sequence-structure alignment infor-
mation rather than just sequence alignment information.
If the association measure can report a significance value
(such as zscore or evalue) that emphasizes extremes and
pinpoint the interesting cases, the statistical measure will
be preferred over the raw score. This is especially useful
when the raw score is meaningless by itself. In these cases
one needs a yardstick or a scale to tell what is close and
what is far and the statistical estimates provide such a

Table 7: Class prediction for new SCOP sequences. Comparison between BLAST, PSIBLAST, FUGUE, DP-FUGUE (τ = 3.5, PD, 
pvalue). The normalized indices (%) are given in parentheses.

Index BLAST PSIBLAST FUGUE DP-FUGUE

New families ROC1-S 187 (7.03) 211 (7.71) 380 (16.35) 847 (22.56)
ROC1-F 216 (5.68) 239 (6.34) 450 (11.65) 1185 (17.98)
TSS 419 (8.97) 458 (10.31) 1014 (24.66) 1412 (27.58)
TFF 715 (7.78) 827 (8.79) 2518 (19.61) 3512 (22.69)

New superfamilies ROC1-F 8 (0.51) 11 (0.56) 42 (0.89) 187 (1.24)
TFF 156 (1.19) 169 (1.25) 853 (3.58) 1097 (3.33)

Table 8: Class prediction for new SCOP sequences with little sequence identity. In this case the analysis is limited to new SCOP 
sequences with less than 20% sequence identity with respect to the reference set.

Index BLAST PSIBLAST FUGUE DP-FUGUE

New families ROC1-S 41 (2.52) 43 (3.14) 73 (8.44) 156 (11.77)
ROC1-F 43 (1.95) 45 (2.57) 75 (6.41) 181 (9.89)
TSS 94 (4.85) 101 (5.36) 208 (15.80) 255 (17.11)
TFF 142 (3.90) 161 (4.49) 364 (12.42) 602 (13.77)

New Superfamilies ROC1-F 1(0.09) 1 (0.09) 6 (0.36) 50 (0.738)
TFF 20 (0.80) 23 (0.92) 119 (2.39) 108 (2.22)
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scale. Nevertheless, it is important to note that the dis-
tance-profile representation and the induced similarity
measure are quite robust and work well even with raw
association scores, noisy or corrupted data, and weak sig-
nal-to-noise ratio [25]. All our data, including the FUGUE
results, the PSIBLAST results and the feature vectors are
available at [50].
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Appendix
The sequence-structure association measure
Historically, sequence-structure threading [4] was pro-
posed as an alternative approach to predict the structural
fold of polypeptide chains. In contrast to ab initio strate-
gies that exploit secondary structure prediction, energy
minimization and molecular dynamics to predict the
structure of a protein sequence, sequence-structure
threading consists of finding native-like folding struc-
ture(s) for a query protein from a database of known struc-
tures. Its motivation originates from the observation that
proteins adopt a limited number of spatial architectures

and that larger proteins are frequently composed of mod-
ules that can be found in other proteins.

To perform sequence-structure threading of a query
sequence, the process typically starts by obtaining a set of
structural conformations from a database of known struc-
tures. The amino acid sequence of the query protein is
aligned to each conformation in search of an alignment
that would produce the minimal total energy (that
depends on the structural environment of each reside, or
the types of neighboring residues as determined by the
sequence-structure alignment). The most likely candidate
conformations are the ones yielding the lowest energy. If
the energy values are significantly low compared for
example to those obtained for shuffled sequences, then
these structural conformations can be considered as com-
patible with the query sequence.

Many different approaches and implementations of
threading algorithms have been proposed in the past
[30,51-54]. The exact details of the alignment algorithm
and the computation of the total energy vary from one
method to another. Unfortunately, most of them are not
publicly available to allow an extensive comparison of
sequences and structures. Of the few that are available, we
chose FUGUE for our study. FUGUE [30] is a sequence-
structure alignment algorithm that uses environment-spe-

Distribution of pvalue-distances between feature vectors Ppvalue with thresholding (τ = 3.5)Figure 6
Distribution of pvalue-distances between feature vectors Ppvalue with thresholding (τ = 3.5). Thresholding intro-
duces complex effect on the distribution of the PD measure and makes the derivation of its significance level difficult. Right: 
The complete distribution is plotted in logscale. The linear correlation in logscale suggests an exponential decay. Left: Zoom-
in on the range [0,40]. The distribution is multi-modal due to the contributions of a different number of elements to sum as in 
Equation (4). The smallest nonzero PD measures start at approximately 4.426, which corresponds to a match of two feature 
vectors Ppvalue at one entry where the z-score is equal to 3.5, i.e. a pvalue of 0.0120 or -log pvalue = 4.426. The distribution 
decreases rapidly and increases again at PD ≈ 9, corresponding to a match of two feature vectors at two distinct entries with 
zscore ≈ 3.5. The pattern repeats periodically as the number of significant entries common to both feature vectors increases.
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cific substitution tables and structure-dependent gap pen-
alties to evaluate the alignment score. It switches between
local and global alignment based on the ratio between the
length of the query sequence and that of the structural
profile. Previous experimental results have shown that
FUGUE outperforms other methods in fold recognition
such as PSIBLAST [5], SAM-PSIBLAST [32], HMMER-PSI-
BLAST [33], THREADER [51] and GenTHREADER [53]. It
is worth mentioning that FUGUE should be considered as
a structure-based sequence alignment algorithm rather
than a sequence-structure alignment algorithm per se,
since it does not involve the definition and the minimiza-
tion of any energy function to measure the goodness of fit
of the query sequence to the template structure. However,

its use of substitution tables and structure-dependent
parameters provides additional information which is una-
vailable to pure sequence-based methods. In FUGUE, the
compatibility of each sequence-structure pair is assessed
through the zscore, which measures the departure of the
observed threading score value from its mean, normalized
by the standard deviation (where the mean and standard
deviation are computed based on the distribution of
alignment scores over shuffled sequences. Zscores of
meaningful matches are then shifted such that the mini-
mal zscore starts at 0. It is claimed that a zscore less than
2 typically implies an uncertain match between the tem-
plate structure and the query amino acid sequence, and a
zscore larger than six implies an almost certain match

Table 10: Closest neighbors of d2tgf __ (Transforming growth factor alpha) (g.3.11.1.8). For each method we report the top 16 neighbors 
and their distance/similarity. To highlight relations within families and superfamilies we represent each SCOP domain by its family 
designation and append a serial number to create a unique identifier. The complete list of SCOP IDs and their numeric designations is 
available at http://biozon.org/ftp/data/papers/distance-profile/

BLAST PSIBLAST FUGUE DP-PSIBLAST DP-FUGUE

g.3.11.1.8 1e-18 g.3.11.1.8 1e-19 g.3.11.1.8 26.970 g.3.11.1.8 0.0000 g.3.11.1.8 -
g.3.11.1.9 8e-04 g.3.11.1.9 3e-04 g.3.11.1.9 9.830 g.3.11.1.9 0.2066 g.3.11.1.10 101.76

g.3.11.1.10 0.067 g.3.11.1.10 0.028 g.3.11.1.10 9.390 g.3.11.1.7 0.4665 g.3.11.1.9 96.05
g.3.11.1.7 0.11 g.3.11.1.7 0.057 g.3.11.1.5 5.920 g.3.11.1.10 0.5266 g.3.11.1.3 88.64

d.158.1.1.1 1.9 d.158.1.1.1 1.2 g.3.11.1.7 5.430 g.3.11.1.3 1.2862 g.3.11.1.16 75.32
c.69.1.19.1 4.6 c.69.1.19.1 2.0 g.3.11.1.3 5.350 g.3.11.1.1 1.6956 g.3.11.1.1 74.53
b.40.2.1.5 7.3 b.40.2.1.5 6.3 g.3.11.1.16 5.310 d.158.1.1.1 1.8567 g.3.11.1.7 73.60

d.159.1.3.3 7.9 d.159.1.3.3 8.3 g.27.1.1.5 5.050 a.102.1.1.2 1.8617 g.3.11.1.14 70.52
a.118.8.1.5 11 a.118.8.1.5 12 g.3.11.1.14 4.760 d.10.1.3.2 1.8617 g.3.11.1.5 68.21
b.77.3.1.2 17 b.68.1.1.2 14 g.3.11.1.1 4.040 d.13.1.1.2 1.8617 g.3.11.1.6 61.55
b.68.1.1.2 21 b.29.1.3.1 15 a.4.10.1.1 3.990 d.15.9.1.1 1.8617 g.27.1.1.4 37.84
c.1.10.2.1 21 a.138.1.3.1 16 d.158.1.1.1 3.870 d.5.1.1.2 1.8617 g.3.11.1.13 35.63
b.45.1.2.1 23 b.77.3.1.2 17 g.3.11.1.2 3.790 a.45.1.1.1 1.8719 g.3.11.1.18 30.36
b.29.1.3.1 24 c.1.10.2.1 22 g.3.11.1.6 3.600 d.169.1.2.1 1.8987 g.3.11.1.17 28.75
d.58.3.1.2 25 b.45.1.2.1 24 g.26.1.1.1 3.570 c.3.1.2.7 1.9085 g.3.11.1.11 25.26

Table 9: Homology detection for a few example query proteins. For each query and method we report the results using the 
performance indices described in the 'Discussion' section.

Protein Index BLAST PSIBLAST FUGUE DP-PSIBLAST DP-FUGUE

b.1.1.1.14 ROC1-S 14 26 30 78 66
ROC1-F 14 26 30 78 66
TSS 31 54 64 86 99
TFF 39 62 78 90 127

g.3.11.1.8 ROC1-S 4 4 7 6 10
ROC1-F 4 4 7 6 10
TSS 5 5 11 6 20
TFF 7 7 24 8 24

c.2.1.2.26 ROC1-S 2 2 5 2 28
ROC1-F 2 2 5 2 28
TSS 6 6 25 28 42
TFF 6 6 25 28 42

c.37.1.13.6 ROC1-S 3 4 3 4 3
ROC1-F 3 4 3 4 3
TSS 7 7 9 7 4
TFF 7 7 9 7 4
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between the protein and the template folding structure
[30].

It should be noted that threading measures are asymmet-
ric. Given two proteins, A and B with known structures,
then S(B, A) does not necessarily equal to S(A, B). Actu-
ally, for most protein pairs the equality S(B, A) = S(A, B)
does not hold, as different protein structures have differ-
ent "sequence capacities". These capacities affect the abil-
ity of an arbitrary sequence to conform with the given
structure, and therefore also the probability that the struc-
ture will be energetically favorable for the given sequence.
However, the asymmetry may be a fundamental feature of
the protein space that we may want to preserve and study
later on in our analysis.

The statistical significance of the PD measure
We computed the distribution of pvalue-distances (PD)
between pairs of feature vectors Ppvalue of unrelated protein
sequences. The distribution is a complex one, and features
multiple modes (Figure 6a). Each mode corresponds to
the occurrence of one additional term in the summation
contributing to the final value of the PD measure as
described in Eq (4), i.e. the two feature vectors share one
additional entry where the pvalues are both significant.
One may characterize the PD measure as the sum of a ran-
dom number of EVD random variables. Unfortunately,
analysis of such a distribution is generally intractable and
therefore we can only estimate the significance level of our
PD measure based on the empirical distribution.

In Figure 6b, we plot the distribution of the PD measure
over its full range (up to 900) in log scale. We observe that

Table 11: Closest neighbors of d1hdoa_ (Biliverdin IX beta reductase) (c.2.1.2.26). For each method we report the top 33 neighbors and 
their distance/similarity.

BLAST PSIBLAST FUGUE DP-PSIBLAST DP-FUGUE

c.2.1.2.26 1e-110 c.2.1.2.26 1e-120 c.2.1.2.26 62.720 c.2.1.2.26 0.0000 c.2.1.2.26 -
c.2.1.2.1 0.12 c.2.1.2.1 0.069 c.2.1.2.27 6.310 c.2.1.2.4 1.4380 c.2.1.2.14 102.46

c.69.1.1.3 0.73 c.69.1.1.3 0.34 c.2.1.3.5 6.270 d.108.1.1.1 1.5288 c.2.1.2.13 91.26
c.31.1.5.1 1.3 d.108.1.1.1 0.65 c.2.1.2.13 6.250 b.7.1.1.5 1.6281 c.2.1.2.18 90.81

d.108.1.1.1 1.3 c.31.1.5.1 1.1 c.2.1.2.7 5.810 b.82.2.2.1 1.6281 c.2.1.2.17 85.56
a.93.1.1.4 2.4 a.93.1.1.4 2.2 c.78.2.1.1 5.620 c.81.1.1.2 1.6326 c.2.1.2.23 84.11
c.1.2.4.6 3.7 c.4.1.2.2 2.5 c.2.1.2.16 5.570 c.2.1.2.3 1.6598 c.2.1.2.15 84.01

d.144.1.1.12 3.9 c.1.2.4.6 2.6 c.2.1.3.6 4.930 c.66.1.13.1 1.6834 c.2.1.2.7 80.02
d.127.1.1.4 5.2 d.144.1.1.12 3.6 c.23.5.1.1 4.740 c.2.1.2.5 1.6908 c.2.1.2.25 80.00

c.4.1.2.2 5.3 d.127.1.1.4 4.2 c.2.1.6.5 4.520 c.2.1.2.1 1.6957 c.2.1.2.19 73.76
c.37.1.8.1 6.1 c.37.1.8.1 4.8 c.2.1.6.6 4.410 c.69.1.1.1 1.7249 c.2.1.2.11 73.52
b.77.2.1.1 7.4 a.118.2.1.5 6.2 d.142.1.2.3 4.370 c.1.8.7.1 1.7272 c.2.1.2.8 72.24

c.3.1.2.7 7.9 a.104.1.1.4 6.3 c.2.1.2.9 4.330 c.55.7.1.3 1.7273 c.2.1.2.21 71.62
a.118.2.1.5 8.3 b.77.2.1.1 6.4 c.34.1.1.1 4.210 d.108.1.1.2 1.7273 c.2.1.2.16 69.59
d.126.1.3.1 10 a.79.1.1.1 6.7 c.4.1.2.2 4.200 c.69.1.1.2 1.7277 c.2.1.2.10 69.55

c.1.10.1.4 12 c.3.1.2.7 6.8 c.93.1.1.1 4.080 c.69.1.17.4 1.7374 c.2.1.6.12 69.55
a.104.1.1.4 15 c.60.1.3.1 7.5 c.2.1.5.2 3.970 c.69.1.2.1 1.7412 c.2.1.2.20 69.55
c.60.1.3.1 15 c.59.1.1.3 7.7 c.2.1.2.15 3.940 c.2.1.2.2 1.7443 c.2.1.2.24 69.55
a.56.1.1.3 16 c.1.10.1.4 7.8 c.3.1.2.2 3.910 c.69.1.2.2 1.7502 c.2.1.2.27 69.55

d.104.1.1.13 17 a.118.2.1.2 7.9 c.37.1.2.1 3.900 d.108.1.1.4 1.7548 c.2.1.2.9 69.16
d.15.9.1.1 18 d.126.1.3.1 8.0 c.37.1.8.4 3.890 b.93.1.1.1 1.7658 c.2.1.2.28 68.02
a.79.1.1.1 19 c.37.1.10.7 8.8 c.2.1.2.19 3.850 c.2.1.2.6 1.7731 c.2.1.2.2 63.80
b.60.1.1.7 19 c.31.1.3.3 8.9 a.146.1.1.1 3.820 e.6.1.1.2 1.7799 c.2.1.2.22 61.33
c.45.1.2.4 19 d.104.1.1.13 9.4 c.2.1.2.28 3.820 b.40.5.1.2 1.8001 c.2.1.6.3 51.80
b.1.1.5.24 20 c.45.1.2.4 11 c.3.1.5.14 3.770 c.69.1.1.4 1.8074 c.2.1.6.6 48.27
c.31.1.3.3 20 b.43.3.2.1 12 c.2.1.2.1 3.760 c.69.1.1.3 1.8135 c.2.1.5.7 45.83
e.28.1.1.1 20 c.93.1.1.10 12 c.2.1.2.17 3.750 c.78.1.1.6 1.8210 c.2.1.2.1 45.75
b.1.1.1.5 22 b.1.1.5.24 13 c.2.1.3.7 3.740 g.17.1.3.1 1.8259 c.2.1.5.9 42.88

c.59.1.1.3 22 d.15.9.1.1 13 d.95.1.1.1 3.700 a.138.1.3.5 1.8261 c.4.1.2.2 37.63
c.93.1.1.10 22 c.29.1.1.2 14 g.18.1.1.12 3.700 a.144.1.1.2 1.8261 c.3.1.2.3 37.57
e.29.1.1.1 22 c.93.1.1.1 14 c.2.1.9.1 3.680 c.31.1.2.1 1.8261 c.3.1.4.1 37.09
b.60.1.1.4 23 e.29.1.1.1 14 c.68.1.3.1 3.650 c.31.1.5.1 1.8261 c.2.1.3. 36.66

. . . . .

. . . . .

. . . . .
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the frequency of occurrence of large PD values (typically
above 100) decreases exponentially, i.e. linearly in log
scale (the increasingly dispersed pattern at large PD value
> 600 is mainly due to data sparsity). This phenomenon
can be explained by examining again the definition of the
PD measure given in (4). If we consider a zscore as a ran-
dom variable, its associated pvalue is a random variable
uniformly distributed between 0 and 1. Based on the
assumption that  and  are independent (which is
true if the two feature vectors are randomly drawn from
our database), max( , ) follows a triangular distribu-
tion and -log max( , ) is an exponential random var-
iable. Therefore, -log PD can be viewed as a sum of
exponential random variables. From the statistical litera-
ture, we know that the sum of k independent and identi-
cally distributed exponential random variables with
parameter α can be modeled by the Gamma function.

For large x, we have

where ε is an additive constant. Hence, log fG(x; k, α)
approximately decreases with x in a linear fashion. In our
case, clearly the summands in (4) are not independent of
each other since the reference set is composed of groups of
related sequences. Nonetheless, one may expect that the

dependency is not too strong because these sequences
share less than 40% sequence identity. The plot indeed
suggests that the distribution of the PD measure follows
this trend.

Examples of homology detection
Table 9 reports the results for four specific queries. For
simplicity, proteins are designated by their SCOP family
name followed by a number indicating their relative posi-
tion in the original SCOP file. For instance, the first pro-
tein in the SCOP file belonging to the family a.1.1.1 is
denoted by a.1.1.1.1, and so on. The queries were picked
so as to demonstrate that the best performance for a given
combination of a query protein and a performance index
can be obtained with any of the methods we tested. How-
ever, on average the distance-profile method is signifi-
cantly more sensitive and cases like c.37.1.3.6 are rare.

Tables 10 and 11 list the closest neighbors of the protein
queries d2tgf__ (Transforming growth factor alpha (desig-
nated g.3.11.1.8) and d1hdoa_ (Biliverdin IX beta reductase)
(designated c.2.1.2.26) with each one of the five compet-
ing methods. As these demonstrate, a significantly larger
number of proteins that are biologically related to the
query sequence are placed at the top of the neighbor list
with the distance-profile method. For example, the pro-
tein domain g.3.11.1.8 belongs to the superfamily g.3.11
which contains 26 entries in the SCOP-DB database. Both
PSIBLAST and BLAST detect 4 true positives (TP) before
encountering the first false positive (FP) d.158.1.1.1
(SCOP domain d1a6q__), whereas DP-PSIBLAST extends
the ROC1-S index to 6. FUGUE starts with 7 TP at the top
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of the sorted list and our DP-FUGUE method further
improves the index to 10 TP. The differences for the pro-
tein domain c.2.1.2.26 are even more substantial, with
BLAST, PSIBLAST and DP-PSIBLAST reporting only two
TP before the first FP, FUGUE reporting 5 TP, while DP-
FUGUE reporting 28 TP, thus significantly enhancing the
clustering of the members of the superfamily c.2.1. We
observe that the performance of the DP method depends
on the configuration of the sorted list obtained using the
initial association measure. Our method works best when
some true positives can be found among the top ones on
the list, even if proceeded by or mixed with false positives;
it refines the results by clustering even closer the similar
elements while pushing further away the false positives.
Our method does not improve the results in the case of
c.37.1.13.6. However, we note that this is a difficult case
of homology detection since there are more than 86 mem-
bers in the superfamily c.37.1 while all methods detect
only a very few true positives at the top of the sorted list.
There are several cases where FUGUE lists a FP at the top
of the list but a couple of TPs are among the closest ones.
In these cases, DP can enhance the mapping and improve
over FUGUE, as is also demonstarted in Figure 5. How-
ever, when there is only one TP at the top of the list, our
method does not always improve over FUGUE. This is
most difficult when the top true positive match is only
marginally higher than the first false positive.
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