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Abstract
Background: Alternative splicing (AS) is now considered as a major actor in transcriptome/
proteome diversity and it cannot be neglected in the annotation process of a new genome. Despite
considerable progresses in term of accuracy in computational gene prediction, the ability to reliably
predict AS variants when there is local experimental evidence of it remains an open challenge for
gene finders.

Results: We have used a new integrative approach that allows to incorporate AS detection into
ab initio gene prediction. This method relies on the analysis of genomically aligned transcript
sequences (ESTs and/or cDNAs), and has been implemented in the dynamic programming
algorithm of the graph-based gene finder EuGÈNE. Given a genomic sequence and a set of aligned
transcripts, this new version identifies the set of transcripts carrying evidence of alternative splicing
events, and provides, in addition to the classical optimal gene prediction, alternative optimal
predictions (among those which are consistent with the AS events detected). This allows for
multiple annotations of a single gene in a way such that each predicted variant is supported by a
transcript evidence (but not necessarily with a full-length coverage).

Conclusions: This automatic combination of experimental data analysis and ab initio gene finding
offers an ideal integration of alternatively spliced gene prediction inside a single annotation pipeline.

Background
Alternative splicing (AS) is a biological process that occurs
during the maturation step of a pre-mRNA, allowing the
production of different mature mRNA variants from a
unique transcription unit. AS is known to play a key role
in the regulation of gene expression and transcriptome/
proteome diversity [1]. First considered as an exceptional
event, AS is now thought to involve the majority of the
human multi-exon genes, from 50% to 74% [1-3]. This
observation raises new issues for genome annotation,
especially concerning the computational gene finding
process that generally provides only one exon-intron
structure per sequence.

In the context of structural gene prediction, two classes of
approaches are usually considered. In the first approach,
usually denoted as intrinsic or ab initio, the only type of
information used for gene prediction lies in the statistical
properties of the various gene elements (exons, splice sites
and other biological signals). On the contrary, so-called
extrinsic approaches essentially rely on the existence of
similarities between the sequence to annotate and other
known sequences (either proteins, transcripts or other
genomic sequences). Several existing gene finding tools
are essentially intrinsic (or ab initio): this is the case for
Genscan [4], HMMgene [5] or SLAM [6]. For such a gene
finder, the predicted gene structure is defined as an
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optimal prediction, that is the most probable according to
its underlying probabilistic model. In the presence of AS
however, a unique prediction is not sufficient. One obvi-
ous possibility is to look for suboptimal predictions. This
can be done for a classic HMM-based gene finder by a
modification of the Viterbi algorithm, thus providing the
set of the k best predictions. This approach has been
applied eg. in HMMgene or in FGENES-M (unpub.).
Another way to obtain suboptimal solutions from a HMM
is to do HMM sampling [7]. This method, which consists
in randomly generating parses according to the posterior
probabilities, has been implemented in the gene finder
SLAM. Usually, a very large amount of samples are needed
to generate just a single prediction that differs from the
optimal one. Genscan adopt a different approach and
search for alternative exons not represented in the optimal
prediction. This is done using a forward-backward algo-
rithm to identify potential exons for which the a posteriori
likelihood is larger than a given threshold.

In addition to the fact that all these exclusively intrinsic
approaches cannot take into account transcript evidences,
they suffer from two major problems of sensibility and
specificity:

First of all, these methods assume that predictions repre-
senting AS variants should have a probability which is
very close to the optimal probability according to the
underlying gene model. This is however quite arguable,
especially when the alternative structure significantly dif-
fers from the optimal one. Actually, when an AS variant eg.
shifts from a strong to a weak or a non-consensus splice
site or shows a complete coding exon skipping event, it is
quite unlikely that the probability will remain in the
neighborhood of the optimum since it will not be able to
incorporate the corresponding splicing or coding score.

Moreover, a strong specificity problem has been observed
for this approach. Since a very large number of alternative
predictions can always be produced for any sequence, it is
essential to be able to distinguish those reflecting real AS
variants from in silico false positives. To perform this, and
as long as AS sites dedicated prediction tools are unavail-
able, the probability of a prediction alone cannot be suffi-
cient and additional evidence is required.

In opposition to the purely intrinsic approach, the analysis
of experimental data can provide useful information.
More specifically, sequences of mature transcripts result-
ing from AS provide reliable evidence of the existence of
the AS event. Large scale studies have already been under-
taken to detect AS evidences from transcript alignments
and to collect them in databases such as eg. HASDB [8],
ASDB [9], ASAP [10], ASD [11], EASED [12] or ProSplicer
[13]. Some software tools have also been designed to per-

form and/or exploit transcript alignment with the aim of
identifying alternative gene structures. Such extrinsic
annotation tools include GeneSeqer [14], ASPic [15], TAP
[16,17], and PASA [18]. Except for GeneSeqer which is
more focused on performing spliced alignment, the three
other software adopt the same strategy: using genomically
aligned transcripts, the aim is to determine the exon-
intron structure(s) compatible with the greatest number
of transcripts. Another approach, Cluster Merge [19], has
been recently used in the Ensembl annotation system [20]
to identify minimal sets of transcript variants compatible
with genomically aligned ESTs evidences.

Unlike intrinsic methods, extrinsic approaches take advan-
tage of transcript information. However, they also suffer
from some limitations : first they entirely depend on the
availability of transcribed sequences which bounds their
sensitivity. With little exceptions (like TAP that exploits
genomic sequence properties to identify gene boundaries,
including eg. a polyA site scanning step, or GeneSeqer,
that contains an intrinsic splice sites scoring method), they
cannot predict a splice site if it is not represented in a tran-
script-to-genome alignment and therefore require a total
coverage of each gene with all exon-intron boundaries.
This can be problematic considering the ESTs fragmented
nature. Moreover, when such methods can take advantage
of a total gene coverage, the CDS localization remains to
be done and the pure transcript predictions may not
respect elementary coding gene properties (such as the
presence of an ORF w.r.t. a given frame). Furthermore,
overlapping transcripts are sometimes assumed to come
from the same mature mRNA and are therefore merged.
This may lead to the fusion of two overlapping transcripts
coming from exclusive inconsistent mRNA variants, thus
forcing the prediction to respect a chimeric virtual
assembly.

Finally, and because experimental transcripts cannot exist
for every existing gene, both intrinsic and extrinsic informa-
tion are needed inside an annotation pipeline [20]. The
predictions provided by two different approaches can be
different and even inconsistent, and merging them
together requires a careful inspection of human curators,
as performed in [18]. A fully integrative method alleviates
all these problems. GrailEXP [21] seems to be the only
gene finder that tried to go in this direction. However, it
can only consider AS events leading to complete exon
inclusion/retention, ignoring thus approximatively half of
the AS cases [8,18]. The underlying approach remains
unpublished.

To extend the domain of application of gene prediction to
alternatively spliced gene structure prediction, we have
designed an intrinsic/extrinsic integrative annotation
method with the following aims:
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• For a given genomic sequence, an optimal gene structure
prediction is produced, as usual.

• In addition to this optimal prediction, for every tran-
script sequence providing evidence of AS, an optimal pre-
diction consistent with this splicing form is also provided.

• Each additional or alternative gene structure prediction
has to be supported by some biological evidence.

• Full-length transcript coverage is not required for a com-
plete gene structure identification.

• Each prediction satisfies the usual constraints on gene
structure. A correct proteic coding gene is defined by a suc-
cession of one or more exons separated by introns flanked
by splice sites. It contains a CDS between a start and a stop
codon, and no in-frame stop in coding exons.

Our aim is to combine the advantages of the intrinsic and
extrinsic approaches in an integrative system allowing for
AS detection based on the analysis of genomic aligned
transcript sequences. The method has been implemented
inside EuGÈNE-M, a new version of the Arabidopsis thal-
iana EuGÈNE gene finder [22,23], and applied to a refer-
ence genes set.

Results
To evaluate the interest of EuGÈNE-M compared to exist-
ing transcripts-based approaches, we applied it on the spl7
Arabidopsis thaliana gene. This gene codes for the squa-
mosa promoter-binding protein-like 7, has 10 exons and
two known alternative mature mRNA variants, both sup-
ported by a distinct full-length cDNA (accession
AY063815 and AF367355, Figure 1). The genomic align-
ments of these cDNAs provide two correct and reliable
gene structures used as reference annotations. The struc-
tures differ only by the 3' extremity of the 9th exon. How-

ever, beyond these 2 complete cDNAs, only the first and
the two last exons are covered by ESTs. This partial EST
coverage configuration is interesting because without the
full-length cDNAs (unavailable in dbEST), finding a cor-
rect gene structure with pure extrinsic assembly tools
would not be possible.

Given only the genomically ESTs alignments, we applied
EuGÈNE-M on the genomic sequence containing the spl7
gene. Since two ESTs (T04465 and AI995153) show
incompatible alignments (see Methods), EuGÈNE-M com-
putes two additional predictions, each being consistent
with one of them. The first alternative prediction is the same
as the optimal one and corresponds to one variant; the
second corresponds to the other variant.

For a more extensive test, we applied EuGÈNE-M on Ara-
Set [24], a data set of Arabidopsis thaliana curated genes
recently used in the assessment of GeneSeqer [25]. Since
EuGÈNE has already been evaluated on this benchmark
set, performing as one of the most accurate gene finder
[22], the aim of this test is to provide an estimation of an
alternatively spliced genes ratio on a reference set. Predic-
tions are available in the additional files. On the 168 Ara-
Set reference genes, 9 show at least two alternative
predictions, that were carefully analyzed. This is summa-
rized in Table 1. All these predictions but two correspond
to potential alternative splicing events. Among the two
remaining ones, a first predicted AS event corresponds to
an incompatibility caused by an apparently incompletely
spliced EST. The other is more interesting since it is caused
by two ESTs from two different genes lying on opposite
strands and overlapping on their 3' ends. In this case,
EuGÈNE-M is forced to predict two overlapping genes,
one on each strand, which effectively address the usual
impossibility for existing gene models to predict overlap-
ping genes. Of course, these predictions, as all in silico
expertise, require experimental verifications to be

EST/cDNA alignments on the spl7 gene regionFigure 1
EST/cDNA alignments on the spl7 gene region. Thick lines represent matches an dotted lines, gaps. Above the genomic 
sequence, the 2 full-length cDNAs that provide the two correct reference gene structures are presented. Arrows indicate the 
start and stop codons. The ESTs T04465 and AI995153 present inconsistent splicing profiles and are labeled as incompatible.

cDNA AF367355
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genomic sequence (AJ011613)AV822674
AV827146 AI995153

AV797361
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confirmed. If we assume the 7 remaining genes are effec-
tively subject to AS, this yield to an AS rate of ~4.2%, a
ratio in the same order as previously estimated, from 1.5%
[26] to 6.5% (computed from [18]).

Discussion
In the recent assessment of GeneSeqer on this AraSet data
set, only three AS cases were reported [25]. However, the
authors only reported AS cases that were detected in Gen-
eSeqer high-quality alignments and producing introns
differing from the AraSet annotated introns. We therefore
verified that our alignments were consistent with the Gen-
eSeqer assessment alignment data available in the Arabi-
dopsis thaliana Genome Database AtGDB [27,28]. We
noticed an alignment difference for only one of our alter-
native EST (CF652136), not present in the AtGDB because
of its dbEST entry date (Oct. 2003). We also checked if the
AS variants predicted by EuGÈNE-M were already reported
in the AS sections of the AtGDB [26,29] and of the
TIGRdb [18,30]. Only 3 of our detected AS predictions
were already reported in both databases, and 3 were miss-
ing in all of them (Table 1), confirming that this method-
ology can help to automatically discover new potential AS
cases, even on a well studied dataset.

The analysis of these AS cases confirms that AS seems to
be much less frequent in A. thaliana than in Homo sapiens.
Nevertheless, this AS ratio estimation is expected to
increase in the future with the growth of transcript data
availability. Another interesting point is the nature of the
variants: on this gene set, the majority of AS cases involves
a simple acceptor or donor alternative splice site. Notice
however that since EuGÈNE-M's underlying model allows
arbitrary alternative gene structure to be predicted, it is not

limited to the prediction of such simple AS events and can
perfectly cope with complex AS events, as found in mam-
mals. This methodology can also be integrated in other
existing gene finders where the score of a gene structure is
defined as the sum of elementary scores of the signals and
nucleotides involved in the gene structure (this includes
HMM-based gene finders).

Conclusions
In this paper we have presented a new method to deal
with alternative splicing in annotation and gene predic-
tion. This integrative approach combines the advantages
of an intrinsic and an extrinsic process to incorporate AS
detection into ab initio gene finding. We showed that this
method allows the discovery of new alternative spliced
genes, with the reliability of extrinsic annotation and the
potential exhaustiveness of ab initio gene prediction.

Methods
The process that goes from the original genomic sequence
and associated aligned transcripts to the AS prediction is
composed of three steps which we rapidly describe here :

• first, the set of genomically aligned transcripts is ana-
lysed to detect AS evidences on the basis of splicing incon-
sistency between transcripts variants.

• Then, the graph-model used in EuGÈNE to model
potential gene structures is modified to take into account
these aligned transcripts. For each transcript variant, the
graph used in EuGÈNE for gene structure prediction is
connected to an additional parallel graph subunit where
local constraints are injected according to the exon-intron

Table 1: Analysis of the AS cases detected by EuGène-M in the AraSet genes data set. First, sequence IDs, genes and EST involved are 
reported. The TIGR and AtGDB columns indicate if each AS case is reported in these databases. The AS status is described as follows: 
ACC = alternative acceptor splice site, DON = alternative donor splice site, -EX = exon skipping (an entire exon lacks in the reported 
variant), +IN = intron inclusion (an internal part of an exon is spliced), FP = false positive AS. nt = nucleotide. Some ESTs of the 
At2g39780 gene in seq16 are not correctly aligned: the use of either GeneSeqer or sim4 with default options leads to a missed 4 nt 
exon (not involved in AS). In seq50, the 168 nt additional (+IN) intron from the EST CF652136 is flanked by GC-CT (instead of the 
canonical GT-AG). In seq62, the EST AV542276 from the gene At4g37040 overlaps with an intron of EST AV562725 from the 
neighboring gene At4g37050. In seq65, the EST BE521212 is not spliced between the exon 5 and 6 of the gene At2g44100 (intron 
retention case), and is thus suspected of incomplete maturation. Except for CF652136, all alignments can be browsed on the AtGDB 
site.

AraSet sequence Gene ID EST evidence TIGR AtGDB AS status Note

seq14 At2g47640 AI998209 Y N ACC skip 3 nt
seq16 At2g39780 AV832175 N N -EX incorrect alignments
seq50 At5g46290 CF652136 N N +IN non consensus splice sites
seq53 At3g51800 AV544387 Y Y ACC add 27 nt
seq62 At4g37070 AU236122 Y Y DON add 33 nt
seq62 At4g37050 AV542276 N N FP overlapping genes
seq65 At2g44100 BE521212 N N FP incomplete splicing
seq65 At2g44120 BE524396 Y N ACC skip 33 nt
seq69 At4gl4350 AV547538 Y Y +IN skip 105 nt
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information provided by the corresponding transcript
alignment.

• Finally, an extended version of the dynamic program-
ming algorithm used for obtaining an optimal prediction
allows to identify, for each graph subunit, the best predic-
tion consistent with the corresponding transcript
alignment.

Detection of AS evidences from transcripts analysis
Since EuGÈNE already exploits transcripts information to
improve the gene prediction process [22], the AS predic-
tion only requires to consider transcripts providing evi-
dence of AS. With this purpose, we focus on
inconsistencies between transcript alignments.

Transcript sequences are first aligned against the genomic
sequence using a spliced alignment tool. The choice of the
source transcript database and the alignment tool is not a
priori imposed by the method. Transcript sequences in our
analysis were extracted from the A. thaliana section of
dbEST [31] (release Dec. 2003: 190, 708 entries), and
aligned in two steps. For the first step we used sim4 [32],
a fast software that can deal with huge EST datasets. In the
second step, we used GeneSeqer [14], usually more accu-
rate on splice junction identification, to realign all tran-
scripts aligned by sim4 that passed the following filtering
process.

A first filtering step is performed on the basis of the tran-
script sequence and alignment quality. To be considered,
an alignment has to satisfy some constraints defined by
filtering parameters. For Arabidopsis thaliana, default
parameters values are set as following: transcript length
between 30 and 10000 bp, minimum alignment length =
95% of the transcript length, minimum identity score of
97%, maximum gap length of 5000 bp, maximum match
length of 4000 bp. By default, and to avoid genomic con-
tamination, unspliced transcripts are removed from the
analysis. Moreover, because of the frequent weak align-
ment quality at the terminal regions, alignments extremi-
ties are shortened (by 15 bp by default).

The second filtering step depends on the relation between
transcript alignments. To detect AS evidences, every pair of
overlapping transcript alignments is analyzed. We con-
sider two special types of pairwise relation : a transcript
alignment A is labeled as included in B if and only if for
each genomic position of A the same genomic position in
B shares the same alignment information (either gap or
match). Every transcript included in another transcript is
ignored by default. Transcript alignments A and B are
labeled as incompatible if and only if there is a genomic
position for which both ESTs are informative and give an
inconsistent information, that is a gap (representative of

the presence of an intron) is faced with a match (repre-
sentative of the presence of an exon, coding or not).
Examples of incompatible ESTs are displayed in Figure 1
and 5. Since we focus on AS evidences, we only keep tran-
scripts labeled as incompatible after all pairwise compari-
sons. Considering orientation of ESTs, the information on
the clone-sequencing orientation that can be found with
ESTs is totally ignored in this filtering process because of
its unreliability. In practice, spliced EST can be reliably
oriented by looking for splice sites on the hit-match fron-
tier of the EST alignments and by choosing the strand for
which such splice sites exist. The parameters of these two
automatic filtering steps can be modified by the user
through a simple text file. We will denote the resulting
transcript alignments kept as alternative transcripts.

The gene-finder EuGène
General description
EuGÈNE is a gene finding software based on a directed
acyclic graph gene model [22]. For each nucleotide of the
genomic sequence, every possible annotation of this
nucleotide is represented in the graph. The graph is
designed to model the whole prediction space: all consist-
ent gene structures can be represented by a path through
the graph, whose weight is defined as the sum of its edges
weights. The minimum weight path defines the optimal
prediction. Several sources of evidence are used to weight
the edges of the graph and a shortest-path dynamic pro-
gramming algorithm (linear in time and space) scans the
graph to provide an optimal path which represents the
best gene prediction according to available evidences.

Structure of the initial graph
Each path through the graph represents a potential gene
structure prediction for the genomic sequence (Figure 2).
The graph is composed of k tracks that represent the pos-
sible annotations that can be attributed to each nucleotide
(coding, intronic, intergenic and UTR, with specific strand
and frame). Let � be the genomic sequence length. For a
given nucleotide's position i with (1 <i < �) and for each

track j with (1 <j <k) the two flanking vertices  and 

are defined. Two edges are also built : a contents edge 

linking  to  and a transition edge  linking  to 

(Figure 3). Additional transition edges  are put from

 to all  according to the occurrence of a potential

biological signal allowing a switch from state j for the
nucleotide at the position i to the state j' for the following
nucleotide. For example, on the position i before the

occurrence of an ATG, a transition edge  linking  to

 (where j corresponds to the UTR5' track and j' is the

li
j ri

j

ci
j

li
j ri

j ti
j ri

j li
j
+1

ti
j j, ′

ri
j li

j
+
′
1

ti
j j, ′ ri

j

li
j
+
′
1

Page 5 of 10
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:25 http://www.biomedcentral.com/1471-2105/6/25
coding exon track on the appropriate frame) is present, as

illustrated in Figure 3. Two special vertices  and  are

added at the extremities of the graph. They are respectively

connected to all  and all . Initially, all edges are ori-

Integration of several incompatible ESTs in EuGène-M's graph and algorithmFigure 5
Integration of several incompatible ESTs in EuGène-M's graph and algorithm. A: EST alignments (plain lines repre-
sent exons, dotted lines, intron) on a genomic sequence (thick line). Each displayed EST is incompatible with at least another 
one. B: Multiple extensions of EuGÈNE's graph model after having processed these alignments. Each PGS (Figure 3) contains 
the information provided by its source EST. The dotted arrows show the algorithm progression through the resulting graph 
during the first scan, from the left to the right.

EuGène's directed acyclic graph for a short example sequenceFigure 2
EuGène's directed acyclic graph for a short example sequence. For simplicity purposes, only the forward strand is 
considered. The DNA sequence is shown above the graph. Horizontal tracks represent the different possible annotations: 
intergenic (bottom), UTR 5' and 3', exon in the 3 frames, intron in 3 phases (the phase of an intron is defined according to the 
splicing position in the last codon of the previous exon). On each track, 2 vertices are used to represent each nucleotide. 
These 2 vertices are linked horizontally by a contents and a transition edge (see the text and Figure 4 for details). Dotted 
arrows show occurrences of biological signals (like start/stop codons and donor/acceptor splice sites). They produce additional 
transition edges at the corresponding position. Since this version of EuGÈNE does not include any promoter or polyA site pre-
diction tool, transitions from intergenic to UTR and vice-versa are allowed at every nucleotide position. All consistent gene 

structures can be represented by a path connecting the initial and terminal vertices  and .
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ented from left (5') to right (3'). It is easy to see that all
possible gene structure can be represented by a path from

 to .

Weighting the graph
The weight of a path is the sum of all the weights of the
edges in the path. The edges are weighted according to the
evidences used. EuGÈNE can combine several sources of
evidence such as probabilistic coding models, output of
splice site or start codon prediction software and sequence
similarities with transcripts, proteins, or other genomic
sequences [33]. Contents and transition edges c and t are
penalized respectively by weights Wc and Wt according to
a weighting function characterized by parameters specifi-

cally set for the corresponding source of evidence. The set
of parameters is optimized on a learning dataset by maxi-
mizing the overall accuracy of the software. For more
information about the weighting methods, please refer to
[22].

Example of transcript alignment integration
A transcript-to-genome alignment can easily be taken into
account by weighting the appropriate edges of the graph.
To favor a gene prediction in the alignment region, the
intergenic track edges included in this region can be
penalized by increasing their weight. More finely, the
exon and the intron tracks edges can also be penalized at
all positions involved respectively in a gap and in a match
in the alignment. Thus, all gene structure prediction
inconsistent with the transcript alignment information
tends to be penalized. More drastically, it is possible to
force the prediction to be consistent with the alignment
by applying infinite penalty weights. Note that there are
several such predictions since the start codon used is
unknown and the transcript may be incomplete.

Initial algorithm
To identify the optimal path defined by the lowest weight,
EuGÈNE uses a dynamic programming algorithm inspired
from Bellman's shortest-path algorithm [34], also used for
HMM in its Viterbi's version. Improvements of this algo-
rithm allow EuGÈNE to take into account constraints on
gene element lengths. For simplicity, we will not describe
these sophistications in this paper. The algorithm of

EuGÈNE associates to each vertex  a variable 

which contains the weight of the optimal path from  to

 and a variable  which contains the vertex that pre-

cedes  in this optimal path. The weight of this path can

be computed recursively from 5' to 3' as:

A short example is displayed in Figure 3. The vertex 

that minimizes this value provides the previous . At

vertex , the best path is retrieved by a simple backtrac-
ing procedure through all π. This algorithm is linear in
time and space in the length of the sequence (O(�) com-
plexity). It is important to note that the same algorithm

can be used in a backward version (from  to ), by

computing at each vertex  the weight  of the best

Detail of EuGène's directed acyclic graph and algorithmFigure 3
Detail of EuGène's directed acyclic graph and algo-
rithm. The zoomed region contains the two first nucle-
otides of the example sequence of Figure 3 (C at position i - 
1, and A at position i), and two annotation tracks (UTR5' for 
j and exon in frame 2 for j + 1). The contents edges c connect 
the l vertices to the following r vertices of the same track. 
Transition edges t are either horizontal and link the r vertices 
to the l vertices of the same track, or transversal and link the 
r vertices to all possible l vertices according to the occur-
rence of a biological signal in the sequence. In this example, 

between  and  a vertex  allows the transition 
from the UTR5' track at position i - 1 to the exonic track at i 
because the A nucleotide at position i is the first nucleotide 
of a potential start codon ATG. The dynamic programming 
algorithm used in EuGÈNE determines, for each vertex r, 
which vertex precedes r in the optimal path. In this example, 

at position i for the track j the best path leading to  from 

the left has a weight  (only 
one origin is possible). For the track j + 1, the best path lead-

ing to  will be attributed a weight of either 

, whatever the lower.
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path from  to  as

.

AS evidences integration
Given an alternative transcript genomic alignment, any pre-
diction which is optimal among all the predictions that
are consistent with the alignment evidence will be called
an alternative prediction. Given the set of the previously
detected alternative transcripts, we want EuGÈNE-M to pro-
duce a set of alternative predictions such that every alterna-
tive transcript has a corresponding prediction in this set. A
simple way to produce such an alternative prediction
would be to inject the exon-intron structure information
given by the transcript alignment into the graph as
described above (using infinite weights to force the pre-
diction to strictly respect the alignment evidence), and
then to execute EuGÈNE on the resulting graph. However,
obtaining all alternative predictions would require one exe-
cution for each alternative transcript. n being the number of

transcripts and l the genomic sequence length, this would
result in a O(ln) time complexity, which is not appropriate
for long genomic sequences and numerous transcripts.

Hopefully, this complexity can be drastically reduced. The
general idea to achieve a realistic complexity is to dupli-
cate the subsection of the graph region involved in an
alignment to create a so called local "Parallel Graph Sub-
unit" (PGS), connected to the main graph at its
extremities. Each alignment information is taken into
account as constraints in the corresponding PGS, in such
a way that finding the optimal path going through the
PGS provides a corresponding optimal alternative
prediction.

Extending the graph model with PGS
For a transcript alignment that extends from position g to
h on the genomic sequence, the entire subsection of the
graph between g and h is duplicated to create a Parallel
Graph Subunit (PGS) (Figure 4). This PGS is connected to
the main graph at its extremities by special so-called devi-

Extension of EuGène's graph by a PCS to incorporate a single alternative transcript alignmentFigure 4
Extension of EuGène's graph by a PCS to incorporate a single alternative transcript alignment. From the main 
graph (bottom) described in Figure 3, a Parallel Graph Subunit (PGS) is built (above) by duplicating the whole graph section 
involved in the EST alignment (between the graphs). Gene structure evidences provided by the alignment are taken into 
account in the PGS by forbidding the intergenic track all along the alignment, intronic tracks at match positions (light grey), and 
exonic tracks in gap positions (dark grey). Dotted arrows represent the two algorithm scans, the forward version from left to 
right, and the backward version from right to left. At the junction point in the PGS, an optimal prediction is obtained. Figure 
not to scale.
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ation edges. For each track j, a deviation edge links the

source vertex  in the main graph to its copy at the PGS

left extremity, and another connects the source vertex 

in the main graph to its copy at the PGS right extremity.
The deviation edges are all oriented from the main graph
to the PGS. The weights of the PGS edges, initially identi-
cal to the weight of the original edges, are modified
according to the corresponding transcript alignment : gaps
and matches forbid respectively the exonic and the
intronic tracks, and the entire PGS intergenic track is
forbidden.

Findingalternative predictions
The modified algorithm proceeds in two steps. A first scan

starts from  to  and applies the recursive formula

described above to compute all , branching into

each PGS (Figure 5). Thus, at each nucleotide's position
and for each track (including those in the PGS), the

weight of the optimal path from the left extremity  is

identified. At , the optimal path is obtained by back-
tracing. Furthermore, for any given PGS, the cost of an

optimal path going from , through the PGS and then to

each of the righmost vertices  is known.

Then all edges (except the deviation) are reversed, and the
backward version of the same shortest-path algorithm is

used from  to  to compute all . This step

ignores the PGS.

For a given PGS A, if we now consider the vertices  at the

rightmost extremity of A, then the weight of an optimal

path that goes from  to  through A can be computed

as . From the given vertex,

backtracing in both directions provides an optimal path
that represents an optimal prediction in accordance with
the transcript alignment evidence.

Output
Predictions are produced in the standard GFF format. The
entire optimal annotation is first displayed, followed by
the alternative ones. To enhance the readability and to
avoid redundancy, for each alternative prediction the name
of the corresponding transcript is mentioned and the
region that differs from the optimal prediction is
displayed. Besides, if several predictions are identical
(regarding their predicted CDS only, UTR length differ-
ences being ignored), a single representative is displayed,
along with the list of its associated transcripts.

Computation time
The initial filtering and incompatible transcripts identifica-
tion requires O(n2) pairwise comparisons. Each compari-
son is itself linear in the maximum number of introns in
the transcript compared, which is typically bounded by a
small constant and the whole process is therefore in
O(n2).

The step that corresponds to the two dynamic program-
ming scans (application of the recursive formula) requires
a time and space complexity which is linear in the size of
the input data. Indeed, if L is the total nucleic sequences
length (genomic + kept alternative transcript), the weights
of all (alternative and optimal) predictions can be com-
puted in O(L).

For the backtracing and output step, since each alternative
prediction has to be displayed in the region where it dif-
fers from the optimal one, and because this can extend
beyond the alignment region, it is not possible to obtain
an algorithm which is linear in the size of the input. How-
ever, it is possible to reach a linear complexity in the size
of the output. This can be done by a simple modification
of the standard backtracing procedure to avoid a full back-
trace for each prediction. This is yet not implemented in
the current version of the software.

A typical run of EuGÈNE-M on an AMD Athlon 1.7 GHz
takes 47 sec. for a 500 kb BAC (for which 945 transcript
alignments were kept after the first quality filtering step).
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