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Abstract
Background: The development of high-throughput technologies such as yeast two-hybrid systems
and mass spectrometry technologies has made it possible to generate large protein-protein
interaction (PPI) datasets. Mining these datasets for underlying biological knowledge has, however,
remained a challenge.

Results: A total of 3108 sequence signatures were found, each of which was shared by a set of
guest proteins interacting with one of 944 host proteins in Saccharomyces cerevisiae genome.
Approximately 94% of these sequence signatures matched entries in InterPro member databases.
We identified 84 distinct sequence signatures from the remaining 172 unknown signatures. The
signature sharing information was then applied in predicting sub-cellular localization of yeast
proteins and the novel signatures were used in identifying possible interacting sites.

Conclusion: We reported a method of PPI data mining that facilitated the discovery of novel
sequence signatures using a large PPI dataset from S. cerevisiae genome as input. The fact that 94%
of discovered signatures were known validated the ability of the approach to identify large numbers
of signatures from PPI data. The significance of these discovered signatures was demonstrated by
their application in predicting sub-cellular localizations and identifying potential interaction binding
sites of yeast proteins.

Background
The development of high-throughput technologies for
discovering interactions between proteins has made it
possible to screen entire proteomes and produce large
protein-protein interaction (PPI) datasets. Different
methods of PPI detection, including yeast two-hybrid
assays [1-3], mass spectrometry of coimmunoprecipitated
protein complexes [4,5], and correlated messenger RNA
profiles [6,7], discover PPIs of variable reliability and the

majority of putative PPIs are of low confidence. Despite
the presence of false positives, the wealth of PPI data gen-
erated over the past several years is the source of many
publicly available databases, such as the Database of
Interacting Proteins (DIP [8]) and the MIPS mammalian
protein-protein interaction [9]. The availability of these
large datasets is now enabling researchers to predict
undiscovered PPIs and hypothesize the function and sub-
cellular localization of proteins.
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PPI data has been used to analyse domain-domain inter-
actions (DDIs), based upon the widely accepted hypothe-
sis that proteins interact with one another via conserved
domains (Figure 1). Large-scale PPI databases are used to
identify correlated domains that are implicated in the
binding of protein partners. When one of these sequence
signatures is observed in a newly discovered protein, it is
possible to predict its interactions with other proteins
based on the knowledge base of correlated domains. DDIs
were thus used to predict the function and PPIs of newly
discovered proteins [10]. Deng et al. [11] used maximum
likelihood estimation to discover DDIs, which were then
used to predict the likelihood of interaction for any pro-
tein pair. Other recent forms of DDI analysis include the
use of interacting domain profile pairs [12], and a domain
combination based probabilistic framework [13].

Very recently, PPI data, in conjunction with structural
information, were used to produce a set of putative bind-
ing motif pairs [14]. The significance of motif discovery
stems from the idea that the actual binding sites most
directly responsible for the binding of proteins are proba-
bly smaller than whole domains. Thus, the discovery of
these smaller sequence signatures allows researchers to
structurally characterize PPIs with more precision.

This study was also based on the assumption that PPIs
result from the interactions of conserved sequence signa-
tures. Unlike Li and Li's work [14], our method of PPI data
mining did not use structural data, which are well known
to be biased towards small, globular proteins. In this

paper, a set of guest proteins represents those proteins
known from PPI database to share a common interacting
partner, i.e. a host protein. If a protein interacts with itself,
it is a host as well as a guest. Signatures shared by sets of
guest proteins were initially discovered using the program
MEME [15] on a large PPI dataset. Searches of sequence
signature databases for the identified motifs revealed that
84 distinct motifs had not been characterized previously.
The significance of these newly discovered signatures was
then demonstrated by their application in predicting the
sub-cellular localization of yeast proteins and identifying
potential interacting sites.

Results
A sequence signature is defined as a "highly conserved
region", a sequence pattern that is found repeatedly in a
group of related protein sequences [15]. By this defini-
tion, a sequence signature could be a protein family, func-
tional domain, functional site, or any conserved region of
unknown function, and thus the actual physical manifes-
tation of a signature can vary greatly in size. In our study,
sequence signatures were derived from MEME motifs. We
wrote numerous Perl scripts and used a MySQL relational
database to facilitate the processes of data collection, pro-
gram execution, and data analysis.

Discovery of sequence signatures
The 1923 batch executions of MEME yielded 3108
sequence signature models shared by the 1555 distinct
guest proteins of 944 host proteins from Saccharomyces
Cerevisiae (baker's yeast) (see details in Methods). Of the
6770 distinct PPIs actually involved in building these sig-
nature models, 1509 (22.3%) were identified as high con-
fidence interactions in the PPI dataset. When compared to
the percentage of high confidence PPIs in the input files
(20.7%), the percentage of high confidence PPIs used to
construct motif models represents a statistically signifi-
cant difference (p-value = 0.0013, two-tailed t-test).

Signature model length varied from 10 to 300 residues:
the minimum and maximum lengths specified for each
MEME execution. Only 25 models (<1%) were as long as
300 residues, which indicated that the maximum length
used in this study was appropriate. MEME splits one
sequence signature in two if its length is greater than the
specified maximum. Thus, less than 2% of the 3108 mod-
els were the result of splitting sequence signatures. The
average model length was 33.6 residues, with a standard
deviation of 40.3. It should be pointed out that there was
redundancy among these signatures because different
host proteins may interact with similar sets of guest pro-
teins. We did not attempt to identify distinct signatures
because that was not the main goal of the present study.
Instead, we identified distinct novel sequence signatures
(84 distinct signatures out of 172 initial results, see below

A scheme illustrates the procedure of inferring DDIs from PPIsFigure 1
A scheme illustrates the procedure of inferring DDIs from 
PPIs. Colored shapes represent sequence signatures. Sup-
pose protein H (the host) interacts with four guest proteins 
(G1, G2, G3, G4) and all signatures in the schema are known 
with the exception of the one represented by purple hexa-
gon. In this case only interactions with G1 and G2 are useful 
in inferring DDIs. In this study we used MEME program to 
identify all signatures shared by guests.
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for details). Thus, we estimated that overall about half of
these signatures were distinct.

Occurrence of discovered sequence signatures in the yeast 
genome
Using the 3108 signature models discovered in MEME as
input, MAST [16] was used to scan the entire genome of S.
cerevisiae for occurrences of these sequence signatures in
proteins that were not used to build the motif models.
1,993 protein sequences contained one or more of the
sequence signatures, a 28% increase over the 1,555 pro-
teins used to construct the signatures. Although this
increase indicates that the newly discovered sequence sig-
natures have some potential predictive value, any predic-
tions based on these sequence signatures would be
limited to approximately one-third of the S. cerevisiae
genome. A broader application will be feasible only when
more reliable PPI data are available.

Novelty of discovered sequence signatures
Using the standalone version of InterProScan, the consen-
sus sequences of 2337 of the discovered motif models
were found to match signatures listed in one of the Inter-
Pro member databases. When the online version of Inter-
ProScan was used, an additional 599 sequence signatures
were matched to un-integrated entries of the InterPro
member databases. 172 novel sequence signatures
remained. FASTA searches, which were the basis for the
grouping of similar/identical sequence signatures,
resulted in the creation of 84 distinct, novel sequence sig-
natures. The length of these novel sequence signatures
ranged from 10 to 36 residues. Table 1 provides a list of
several of these novel signatures. A complete list can be
found on the supplementary website http://
www.bcf.ku.edu/PPI/. Interestingly, when InterProScan
was used to match consensus sequence signatures to the
Pfam database alone, only 545 (~18%) of the signatures
were matched to known signatures.

Localization prediction
Using signature sharing information, the sub-cellular
localizations of 108 proteins were predicted based on the

known locations of 5416 budding yeast proteins (see
details in Methods). 52 predictions agreed with the ontol-
ogy annotations of the SGD and 24 disagreed (~68%
accuracy). The accuracy of the remaining 32 (Table 2) pre-
dictions could not be assessed, as the locations of these
proteins have yet to be determined empirically. It is rea-
sonable to believe these predictions would have similar
prediction accuracy.

Homology modeling and detection of putative interacting 
sites
The exact biological meanings of these novel sequence sig-
natures can only be determined by web-lab experiments.
One possible role of these signatures is to serve as the
binding sites for protein-protein interactions. A binding
site should have significant exposure to solvent. In order
to assess this possibility, we built homology models for
those yeast proteins containing novel signatures and hav-
ing good model templates [see Additional file 1]. Using
DSSP software program [17], we calculated the proposi-
tion of residues of signatures appearing on the surface
(residues with solvent exposed surface ≥ 25 Å2). Statistical
analysis (two-sided Fisher's exact test) confirmed that res-
idues of signatures occurred on the surface more fre-
quently than would be expected by chance (P < 0.04,
Fisher's exact test). Thus we hypothesized these signatures
are potential binding sites and plan to use site-directed
mutagenesis and NMR spectrometry to verify the bioinfor-
matics results.

Discussion
Although independent, the PPI data mining method pre-
sented here is similar to that proposed by Li and Li [14].
Their research focused on motif pairs located on protein
surfaces, and motif discovery was, in part, based on three-
dimensional structures of proteins. Our method did not
rely on PDB structural information, which is known to be
biased towards small, globular proteins. Even without the
additional structural information, many of the novel
sequence signatures discovered in this study appear in the
surfaces of proteins. Thus they are likely interacting sites.

Table 1: Novel sequence signature examples.

Signature id Host Consensus sequence Length

YDL166C_1 YDL166C EVLCCQLPKWCGFFQM 16
YML094_4 YML094 QRQGKLEVPGYVDIVKTSSGNE

MPPQ
26

YOL094C_3 YOL094C LWVEKYRPKNLDEVCGN 17
YGL063W_2 YGL063W VKAVEGRKKGKEGKASQLVDLK

FALAEDKV
30

YOR335C_5 YOR335C AQSVGCRVDFKNPHDIIEGINAG
EIE

26
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Approximately 94% of the sequence signatures discovered
in this study matched known sequence patterns, confirm-
ing the ability of this method to discover sequence signa-
tures involved in various biological functions. It is our
contention that the 84 novel sequence signatures reported
in this study likely play biological roles such as interacting
sites, and we are planning wet-lab experiments to investi-
gate their functions.

The lengths of the novel sequence signatures are quite
short, ranging from 10 to 36 residues. This is not surpris-
ing, as the yeast genome has been the subject of a remark-
able number of studies and the majority of long sequence
signatures are likely already known. Additionally, longer
sequence signatures tend to contain gaps, and will thus be

interpreted as multiple shorter signatures by MEME. Nev-
ertheless, the discovery of short, novel sequence signa-
tures, based on medium- and high-confidence PPIs,
suggests that short sequence signatures do play biologi-
cally significant roles.

Only 545 (~18%) of the discovered sequence signatures
matched known signatures in Pfam: a significantly
smaller number than the 2936 signatures matched to one
or more InterPro member databases. This result highlights
a potential shortcoming of PPI predictions based on the
analysis of DDIs inferred from Pfam data alone (e.g. ref
[11]). The use of a single domain databases, such as pfam
database with the average length of 145 amino acids [18]
might cause a researcher to miss many important short

Table 2: Predicted localizations without known annotations from SGD. Evidence notation: 1: the ORF is a host, all or most guests are 
in the same location. 2: a guest, its host and all or most siblings are in the same location; 3: also a guest, but the location of host is 
unknown, all or most siblings are in the location. If there are multiple predictions for one ORF, the evidence and/or host names are 
concatenated in the corresponding columns.

ID ORF Predicted_location Evidence(s) Host name(s)

1 Q0105 cytoplasm 1
2 YAL046C cytoplasm, nucleus 1
3 YAR073W cytoplasm 2 YMR217W
4 YBL041W cytoplasm, nucleus 1,2 YJL001W, YPR103W, YGR135W, YML092C, YGR253C, YER094C, YGL011C
5 YBL092W cytoplasm, nucleus 2 YGR034W, YDL191W
6 YBR257W cytoplasm, nucleus 2 YHR203C, YJR014W, YJR145C
7 YCR031C cytoplasm, nucleus 2 YGR034W
8 YCR072C cytoplasm, nucleus 1
9 YDL075W cytoplasm, nucleus 3 YDR292C
10 YDR064W cytoplasm, nucleus 1,2 YGR262C, YAL035W
11 YDR109C cytoplasm, nucleus 2 YJR024C
12 YDR287W cytoplasm, nucleus 2 YEL041W
13 YEL041W cytoplasm, nucleus 1,2 YDL236W, YHL046C
14 YER094C cytoplasm, nucleus 1,2,3 YFR050C, YGL011C, YPR103W, YBL041W, YJL001W, YML092C, YGR253C, 

YGR135W
15 YGL063W cytoplasm, nucleus 1,2 YDR158W, YDR007W
16 YGL224C cytoplasm, nucleus 2 YMR009W, YDL219W, YJR024C
17 YHR016C cytoplasm, actin 2 YBL007C
18 YHR044C cytoplasm, nucleus 2 YDR074W
19 YJL213W cytoplasm 2 YGR094W
20 YKL104C cytoplasm, nucleus 2 YDR127W, YPL160W, YDR211W, YDR394W, YER110C
21 YLR209C nucleolus, nucleus 1
22 YLR359W cytoplasm 2 YGL234W
23 YMR084W cytoplasm, nucleus 1,2 YDR211W
24 YMR130W cytoplasm, nucleus 2 YJR024C
25 YMR217W cytoplasm 1
26 YOL114C cytoplasm, nucleus 2 YPL160W
27 YOR054C cytoplasm, nucleus 2 YDR454C, YBR252W
28 YOR093C cytoplasm 2 YBR208C
29 YOR111W actin 2 YDL161W
30 YPL003W cytoplasm, nucleus 2 YDR054C
31 YPL171C cytoplasm, nucleus 2 YKR031C
32 YPL217C nucleolus,nucleus 2 YLR197W, YHR052W, YDR449C
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sequence signatures, thereby decreasing prediction accu-
racy.

The use of PPI data to predict the sub-cellular localization
of proteins is based on an intuitively simple idea: proteins
that are found in the same location within a cell are more
likely to interact with one another than proteins that are
not. Ten subcellular compartments were actually used in
our study. The resulting accuracy of PPI-based prediction
of sub-cellular localization is reasonably good in this
study and, at ~68%, represents a substantial increase in
accuracy relative to what would be achieved (37%) if cyto-
plasm, the most populated compartment, was predicted
for all systems. Our accuracy is comparable to that
achieved in other recent studies. For example, using a
hybrid system of gene ontology, functional domain and
pseudo amino acid composition approaches, Chou and
Cai obtained 70% of overall success identification rate
[19,20]. Our accuracy rate was inferior to others that used
fewer localization categories (for example, 88% accuracy
rate based on cross validation was achieved when only
four localization categories were used in ref [21]), but it is
perfectly natural that a more ambitious categorization
scheme such as ours should have a greater margin of error.
Also we should emphasize that our approach represents a
very intuitive and simple scheme based on PPI induced
sequence signatures alone, in contrast to complicated
hybrid systems employed in previous studies. Admittedly,
our approach can only be used in predicting the localiza-
tion of proteins involving in currently known PPIs, thus a
broader application will be feasible only when more PPI
data are available.

One of the major challenges to mining PPI data is the
presence of numerous false positives, resulting from the
deficiencies of current high-throughput screening tech-
niques. The PPI data produced by some screening tech-
niques such as yeast two-hybrid systems has been
estimated to contain as much as 91% false interactions
[22]. The 11,161 PPIs used as input to MEME were identi-
fied as medium or high confidence interactions, of which
20.7 % were high confidence. Of the PPIs actually used to
build sequence signatures, 22.3% were high confidence
interactions, a statistically significant increase of 7.7%
over the original dataset. The disproportionate use of
high-confidence PPIs to build sequence signatures sup-
ports the validity of the original reliability assignments,
and suggests a method by which one may increase confi-
dence in putative PPIs. Nevertheless, the quality of the
results generated by all forms of PPI data mining remains
constrained by the quantity and quality of the PPI data
currently available. Consequently, the reliability of pre-
dictions based on PPI data is expected to increase as PPI
databases increase in accuracy, size and taxonomic range.

Conclusion
In conclusion, we have reported a novel procedure by
which sequence signatures were discovered based on a
large PPI dataset from Saccharomyces cerevisiae. The major-
ity of these sequence signatures were matched with
known sequence signatures present in the InterPro mem-
ber databases. Nevertheless, 84 distinct sequence signa-
tures were novel, and may be involved in the interactions
of the proteins containing them. The sub-cellular localiza-
tions of 108 proteins of the yeast genome were predicted,
based on the known locations of other proteins and PPI
dataset. Of the 108 localization predictions, 52 agreed
with SGD annotations, and 24 disagreed. The localization
of remaining 32 proteins was experimentally unknown.
However, it is reasonable to believe these predictions
would have similar prediction accuracy.

Wet-lab experiments to determine the biological function
of the discovered novel sequence signatures are being
planned. We are also in the process of developing an algo-
rithm that will enable the discovery of gap-containing
sequence signatures based on PPI data. The PPI data min-
ing method presented here is imminently applicable to
other genomes associated with large PPI datasets. For
example, we conducted similar study on the E. Coli
genome and were able to identify 22 novel signatures (the
results of which can be found in the complementary web-
site).

Methods
Dataset
PPI data specific to the genome of Saccharomyces Cerevi-
siae (baker's yeast) were used because the quantity of PPI
data available for yeast exceeds that of any other model
organism. The ~6000 proteins of the yeast proteome
could potentially produce more than 18 million distinct,
guest-host interactions, though the actual number of PPIs
is certainly much smaller, probably less than 100,000
[23,24]. However, PPIs are dynamic, and the empirical
discovery of these interactions is time and location
dependent. The current list of putative PPIs between pro-
teins of the yeast proteome, therefore, does not represent
all PPIs that occur in the cells of yeast.

The dataset used here was reported by von Mering et al.
[23]. It contained 78380 non-redundant PPIs from yeast,
which were assigned to three categories of reliability: 2455
high confidence, 9400 medium confidence, and 66535
low confidence. PPIs of this dataset were discovered by
various experimental and computational methods includ-
ing yeast two-hybrid systems, mass spectrometry technol-
ogies.

In an attempt to minimize the occurrence of false posi-
tives, only those PPIs assigned a reliability of high or
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medium confidence were used (2617 host proteins
involved in 11855 interactions). Because MEME requires
input in the form of set of two or more related proteins,
694 host proteins that interacted with only one protein
were also excluded. Of the remaining 1923 host proteins,
only 25 were involved in more than 100 distinct PPIs,
including the most interactive protein, YPR110C, which
was involved in 118 putative PPIs.

MEME and MAST
MEME (v.3.0.10) was used to search for signatures shared
by each group of guest proteins. MEME implements an
unsupervised learning algorithm and ultimately produces
one or more probabilistic signature models based on this
input. The statistical significance of each signature model
is quantified as an expectation value (E-value), which is
an estimate of the number of signatures that would pos-
sess a higher log-likelihood ratio given randomly-gener-
ated training sequences. All signatures discovered by
MEME are gapless, and the best width, number of occur-
rences, and description of each motif are based on statis-
tical models.

For each of the 1923 host proteins associated with two or
more guest proteins, a multiple sequence FASTA file was
created from the amino acid sequences of its guest pro-
teins. In every instance, MEME was executed with the fol-
lowing options: a minimum motif width of 10, maximum
motif width of 300, maximum E-value of 0.1, and 5 as the
maximum number of motifs.

MEME output files were then used as input for MAST
(v3.0). MAST was used to search the entire yeast proteome
for the sequence signatures described in the MEME output
files. MAST output consists of the sequence name of each
high-scoring match as well as the E-value of each match.

For all MAST executions, the maximum E-value was set to
0.1. The results of MAST searches were used to assess the
sequence coverage of sequence signatures identified by
MEME and the usefulness of MEME output to PPI predic-
tion.

Signature model comparison
InterPro [25] is an integrated collection of the most com-
monly used databases of protein families, domains, and
functional sites. The program InterProScan allows a user
to search for sequence signatures in any number of these
databases simultaneously [26]. Only LAMA can be used to
compare MEME results to the BLOCKS database [27], but
no tools currently exist for comparison to other sequence
signature databases. Therefore, the consensus sequence of
each motif model identified by MEME was searched for in
all InterPro member databases, using the standalone ver-
sion of InterProScan (release 4.0) and a local copy of
InterPro (release 8.1). Signatures that were unsuccessfully
matched with any entries in the local InterPro database
were input to the online version of InterProScan to iden-
tify matches to known signatures that were not integrated
into the InterPro database (i.e., thus unavailable in the
local database). Those signatures that remained
unmatched were considered novel. Because different host
proteins may share the same set of guest proteins, some of
these novel signatures were identical or similar. Thus,
FASTA [28] searches were performed, using each poten-
tially novel signature as a query sequence, and the set of
all potentially novel signatures as a local database. We
tested several E-values (0.1, 0.5, 1) and found that 0.5 was
the best for distinguishing signatures. Higher threshold E-
values led to the identification of signature pairs as similar
when only one or two contiguous residues were identical,
while lower values excluded the detection of signatures
that were clearly similar. To compare the coverage of the

Table 3: An example of protein location prediction. The host YGL115W has four guest proteins that share four statistically significant 
signatures. The host and all its guests with known location were found in cytoplasm. Thus the location of YGL208W was predicted as 
cytoplasm. The prediction was then confirmed with the ontology annotation in SGD database. The p-value of the occurrence is the 
probability that a single random subsequence of the length of the motif matches the motif.

Guest Motif ID P-value Guest location

YER027C YGL115W_1 3.17E-76 cytoplasm
YGL208W YGL115W_1 7.48E-75
YDR422C YGL115W_1 4.78E-48 cytoplasm
YER027C YGL115W_2 3.87E-56 cytoplasm
YGL208W YGL115W_2 8.48E-57
YDR422C YGL115W_2 3.64E-37 cytoplasm
YER027C YGL115W_3 6.83E-77 cytoplasm
YGL208W YGL115W_3 6.37E-71
YDR028C YGL115W_3 9.81E-38 cytoplasm
YER027C YGL115W_4 5.62E-22 cytoplasm
YGL208W YGL115W_4 7.23E-24
YDR477W YGL115W_4 1.89E-14 cytoplasm
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individual InterPro member databases, each consensus
sequence signature was also assessed using the Pfam data-
base only.

Querying sequence signature databases with the consen-
sus sequence of a MEME model, rather than the model
itself, is similar to the approach proposed by Kahsay et al.
[29], which facilitated the comparison of two Hidden
Markov Models. To verify the appropriateness of using
consensus sequences in lieu of the actual models, we que-
ried the consensus sequences of several signature models
along with each of their component sequences against
InterPro databases. We found the hits of the consensus
sequences were consistent to those of their component
sequences. For example, the consensus sequence of the
signature YPL049_1 matched to all significant signatures
that two component sequences had. The only difference
was that two residues of the consensus sequence addition-
ally matched to an un-integrated signature. This match
was insignificant considering that the length of the signa-
ture was 65 residues.

Prediction of protein subcellular localization
Two proteins that interact with one another are likely
found in the same subcellular location [23]. Thus PPI data
can be used to predict the subcellular localizations of pro-
teins. However, PPI data alone are currently not sufficient
to predict subcellular localization due to the generally low
reliability of current PPI data. In this study, we added an
additional layer of confidence to predictions of subcellu-
lar localization by including our knowledge of sequence
signatures shared by the guests of a host protein. For a
guest protein with unknown localization, if its host pro-
tein and at least half of its fellow guest proteins shared a
subcellular location, that guest protein was predicted to
share this location as well. Similarly, if the localization of
a host protein was unknown, and more than half of its
guest proteins shared a common subcellular localization
and one or more sequence signatures, the host protein
was predicted to exist in the localization (Table 3).

Predictions of subcellular localization were based on the
known localizations of 4156 budding yeast proteins [30],
where there are 22 categories of subcellular location. Pre-
dictive accuracy was evaluated by comparing predicted
locations to the known locations of these proteins as
reported in the ontology annotation of the Saccharomyces
Genome Database (SGD, http://www.yeastgenome.org).

Homology modeling
NCBI's online BLAST engine http://www.ncbi.nih.gov/
BLAST/ was used to search PDB database for protein
sequences similar to the selected yeast protein sequences.
The best match was selected as a template structure and its
PDB file was downloaded from the PDB database. All

homology modeling was carried out with MOE (Molecu-
lar Operating Environment 2004.03, The Chemical Com-
puting Group Inc., 2004). The query sequences and their
templates were first aligned in MOE. Ten intermediate
models were then created, each was finely energy-mini-
mized for steric interactions using the AMBER-94 force-
field with the solvation option turned on. The best
structure prediction was then selected according to energy
ranking.
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