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Abstract
Background: Microarray-CGH experiments are used to detect and map chromosomal
imbalances, by hybridizing targets of genomic DNA from a test and a reference sample to
sequences immobilized on a slide. These probes are genomic DNA sequences (BACs) that are
mapped on the genome. The signal has a spatial coherence that can be handled by specific statistical
tools. Segmentation methods seem to be a natural framework for this purpose. A CGH profile can
be viewed as a succession of segments that represent homogeneous regions in the genome whose
BACs share the same relative copy number on average. We model a CGH profile by a random
Gaussian process whose distribution parameters are affected by abrupt changes at unknown
coordinates. Two major problems arise : to determine which parameters are affected by the abrupt
changes (the mean and the variance, or the mean only), and the selection of the number of
segments in the profile.

Results: We demonstrate that existing methods for estimating the number of segments are not
well adapted in the case of array CGH data, and we propose an adaptive criterion that detects
previously mapped chromosomal aberrations. The performances of this method are discussed
based on simulations and publicly available data sets. Then we discuss the choice of modeling for
array CGH data and show that the model with a homogeneous variance is adapted to this context.

Conclusions: Array CGH data analysis is an emerging field that needs appropriate statistical tools.
Process segmentation and model selection provide a theoretical framework that allows precise
biological interpretations. Adaptive methods for model selection give promising results concerning
the estimation of the number of altered regions on the genome.

Background
Chromosomal aberrations often occur in solid tumors:
tumor suppressor genes may be inactivated by physical
deletion, and oncogenes activated via duplication in the
genome. Gene dosage effect has become particularly
important in the understanding of human solid tumor

genesis and progression, and has also been associated
with other diseases such as mental retardation [1,2].
Chromosomal aberrations can be studied using many dif-
ferent techniques, such as Comparative Genomic Hybrid-
ization (CGH), Fluorescence in Situ Hybridization
(FISH), and Representational Difference Analysis (RDA).
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Although chromosome CGH has become a standard
method for cytogenetic studies, technical limitations
restrict its usefulness as a comprehensive screening tool
[3]. Recently, the resolution of Comparative Genomic
Hybridizations has been greatly improved using microar-
ray technology [4,5].

The purpose of array-based Comparative Genomic
Hybridization (array CGH) is to detect and map chromo-
somal aberrations, on a genomic scale, in a single experi-
ment. Since chromosomal copy numbers can not be
measured directly, two samples of genomic DNA (referred
to as the reference and test DNAs) are differentially
labelled with fluorescent dyes and competitively hybrid-
ized to known mapped sequences (referred to as BACs)
that are immobilized on a slide. Subsequently, the ratio of
the intensities of the two fluorochromes is computed and
a CGH profile is constituted for each chromosome when
the log2 of fluorescence ratios are ranked and plotted
according to the physical position of their corresponding
BACs on the genome [6]. Different methods and packages
have been proposed for the visualization of array CGH
data [7,8].

Each profile can be viewed as a succession of "segments"
that represent homogeneous regions in the genome
whose BACs share the same relative copy number on aver-
age. Array CGH data are normalized with a median set to
log2(ratio) = 0 for regions of no change, segments with
positive means represent duplicated regions in the test
sample genome, and segments with negative means repre-
sent deleted regions. Even if the underlying biological
process is discrete (counting of relative copy numbers of
DNA sequences), the signal under study is viewed as being
continuous, because the quantification is based on fluo-
rescence measurements, and because the possible values
for chromosomal copy numbers in the test sample may
vary considerably, especially in the case of clinical tumor
samples that present mixtures of tissues of different
natures.

Two main statistical approches have been considered for
the analysis of array CGH data. The first has focused many
attentions, and is based on segmentation methods where
the purpose is to locate segments of biological interest
[7,9-11]. A second approach is based on Hidden Markov
Models (aCGH R-package [12]), where the purpose is to
cluster individual data points into a finite number of hid-
den groups. Our approach can be put into the first cate-
gory. Segmentation methods seem to be a natural
framework to handle the spatial coherence of the data on
the genome that is specific to array CGH. In this context
the signal provided by array CGH data is supposed to be
a realization of a Gaussian process whose parameters are
affected by an unknown number of abrupt changes at

unknown locations on the genome. Two models can be
considered, according to the characteristics of the signal
that is affected by the changes: it can be either the mean of
the signal [7,10,11] or the mean and the variance [9].
Since the choice of modeling is crucial in any interpreta-
tion of a segmented CGH profile, we provide guidelines
for this choice in the discussion. Two major issues arise in
break-points detection studies: the localization of the seg-
ments on the genome, and the estimation of the number
of segments. The first point has lead to the definition of
many algorithms and packages: segmentation algorithms
[9,10] and smoothing algorithms [11] where the break-
points are defined with a posterior empirical criterion.
These methods are defined by a criterion to optimize and
an algorithm of optimization. Different criteria have been
proposed: the likelihood criterion [9,11], the least-
squares criterion [7], partial sums [10], and algorithms of
optimization are based on genetic algorithms [9],
dynamic programing [7], binary segmentation (DNAcopy
R-package [10]) and adaptive weigths smoothing (GLAD
R-package [11]). Since many criteria and algorithms have
been proposed, one important question is the resulting
statistical properties of the break-point estimators they
provide. Note that smoothing techniques do not provide
estimators of the break-point coordinates, since the pri-
mary goal of the underlying model is to smooth the data,
and break-points are not parameters of the model (in this
case, they are defined after the optimization of the crite-
rion [11]). Here we consider the likelihood criterion and
we use dynamic programming that provides a global opti-
mum solution, contrary to genetic algorithms [9], in a rea-
sonable computational time.

As for the estimation of the number of segments, the exist-
ing articles have not defined any statistical criterion
adapted to the case of process segmentation. This problem
is theoretically complex, and has lead to ad hoc procedures
[9-11]. Since the purpose of array CGH experiments is to
discover biological events, the estimation of the number
of segments remains central. This problem can be handled
in the more general context of model selection. In the dis-
cussion we explain why classical criteria based on penal-
ized likelihoods are not valid for break-points detection.
Criteria such as the Akaike Information Criterion (AIC)
and the Bayes Information Criterion (BIC) lead to an
overestimation of the number of segments. For this rea-
son, an arbitrary penalty constant can be chosen in order
to select a lower number of segments in the profile [9]. We
propose a new procedure to estimate the number of seg-
ments, choosing the penalty constant adaptively to the
data. We explain the construction of such penalty, and its
performances are compared to other criteria in the Results
Section, based on simulation studies and on publicly
available data sets. Put together, we propose a methodol-
ogy that considers a simple modeling, a fast and effective
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algorithm of optimization and that takes advantages of
the statistical properties of the maximum likelihood. Our
procedure has been implemented on MATLAB Software
and is freely available http://www.inapg.fr/ens_rech/
mathinfo/recherche/mathematique/outil.html.

Results
Comparison of model selection criteria
To show the importance of the choice of the model selec-
tion criterion on simple data, we use the results of a single
experiment performed on fibroblast cell lines (see the
Materials Section), with one known chromosomal aberra-
tion. Figure 1 shows the resulting segmentations when
using the Bayesian Information Criterion, and our crite-
rion. BIC leads to an oversegmented profile that is not
interpretable in terms of relative copy numbers. Our pro-

cedure estimates the correct number of segments .
This example shows the practical consequences of the use
of theoretically unappropriated criteria. This point consti-
tutes the main purpose of the discussion (see the Discus-
sion Section).

Numerical simulations are performed to study the sensi-
tivity of different criteria to varying amounts of noise. The
simulation design is described in the Methods Section. We
compare four different criteria: the Bayesian Information
Criterion, two previously described criteria [9,13], and the
criterion we propose, in their ability to estimate the cor-
rect number of segments. Two configurations were tested,
for a true number of segments K* = 5. In the first situation,
the segments are regularly spaced with a jump of the mean
of 1 (Figure 3), whereas in the second case, the segments

Results of the segmentation procedure when using the Bayesian Information Criterion (BIC) and the proposed criterionFigure 1
Results of the segmentation procedure when using the Bayesian Information Criterion (BIC) and the proposed 
criterion. Data shown corresponds to Coriell cell lines GM03563, chromosome 3. Red lines represent the estimated mean of 
each segments, and green lines, the estimated mean plus one standard deviation.
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Estimated number of segments for 4 different penalized criteria in the regular case (top) and the irregular case (bottom)Figure 2
Estimated number of segments for 4 different penalized criteria in the regular case (top) and the irregular 
case (bottom). Top : Results of the simulations for 5 regularly spaced segments with n = 100 data points. The graph repre-
sents the average estimated number of segments for each criterion according to the standard deviation of the noise (σ). Bot-
tom: Results of the simulations for 5 unregularly spaced segments with n = 100 data points. The adaptive criterion is robust to 
the additional noise since it maintains an estimate close to 5 segments whatever the noise and the configuration.
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Example of a simulation in the regular case, and result of the dynamic programming algorithm for the estimation of the break-point coordinatesFigure 3
Example of a simulation in the regular case, and result of the dynamic programming algorithm for the estima-
tion of the break-point coordinates. Top: Example of simulation for 100 data points and 5 segments in the regular case. 
The true break-points are designated by vertical lines, and the red lines correspond to the mean of each segment. The differ-
ence of means d is constant and equals 1. Bottom: Estimated frequency for a break-point to be located at coordinate t for t = 1 
to 100. Different levels of noise are considered with σ = 0.1, σ = 0.5, σ = 1.
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Example of a simulation in the irregular case, and result of the dynamic programming algorithm for the estimation of the break-point coordinatesFigure 4
Example of a simulation in the irregular case, and result of the dynamic programming algorithm for the esti-
mation of the break-point coordinates. Top: Example of simulation for 100 data points and 5 segments in the irregular 
case. The true break-points are designated by vertical lines, and the red lines correspond to the mean of each segment. The dif-
ference of means varies between d = 2 to d = 0.5. Bottom: Estimated probability for a break-point to be located at coordinate 
t for t = 1 to 100. Different levels of noise are considered with σ = 0.1, σ = 0.5, σ = 1.

Example of simulation in the irregular case

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Estimated probability for a break-point to be located at position t

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

break−point position

fre
qu

en
cy

σ=0.1
σ=0.5
σ=1
Page 6 of 14
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:27 http://www.biomedcentral.com/1471-2105/6/27
are not regularly spaced and the differences of means vary
between d = 2 and d = 0.5 (Figure 4). The first result is that
BIC overestimates the number of segments, whatever the
noise and the configuration (Figure 2). On the contrary,
previously described criteria [9,13] tend to underestimate
the number of segments when the noise increases, what-
ever the configuration. These results suggest that those
two criteria "prefer" to detect no break-point as the noise
increases, leading to possible false negative results.

The behavior of the criterion we propose is different. It
seems to be more robust to the noise, as it will give a
number of segments that is close to the true number. In
particular, the irregular configuration presents a segment
of small size (5 points at t = 80) that could be interesting
to detect in the case of array CGH profile (a putative
gained region for instance). Since the previously described
criteria [9,13] tend to underestimate the number of seg-
ments, this particular region would not be detected. On
the contrary, the adaptive criterion will be able to detect it,
even if the noise is important, since it selects a constant
number of segments close to the true number whatever
the noise. These simulation examples perfectly illustrate
the capacity of an adaptive criterion to find a reasonable
number of segments even in configurations where the
profile is not very separated.

We also compare the performance of our criterion and of
the arbitrary criterion [9] on breast cancer cell lines. Figure
5 shows the resulting segmentations on chromosomes 9
and 10 of the Bt474 cell line (see the Materials Section for
further description). As previously mentioned, the arbi-
trary criterion [9] selects a lower number of segments
compared to the adaptive criterion, and we note that
interesting regions are not detected (a putative outlier on
chromosome 9 at 1.58 Mb and a putative deleted region
on chromosome 10 at 1.76 Mb). Since the aim of array
CGH experiments is to discover unknown chromosomal
aberrations, the use of an adaptive criterion seems more
appropriate in this context since it allows the identifica-
tion of regions that seem biologically relevent.

The second simulation-based result concerns the ability of
dynamic programming to locate the break-points at the
correct coordinate, given different amounts of noise (Fig-
ures 3 and 4). In the regular configuration (Figure 3), sim-
ulation results show that dynamic programming perfectly
localizes the break-points when the variability of the noise
σ2 is low regarding the jump d of the mean. If d/σ = 10 the
estimated probability to localize the break-points at the
correct coordinate is 1, and this probability deacreases
with the noise (probability close to 0.65 for d/σ = 2 and
0.25 for d/σ = 1). The effect of additional noise is to wid-
den the zone of estimation, but the estimated break-
points remain close to the true break-points. If the true

break-point is located at t*, the estimated break-point
stays in the interval t* ± 3. In the irregular configuration,
additional noise has similar effects on the break-point's
positioning, but the probability to correctly estimate a
break-point depends on the jump of the mean between
two segments. In the irregular case, Figure 4, at position t
= 40 the difference of mean is d = 2, and the probability to
locate the break-point at the true coordinate is higher than
0.65 for any additional noise. On the contrary, at position
t = 85 where the different of mean equals d = 0.5 the prob-
ability to correctly locate the break-point decreases dra-
matically with the noise (probability 1 for σ = 0.1 and
probability 0.25 for σ = 0.5). This means that dynamic
programming is sensitive to small segments that present
little differences in the mean regarding the noise. Never-
theless, the example on the real data set presented in Fig-
ure 5 shows that using an adaptive criterion with dynamic
programming allows for the identification of small
regions of putative biological interest as mentioned
above. Put together, these simulation results show that the
adaptive method selects the good number of segments
even in the presence of important noise, and that when
this number is selected, dynamic programming is able to
correctly localize the break-point. In addition to its ability
to locate precisely the break-points, it is important to
notice that dynamic programming provides a global opti-
mum of the likelihood that is required for any model
selection procedure to select the number of segments,
compared to genetic algorithms [9].

Segmentation models in the Gaussian framework
The CGH profile is supposed to be a Gaussian signal. In a
segmentation framework, two types of changes can be
considered: changes in the mean and the variance of the
signal, or changes in the mean only. Let us define model

 where each segment has a specific mean and variance

[9], and model , where the variance is common
between segments [7].

Since both models can be used, it is important to explore
their behavior in order to know which model is the best
adapted to the special case of array CGH data. We use clin-
ical data obtained from primary dissected tumors of color-
ectal cancers (see the Materials Section for further details).
Figure 6 presents the results of segmentations for three
experiments obtained with the two models  and 
when our criterion is used to estimate the number of seg-
ments. The main result of this comparison is that the
number of segments is higher using model  com-
pared to model . This behavior of model  could
be interpreted as a trend to divide large segments into
smaller parts, in order to maintain the variance
homogeneous between segments. This leads to a more
segmented profile, maybe more precise, but that may be
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more difficult to interpret in terms of relative copy num-
bers. Nevertheless, as model  allows the exploration
of segments with one observation, it will be more efficient
for the identification of outliers, as shown in Figure 6
(experiment X411, model , point at 100 Mb).

Discussion
The definition of an appropriate penalized criterion has
been an issue for previous works using segmentation
methods for array CGH data analysis [8,9,11]. In this sec-
tion, we explain the specificity of model selection in the
case of process segmentation, in order to give further jus-
tification to the inefficiency of classical criteria to select
the number of segments, as shown in the Results Section.

Estimating the number of segments via penalized 
likelihood
When the number of segments is known, the maximiza-

tion of the log-likelihood  gives the best segmentation
with K segments (see the Methods Section). In real situa-
tions this number is unknown, and one has to choose
among many possible segmentations. The maximum of

the log-likelihood  can be viewed as a quality meas-
urement of the fit to the data of the model with K seg-
ments, and will be maximal when each data point is in its
own segment. Therefore selecting the number of segments
only based on the likelihood criterion would lead to over-
fitting. Furthermore, the number of parameters to esti-
mate is proportional to the number of segments, and a

Comparison of segmentation results based on Breast Cancer Cell lines using the adaptive criterion and Jong criterionFigure 5
Comparison of segmentation results based on Breast Cancer Cell lines using the adaptive criterion and Jong 
criterion. Results of the segmentation procedure for Breast cancer cell lines Bt474, chromosomes 9 and 10. Fluoresence log2-
ratios are plotted according to their location on the genome in megabases. Left profiles are segmented using the adaptive crite-
rion and right profiles using Jong's criterion. The adaptive method detects a break-point at 1.58 MB on chromosome 9 that 
seems to be an outlier, and detects a putative deleted region on chromosome 10 at 1.76 MB.
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Comparison of segmentation results based on colorectal cancer data, using model  and Figure 6
Comparison of segmentation results based on colorectal cancer data, using model and . Results of the 
segmentation procedure for colorectal cancer data, chromosome 1 and chromosome 8. Fluoresence log2-ratios are plotted 

according to their location on the genome in megabases. Left profiles are segmented using model , and right profiles using 

model . Our criterion is used to estimate the number of segments.
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too large number of segments would lead to a large esti-
mation error. A penalized version of the likelihood is used
as a trade-off between a good adjustement and a reasona-
ble number of parameters to estimate. It is noted

where pen(K) is a penalty function that increases with the
number of segments, and β is a constant of penalization.
The estimated number of segments is such as :

It is crucial to notice that the criterion which is penalized
should provide the best partition of K-dimensional, ie for
a fixed K the criterion has to be globally maximized to
ensure convergence of the break-point estimators to the
true break-points [14]. This optimum is provided by
dynamic programming, but not by other algorithms
[9,10].

Choice of the penalty function and constant
Classical penalized likelihoods use the number of inde-
pendent continuous parameters to be estimated as a pen-
alty function. Even though those criteria are widely used
in the context of model selection, theoretical considera-
tions suggest that they are not appropriate in the context
of an exhaustive search for abrupt changes.

Let us focus on the penalty function in a first step. Table 1
provides a summary of different penalties. For classical
information criteria, such as the Akaike Information Cri-
terion and the Bayes Information Criterion, the penalty
function equals to 2K (K means and K variances) for a het-
eroscedastic model with K segments. Penalized criteria
have already been used in the context of array CGH data
analysis to estimate the number of segments [9]. In addi-
tion to the 2K parameters, they implicitly consider that
the break-points are also continuous parameters, leading
to a new penalty function pen(K) = 3K - 1, which considers

K - 1 break-points. Nevertheless, the characteristic of
break-point detection models lies in the mixture of con-
tinuous parameters and discrete parameters that can not
be counted as continuous parameters, since the number
of possible configurations for K segments is finite and

equals  (with n the total number of points) [13].

This leads to the definition of a new penalty function
adapted to the special context of the exhaustive search of
abrupt changes. This function (table 1) is proportional to
the number of continuous parameters, but is also propor-

tional to a new term in  that takes the complexity

of the visited configurations into account. It is written

pen(K) = 2K(c1 + c2 ), where c1 and c2 are constant

coefficients that have to be calibrated using numerical
simulations. Since AIC and BIC and the criterion pro-
posed in [9] do not consider the complexity of the visited
models, they select a too high number of segments. The
second term of the penalty is the penalty constant β. This
term is constant in the case of AIC and BIC (β = 1, β =

, respectively), and contributes to the overseg-

mentation as mentioned above. This can lead to an empir-
ical choice for the constant, in order to obtain expected
results based on a priori knowledge. For this reason, an
arbitrary penalty constant can be chosen for the procedure
to select a reasonable number of segments (β = 10/3 in
[9]). Instead of an arbitrary choice for this constant, β can
be adaptively chosen to the data [13,14]. Furthermore,
when the number of segments is small with respect to the
number of data points (which is the case in CGH data
analysis), the log-term can be considered as a constant
[14]. The author rather suggests to use the penalty
function pen(K) = 2K and to define an automatic proce-
dure to choose the constant of penalization β adaptively.

Table 1: Constants and penalty funtions for different penalized criteria, in a heteroscedastic model with K segments.

criterion β pen(K)

AIC I 2K
BIG 2K

Jong (2003) 10/3 3K - 1
Lebarbier (2003) adaptive

Lavielle (2003) adaptive 2K
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K
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
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
log
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log
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We explain the estimation procedure for the penalty con-
stant in the Methods Section.

The power of adaptive methods for model selection lies in
the definition of a penalty that is not universal (such as in
the case of AIC and BIC). This means that the dimension
of the model is estimated adaptively to the data. The effi-
ciency of such method has been shown on simulated data
as well as on experimental results (Results Section), and
adaptive model selection criteria seem to be very appro-
priate for array CGH data analysis.

Choice of modelling for array CGH data
Since the choice of modeling affects the resulting segmen-
tation, it is crucial to provide guidelines for their use. This
can be done with the interpretation of the statistical mod-
els in terms of their biological meaning. The difference

between model  and  concerns the modeling of

the variance: model  assumes that the variability of
the signal is organized along the chromosome, whereas

model  specifies that the variance is constant. Since it
has been shown that the vast majority of clones all had the
same response to copy number changes in the aneuploid

cell lines [6], the use of model  would be justified
regarding this experimental argument.

Outliers seem to be a major concern in microarray CGH
data analysis. For instance, if only one BAC is altered
whereas its neighbors are not, the conclusion could be
either that it is biologically relevant, or that the signal is
due to technical artefacts. Replications are crucial in this
situation, as well as secondary validations. An other pos-
sibility could be that the BAC is misannotated: if the ratio
is plotted at the wrong coordinate on the genome, it will
appear as an outlier, when it is not. The importance of
outlier identification is another argument in favor of

model , that can detect changes for one data point,

whereas with model  outliers would belong to seg-
ments with higher variance.

It has to be noted that classical models used in segmenta-
tion methods assume the independence of the data. This
may be a reasonnable assumption for BAC arrays whose
genome representation is approximately 1 BAC every 1.4
Mb [6]. Nevertheless, a new generation of arrays now pro-
vides a tiling resolution of the genome [15]. The overlap-
ping of successive BACs could lead to statistical
correlations that will require developments of new seg-
mentation models for correlated processes.

Conclusions
Microarray CGH currently constitutes the most powerful
method to detect gain or loss of genetic material on a

genomic scale. To date, applications have been mainly
restricted to cancer research, but the emerging potentiali-
ties of this technique have also been applied to the study
of congenital and acquired diseases. As expression profile
experiments require careful statistical analysis before any
biological expertise, CGH microarray experiments will
require specific statistical tools to handle experimental
variability, and to consider the specificity of the the stud-
ied biological phenomena. We introduced a statistical
method for the analysis of CGH microarray data that
models the abrupt changes in the relative copy number
ratio between a test DNA and a reference DNA. We discuss
the effects of different modelings that can be used in seg-
mentation methods, and suggest the use of a model that
considers the homogeneity of the signal variability based
on experimental arguments and regarding the specificity
of array CGH data.

The main theoretical issue of array CGH data analysis lies
in the estimation of the number of segments that requires
the definition of appropriate penalty function and con-
stant. We define a new procedure that estimates the
number of segments adaptively to the data. This method
selects the number of segments with high accuracy com-
pared to previously mapped aberrations, and seems to be
more efficient compared to others proposed to date. The
use of dynamic programming remains central to localiz-
ing the break-points, and the simulation results show that
when the good number of segments are selected, the algo-
rithm localizes the break-points very close to the truth.
Assessing the number of segments in a model is theoreti-
cally complex, and requires the definition of a precise
model of inference. To that extent, microarray CGH anal-
ysis not only requires computational approaches, but also
a careful statistical methodology.

Methods
Materials
We briefly present the data we used in this article. The first
data we use in the Results Section consist of a single exper-
iment on fibroblast cell lines (Coriell Cell lines) whose
chromosomal aberrations have been previously mapped.
Those defaults concern partial or whole chromosome ane-
uploidy. This data have been previously used by other
authors [10]. The second group of data used in the Results
section is described in [6]. A test genome of Bt474 cell
lines is compared to a normal reference male genome. The
last data set used is described in [16] and consists of 125
primary colorectal tumors that were surgically dissected
and frozen. The arrays used for these analysis are BAC
arrays described in [6].

Models and Likelihoods

In this section, we define the models  and . Let us
consider a CGH profile, and note yt, the log2-ratio of the

1 2

1

2

2

2

1

1 2
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intensities for the tth BAC on the genome. Precisely yt rep-
resents the average signal obtained from the replicated
spots on the slide. BACs are the basic units in our model,
and are ordered according to their physical position. We
suppose that the yt are the realizations of independent ran-
dom variables {Yt}t = 1...n, with Gaussian distributions

. We assume that K - 1 changes affect the

parameters of the distribution of the Ys, at unknown coor-
dinates (t0, t1, t2,...,tK - 1, tK) with convention t0 = 1 and tK =
n, and that the parameters of the Ys distributions are con-
stant between two changes:

where µk is the mean of the kth segment. Model  spec-

ifies that the variance is segment-specific ( ), whereas

 considers that the variance is common between seg-

ments (σ2). Since BACs are supposed to be independent,
the log-likelihood can be decomposed into a sum of
"local" likelihoods, calculated on each segments:

, with

Estimation of the segment's mean and variance
Given the number of segments K and the segments' coor-
dinates (t0, t1, t2,...,tK-1, tK), we estimate the mean and the
variance for each segment using maximum likelihood :

If the variance of the segments is homogeneous, its esti-
mator is given by:

Notice that when the segment coordinates are known, the
estimation of the mean and variance for each segment is
straightforward. Then, the key problem is to estimate K
and (t0, t1, t2,...,tK - 1, tK). We will proceed in two steps: in
the first step, we will consider that the number of seg-

ments is known, and the problem will be to estimate the
tks, that is, to find the best partition of a set of n individu-
als into K segments. In the second step, we will estimate
the number of segments, using a penalized version of the
likelihood.

A segmentation algorithm when the number of segments is 
known
When the number of segments K is known, the problem
is to find the best partition of {1,...,n} into K segments,
according to the likelihood, where n is the size of the sam-
ple. An exhaustive search becomes impossible for large K
since the number of partitions of a set with n elements

into K segments is . To reduce the computational
load, we use a dynamic programming approach
(programs are coded in MATLAB language and are availa-

ble upon request). Let  be the maximum log-

likelihood obtained by the best partition of the data {Y(i),
Y(i + 1),...,Y(j)} into k + 1 segments, with k break-points,

and let note . The algorithm is

as follows:

Dynamic programming takes advantage of the additivity
of the log-likelihood described above, considering that a
partition of the data into k + 1 segments is a union of a
partition into k segments and a set containing 1 segment.
This approach presents two main advantages: it provides
an exact solution for the global optimum of the likelihood

[17], and reduces the computational load from (nK) to

(n2) for a given K (the algorithm only requires the stor-
age of an upper n × n triangular matrix). At the end of the

procedure, the quantities  are

stored and will be used in the next step. Notice that this
problem of partitioning is analogous to the search for the
shortest path to travel from one point to another, where

 represents the total length of a (k + 1)-step-

path connecting the point with coordinate 1 to the point
with coordinate n.

An adaptive method to estimate the penalty constant
The purpose of this section is to explain an adaptive
method to estimate the number of segments. Further the-
oretical developments can be found in [14]. If we consider

that the likelihood  measures the adjustment of a
model with K segments to the data, we aim at selecting the
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dimension for which  ceases to increase significantly.
For this purpose, let us define a decreasing sequence (β)
such as β0 = ∞ and

If we represent the curve (pen(K), ), the sequence of βi

represents the slopes between points (pen(Ki + 1), )

and (pen(Ki), ), where the subset {(pen(Ki), ),i ≥

1}) is the convex hull of the set {(pen(K), )}.

Since we aim at selecting the dimension for which 
ceases to increase significantly, we look for breaks in the
slope of the curve. We define li, the variation of the slope,
that exactly corresponds to the length of the interval ]βi, βi

- 1] : li = βi - 1 - βi. The length of these intervals is directly
related to the second derivative of the likelihood. The
automatic procedure to estimate the number of segments
is then to calculate the second derivative (finite differ-
ence) of the likelihood:

and we select the highest number of segments K such that
the second derivative is lower than a given threshold :

Other procedures have been developed to automatically
locate the break in the slope of the likelihood. Neverthe-
less, the criterion we use can be interpreted geometrically
and is easy to implement. The choice of the constant s is
arbitrary. According to our experience, a threshold s = -0.5
seems appropriate for our purpose. A criticism that can be
made to this procedure is its dependency on the threshold
which is chosen. Nevertheless, it is important to point out
that despite this thresholding the procedure remains
adaptive, since the penalty constant is estimated accord-
ing to the data.

Simulation studies
We performe numerical simulations to assess the sensitiv-
ity of our procedure to the addition of noise. In the first
case, we simulate 100 points with K* = 5 segments. In the
first case Figure 3, the segments are regularly spaced and
the difference of the means between two segments is d =
1. In the second case (Figure 4) the segments are irregu-
larly spaced and the difference of the means varies
between d = 2 and d = 0.5. The standard deviation of the
Gaussian errors varies from σ = 0.1 to σ = 2. Each config-

uration is simulated 500 times, and we calculate the aver-
age selected number of segments over 500 simulations. In
order to assess the performance of the dynamic program-
ming algorithm, we calculate the empirical probability
over 500 simulations for a break-point to be located at
coordinate t (for t = 1 to 100).
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