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Abstract
Background: Accurate assignment of genes to pathways is essential in order to understand the
functional role of genes and to map the existing pathways in a given genome. Existing algorithms
predict pathways by extrapolating experimental data in one organism to other organisms for which
this data is not available. However, current systems classify all genes that belong to a specific EC
family to all the pathways that contain the corresponding enzymatic reaction, and thus introduce
ambiguity.

Results: Here we describe an algorithm for assignment of genes to cellular pathways that
addresses this problem by selectively assigning specific genes to pathways. Our algorithm uses the
set of experimentally elucidated metabolic pathways from MetaCyc, together with statistical
models of enzyme families and expression data to assign genes to enzyme families and pathways by
optimizing correlated co-expression, while minimizing conflicts due to shared assignments among
pathways. Our algorithm also identifies alternative ("backup") genes and addresses the multi-
domain nature of proteins.

We apply our model to assign genes to pathways in the Yeast genome and compare the results for
genes that were assigned experimentally. Our assignments are consistent with the experimentally
verified assignments and reflect characteristic properties of cellular pathways.

Conclusion: We present an algorithm for automatic assignment of genes to metabolic pathways.
The algorithm utilizes expression data and reduces the ambiguity that characterizes assignments
that are based only on EC numbers.

Background
Pathways are cellular procedures that are associated with
a specific functionality in the cell, such as amino acid syn-
thesis and degradation, energy metabolism, signal trans-
duction, molecular oxidation, and more. The complexity
of a cell is a function of its underlying procedures. There-
fore, there is a strong interest in identifying the active
pathways in an organism. This knowledge can not only

shed light on the mechanisms the cell uses to acquire its
functional role; by assigning genes to pathways one can
also better understand the exact role of these genes, and
identify key genes whose existence is crucial to sustain
normal cell functionality.

A wealth of experimental data about molecular complexes
and cellular processes that has been accumulated in the
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literature initiated several projects that attempted to com-
pile the existing knowledge into publicly available data-
bases. Among these are EMP [1], MPW [2], WIT [3], UM-
BBD [4], KEGG [5], MetaCyc [6], ERGO [7] and SEED [8].
These databases store valuable information about hun-
dreds of pathways and cellular processes.

Much of the research on pathways so far focused on
extrapolating pathways from one organism to other. The
goal of this research goes beyond just storing, analyzing
and extrapolating the biochemical information and
strives to improve the known data by discovering varia-
tions to pathways in different organisms as well as to dis-
cover novel pathways.

Attempting to complement the experimental data and
extend its utility to other systems and newly sequenced
genomes, several methods were developed for pathway
prediction. One approach to pathway reconstruction is to
utilize the existing knowledge on enzymatic reactions to
create a complete graph of a possible metabolic network
[9-12]. However, this approach is sought with complexity
problems and it is hard to verify the validity of these pre-
dictions. Several studies manually constructed and
curated the metabolic networks for organisms like
Escherichia coli [13-15], Haemophilus influenzae [16]
and Saccharomyces cerevisiae [17,18], from a variety of
data sources and literature. These studies have an advan-
tage over automated pathway reconstruction, as the
reconstructed networks are more likely to be biologically
plausible. However, this approach requires close human
intervention.

Perhaps the most popular approach for pathway predic-
tion is based on extrapolation. Procedures developed by
WIT, KEGG, MetaCyc and ERGO use blueprints of path-
ways collected either from biochemical charts or from
actually observed pathways in different organisms, and
assign genes to pathways based on homology between
genes across organisms, database annotations, and man-
ual curration. Specifically, many known pathways are
metabolic pathways that consist mostly of sets of reac-
tions catalyzed by specific enzymes that are designated by
their Enzyme Classification (EC) number [19]. Most of
the existing methods for metabolic pathway prediction
that are based on pathway blueprints assign the vast
majority of genes to pathways based on their EC designa-
tion (some address also the problem of finding missing
enzymes [20-24]). However, since certain reactions
appear in multiple pathways, this method will assign all
enzymes that can catalyze a certain reaction (termed iso-
zymes) to all pathways that contain this reaction. For
example, genes that are designated as malate dehydroge-
nase (EC 1.1.1.37) are classified to several different path-
ways (including mixed acid fermentation,

gluconeogenesis, superpathway of fatty acid oxidation
and glyoxylate cycle, respiration, and more), all of which
use the same oxidization reaction that is catalyzed by
these genes.

Clearly, this nondiscriminatory assignment of genes to
pathways is suboptimal, as it is unlikely that all genes with
the same EC designation are used in all pathways that con-
tains the corresponding reaction. Rather, it is more likely
that different genes are used in different pathways, and it
has been suggested [25] that "the primary role of isozymes
is to allow for differential regulation of the reactions that
are shared by different processes". However, this informa-
tion is sparse and without additional experiments it is very
hard to make this type of functional differentiation. The
extent of this problem is not negligible. For example, of
the 469 pathways in MetaCyc, 336 have at least one reac-
tion in common with another pathway. Since in most
genomes there are multiple instances of some enzyme
families, the common method for pathway prediction
(that is based only on EC numbers) results in many-to-
many ambiguous mapping between genes and pathways.

Pathway assignment can be aided by the existence of
microarray technology [26-29]. This technology enables
genome-wide measurements of cell activity, providing us
with snapshots of the molecular machinery at different
times along the cell cycle and under different experimen-
tal conditions. This data can help to identify groups of
genes that are co-expressed, i.e. that are likely to exist in
the cell at the same time or under the same set of condi-
tions. Although the sequence of reactions in a pathway
does not take place simultaneously, given the time-resolu-
tion of the mRNA expression measurements these reac-
tions can be considered to occur instantly and
simultaneously for all practical purposes. Therefore, it is
expected that genes that participate in the same pathway
will have similar expression profiles, i.e. they will co-exist
and will be concurrently available at the cell's disposal to
complete the pathway. Indeed, correlation in expression
profiles has been observed for linear pathways that consist
of sequences of reactions [25]. It has been also shown that
prediction based on search in the pathway space improves
when pathways are scored using expression data [30].
Other studies used expression data to score gene classes
and pathways, in search of interesting classes or modules
of genes or to verify the existence of certain pathways in a
genome [31-38]. Expression data can also suggest the
existence of control mechanisms and pathway switches.
For example, when a pathway has a fork, isozymes might
be used to switch between the alternate routes, resulting
in anti-correlation [25]. A detailed discussion of these
studies and others in the field of pathway prediction and
analysis appears in Appendix A.
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Here, based on this premise, we propose a method for
improving the gene-to-pathway assignment problem and
refining the large-scale predictions of pathways provided
by systems like WIT, Pathway Tools and KEGG (that use
EC designation only). Our method utilizes pathway blue-
prints, statistical models of protein families and expres-
sion data. As opposed to previous methods, our algorithm
focuses on elucidating the correct assignment of genes to
pathways and expression data is used to score assignments
rather than pathways. Our algorithm predicts all assign-
ments simultaneously, while resolving possible conflicts
and optimizing the correlated expression.

The paper is organized as follows. We first describe our
model and the prediction algorithm. Next we evaluate our
methods by running a full-scale prediction on the yeast
genome. Finally we compare our predictions to the few
assignments that were verified experimentally.

Results
Our model organism is Yeast. This choice was motivated
by the myriad of experimental data available for the Yeast
genome, and specifically, time-series expression data
which is not readily available for other genomes. Our
study integrates pathway data with expression data and
sequence data. Information on the datasets used in this
study is available in the 'Methods' section.

There are many definitions of pathways in the literature
and on-line, depending on the context in which they are
used. In our work we adopt the same definition that is
used in many other studies and underlies the pathways in
databases such as MetaCyc and KEGG. As was character-
ized concisely in [39]: "A metabolic pathway is a sequence
of consecutive enzymatic reactions that brings about the
synthesis, breakdown, or transformation of a metabolite
from a key intermediate to some terminal compound. A
metabolic pathway may be linear, cyclic, branched, tiered,
directly reversible, or indirectly reversible."

We formalize the concept of a metabolic pathway accord-
ing to this definition and it is assumed that each pathway
P consists of a set of enzymatic reactions which together
perform a certain function. Each reaction can be catalyzed
by enzymes that are typically associated with one Enzyme
family F.

Pathway assignments – algorithm overview
Our algorithm for assigning genes to pathways takes as
input

• A genome G = {g1, g2, ..., gN}

• Expression data E = {Ei} where Ei is the expression pro-
file of gene gi

• An assignment of genes to enzyme families F = {F1, ..,
FJ}

• A set of metabolic pathways P = {P1, .., PK}.

Our method consists of the following steps:

1. Search for probable pathways. For each pathway Pk ∈ P:

(a) match enzymes with the reactions that make up the
pathway;

(b) eliminate the pathway if more than θ of the reactions
cannot be associated with genes (here we set θ = 0.5).

The resulting set of pathways is denoted P'

2. Compute initial pathway assignments and sort assign-
ments according to the score from high to low.

3. Refine assignments. Given the assignments from the
previous step:

(a) compute the conflict graph;

(b) compute the connected components in the conflict
graph;

(c) solve the conflicts within each connected component.

We now proceed to describe each step in detail.

Search for probable pathways
To assign genes to pathways in a given sequenced and
annotated genome, we use the descriptions of the path-
ways from MetaCyc and the classification of genes to
enzyme families (based on annotations or statistical mod-
els, as described in 'Methods') to initially match each
enzyme with a reaction and therefore with a pathway.

We denote by F(Pk) = {F1, F2, ..., Fm} the set of pathway
families – the protein families that catalyze the reactions
that make up pathway Pk, where m is the number of differ-
ent reactions (the number of reactions need not be equal
to the number of families, however, each reaction in a
pathway is usually associated with one family). A pathway
is kept if at least m/2 of its reactions can be assigned with
enzymes. Formally, denote by F(G) the set of families that
can be associated with at least one gene in the genome G.
A pathway Pk is considered probable in the genome G if
|F(Pk) ∩ F(G)| ≥ m/2. We denote the set of probable path-
ways by P', and our algorithm proceeds only with path-
ways in P'. Note that at this stage there might be multiple
genes assigned to the same reaction.
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Initial pathway assignments
After eliminating the improbable pathways we generate
initial assignments by computing the best individual
assignment for each candidate pathway, independently.
We are given a pathway Pk with m reactions. In search for
the optimal assignment we consider all genes in each one
of the families F1, F2, ..., Fm ∈ F(Pk), resulting in |F1| × |F2|
× ...|Fm| possible assignments. Each possible combination
is considered and we evaluate its significance by comput-
ing the total correlation score between genes. I.e. the score
of assignment A = (g1, g2, ..., gm) s.t. gi ∈ Fi is defined as the
average co-expression score

where sim(Ei, Ej) is the expression similarity of genes gi

and gj as described in 'Methods' and wi is the weight that
represents the likelihood that gene gi belongs to family Fi

and is defined as  where

evalue(i) is the significance of the match between gene i
and the statistical model of family Fi (see 'Methods'). For
example, assume the best match with family Fi is observed
for an annotated gene with evalue of 10-20. Then a gene
that is classified to that family with evalue of 10-10 is
assigned a weight of 0.5.

After computing all the assignment scores we sort them in
the order from best to worst. The best assignment is
selected as the one that maximizes the average score.

Multi-domain proteins
Of the 71,638 proteins in our database with an EC desig-
nation (see section 'Data sets' in 'Methods'), about 1241
have multiple enzymatic domains. Of which, the majority
(1076 proteins) are two-domain proteins that form 173
unique combinations. A simple statistical analysis reveals
that these proteins are more likely to contribute all their
domains to the same pathway. Specifically, we computed
the fraction of two-domain enzymes that can be com-
pletely mapped to a single pathway (i.e. there exist at least
one pathway such that all the enzymatic domains take
part in). Of the 173 two-domain combinations, 67 are
combinations of domains that are in our pathway data
set. Of which 48 (72%) can be mapped completely to a
single pathway. The expected fraction is estimated assum-
ing that the two domains are chosen at random from the
domain library, and computing how many random pairs
appear in the same pathway. Of the 6786 possible combi-
nations of domain pairs (using the domain library derived
from the set of 67 combinations used above) only 199
(3%) are mapped to a single pathway. The significant dif-

ference (72% vs. 3%) indicates a clear bias for multi-
domain proteins.

This is not surprising, as multi-functional proteins would
be thermodynamically favorable in pathways. If two reac-
tions in a pathway can be catalyzed by the same protein,
the efficiency of the reaction can significantly increase,
since it saves the need to localize and control the expres-
sion of multiple proteins. If the two reactions are consec-
utive, it is quite likely that the output of one reaction is
immediately transferred as an input to the second reaction
catalyzed by the second domain. To account for this sce-
nario in our model and create a natural bias toward multi-
domain proteins, we use the self-similarity score when
assigning these genes to two (or more) different reactions
within the same pathway. With that bias, multi-domain
proteins will be preferred whenever some or all their
domains can be utilized in the same pathway.

Computational issues
To find the best assignment of genes to a given pathway
we exhaustively enumerate all possible assignments. This
is possible for most pathways, genomes and families. For
example, most of the pathways in Yeast have less than a
hundred possible assignments in our current setting.
However, some of the protein families are fairly large
(hundreds and even thousands of members), resulting in
a large number of possible assignments. The maximum
number of pathway assignments in Yeast is observed for
the tRNA charging pathway which has 49,152 possible
assignments. Considering all possible combinations in
the cross-product is computationally intensive, and also
unnecessary. To reduce the number of assignments that
are considered one can first compute the similarity scores
of all possible pairs and use only pairs that have signifi-
cant similarity score (see the 'Metrics' section in 'Meth-
ods') or limit the analysis to the top N scoring pairs. In
practice, given the size of a typical pathway as well as the
number of possible genes catalyzing a reaction, the com-
plete enumeration of assignments is possible in a reason-
able time (a matter of minutes).

Refining the assignments
The initial set of assignments is likely to produce a good
unique mapping between genes and pathways (see 'Dis-
cussion'). However, since each pathway is analyzed inde-
pendently it might happen that the same gene is assigned
to the same reaction in multiple pathways. Each such
assignment is considered a conflict. Although in some
cases the same gene might play the same functional role
in different pathways, our hypothesis is that if there are
multiple enzymes in the same genome that can catalyze
the same reaction, and that reaction takes place in multi-
ple pathways, then it is more probable that each enzyme
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is "specialized" to catalyze this reaction in a different
pathway. To eliminate the conflicts we revisit the assign-
ments and resolve them whenever it is possible, as
described next.

The pathway conflict graph
We start by constructing the pathway relation graph. In this
graph each pathway is a node, and two nodes are con-
nected by an edge if the two pathways represented by the
nodes share a reaction (see Figure 1a). We introduce one
edge for each such reaction (i.e. there might be multiple
edges connecting the same two nodes). The pathway con-
flict graph is derived from this graph: we mark an edge as
a conflict if the corresponding reaction is associated with
the same gene in both pathways, based on the initial
assignments (see Figure 1b).

Connected components
The pathway conflict-graph can be split into connected
components, each of which is composed of several path-
ways connected by edges (reactions), some of which are
marked and indicate possible conflicts. If several genes are
associated with such a reaction, it might be possible to
resolve this conflict. Clearly, the assignments in one con-
nected component have no effect on the other connected
components and therefore we can revisit these assign-
ments independently for each connected component.

It should be noted that not all conflicts can be resolved. If
in the given genome there is only a single gene that can be

associated with a specific reaction, then clearly it is not
possible to refine conflicts associated with that reaction.
An edge that is linked with such a reaction is referred to as
a flat edge. Since for flat edges no alternative assignments
exist (given the gene data), we unmark these edges in the
conflict graph. Our algorithm operates only on connected
components with marked edges (see Figure 1c).

Assignment of genes to pathways in a connected component
To find the best non-conflicting assignment of genes to
pathways in a connected component we generalize our
scoring function such that the score of an assignment is
the sum of the scores of the assignments to pathways con-
tained in the component, with the restriction that no
enzyme can be used twice to catalyze the same reaction in
different pathways. We ignore inter-pathway expression
data correlations, assuming different pathways are associ-
ated with different cellular processes and therefore are not
expected to be correlated.

Formally, given a set of pathways P = P1, P2, .., Pk and an
assignment A, the assignment score is simply the total
weighted co-expression score

where A(Pi) is the subset of genes assigned to pathway Pi
and Score(A(Pi)) is as defined previously. As before we
enumerate all possible assignments of genes to pathway

Pathway graphsFigure 1
Pathway graphs. Left: the pathway relation graph. Each pathway is represented as a node, and an edge is drawn between two 
pathways for each reaction that they share in common. Middle: the pathway conflict graph. Thick edges represent conflicts (i.e. 
the same gene was assigned to catalyze the same reaction in both pathways connected by the edge). Right: the final conflict 
graph. The edge between pathways P9 and P10 is a flat edge (no alternative assignments exist for that reaction) and therefore it 
is unmarked. At the end we are left with only two connected components with possibly solvable conflicts.

a b c

P1

P2

P3

P4

P5

P6

P8

P9

P12

P13

P11

P10

P7

P1

P2

P3

P4

P5

P6

P8

P9

P12

P13

P11

P10

P7

P1

P2

P3

P4

P5

P6

P8

P9

P12

P13

P11

P10

P7

Score Score Pi
i

( ( ))A P A( )) (= ∑
Page 5 of 25
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:217 http://www.biomedcentral.com/1471-2105/6/217
families and each assignment is also marked with the
number of conflicts it introduces.

Ideally we would like to find high scoring assignments
that are conflict-free. However, this ideal situation is not
always attainable as some shared reactions are central and
are best catalyzed by the same enzyme. For example, reac-
tion 2.6.1.1 that is shared by the asparagine and aspartate
biosynthesis pathways is catalyzed in both pathways by
gene AAT2, although there exist another gene (AAT1) that
can catalyze this reaction (see 'Discussion'). Moreover,
some pathways are superpathways of other pathways and
are naturally composed of the same genes. Therefore, not
all conflicts can and should be resolved. To accommodate
these possible scenarios we consider all assignments that
are within ∆ from the maximal score that is obtained
when conflicts are allowed, and pick the one that has the
minimal number of conflicts within that range (without a
better methodology at this point, the exact value of ∆ is
currently set ad-hoc to 1). A significant drop in the score
of a conflict-free assignment (compared to the highest
scoring assignment) suggests that some reactions are
indeed catalyzed by the same gene, despite the fact that
alternative genes do exist to perform similar functions.

Discussion
Evaluating our pathway prediction algorithm requires the
availability of well studied and annotated genome for
which high-quality expression data and empirical knowl-
edge of pathways exist. Since most pathway databases
assign genes to pathways collectively based on the EC des-
ignation it was hard to find an extensive set of literature-
curated pathways. We used one of the curated PGDB Yeast
Biochemical Pathways [44] at the Saccharomyces Genome
Database (SGD) [45]. This database was computationally
derived from the Yeast sequenced and annotated genome
using the Pathway Tools software [46] and the pathway
blueprints from the Metacyc database [6], and was then
manually curated by mining the literature. Not all the
assignments were done based on direct phenotype exper-
iments and the confidence in the assignments varies
depends on the type of the evidence used. The database
contains 58 pathways, many of which did not exist in the
Metacyc database or did not match perfectly with the
pathway blueprints in Metacyc. A few other pathways con-
tained genes that we were not able to map to our Yeast
protein database, and were eliminated as well. This left us
with 25 pathways that were used for testing. Each curated
pathway in the SGD database describes a sequence of reac-
tions as well as the genes that catalyze the reactions. Some
reactions are not associated with a specific gene and were
not considered when evaluating the correctness of an
assignment. Also, some of the reactions are unclassified
reactions that either have an incomplete EC number or do

not have an EC number at all. These reactions are cur-
rently ignored in our experiments.

It should be noted that some of the curated pathways
associate multiple genes with the same reaction. In gen-
eral, it seems that there are two possible explanations. It
might be the case that a complex of proteins catalyzes the
reaction and the genes associated with the reaction are
part of this complex. In this case we want to assign all pro-
teins to the reaction. This is not taken into account in our
algorithm currently. The other more common case is
when each protein can catalyze the reaction by itself, for
example under different specific cellular conditions. This
can be verified in knockout experiments and has been
observed in several systems (e.g. [47]). While it is possible
that all these genes are used concurrently, our assumption
is that only a few of them actually do. In these cases, our
algorithm can assess the "affinity" of each gene with the
pathway. In the next sections we discuss our results and
compare them with the curated assignments of the path-
ways in the test set.

Pathway assignment for curated pathways
To test our predictions, we run the algorithm on the Yeast
genome, using the time-series expression data and the
blueprints of the 25 pathways in our test set. The EC anno-
tations were updated to be consistent with those used by
SGD. It should be noted that for many pathways all possi-
ble assignments are curated as valid assignments by SGD.
A summary of the results is given in Table 1.

Almost all curated assignments are assigned high positive
scores (results not shown). There are some exceptions and
a few curated assignments have a negative score. In these
cases most or all other assignments have negative scores as
well. For 13 out of the 25 pathways the maximum nor-
malized score is greater than 4. The score is an indication
of how significant is the similarity of two expression pro-
files [43]. An average score greater than 4 means that the
enzymes assigned to the pathways are similarly expressed
with high confidence and are likely to be functionally
linked. Moreover, for 10 out of the 25 pathways, all pair-
wise scores (for all pairwise relations) in the top-scoring
assignment are positive. These results support our
assumption that proteins that participate in the same cel-
lular process are similarly expressed. It is also observed
that curated assignments are assigned better scores than
the non curated assignments and the best assignment is
usually a curated assignment. In the next subsections we
take a closer look at some interesting pathways.

The isoleucine biosynthesis pathway
As Table 1 indicates, the expression data strongly supports
the existing knowledge about pathways and can be used
for prediction. The isoleucine biosynthesis pathway is one
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such example (Figure 2). This pathway consists of 5 reac-
tions. A total of 12 assignments are considered, of which
4 are curated and are considered true assignments, and 8
are considered false assignments. Table 2 lists detailed
information about each candidate assignment. Note that
curated assignments are assigned a high positive score,
and the normalized score of the best assignment is well
over 4. Moreover, the true and false assignments are well
separated in the sorted list. The baseline score is deter-
mined by the two enzymes (EC 1.1.1.86 and EC 4.2.1.9)
that have no alternative genes and are shared by all assign-
ments. Looking at the break-up of pairwise similarities
within the pathway we note that almost all of them have
positive scores for curated assignments, while false assign-
ments contain more pairs with negative pairwise scores.

Note that the first two assignments are both assigned high
positive scores. These two assignments differ in the gene
used to catalyze the EC reaction 4.1.3.18. The first is using
ILV2 while the second is using ILV6 Interestingly, these
proteins form a complex which catalyzes the reaction
4.1.3.18 [45]. This and similar cases will be handled in
future versions of our algorithm (see the Conclusion sec-

tion). Of the curated assignments, the fourth one leads to
one negative pairwise score of -3.04 for proteins ILV6 and
BAT2. Protein BAT2 can catalyze the reaction 2.6.1.42.
This reaction can also be catalyzed by protein BAT1, and
its selection results in better assignment scores. The two
proteins are very similar in sequence (77% identity), how-
ever, the former is highly expressed during stationary
phase of the cell-cycle and down-regulated during the log-
arithmic phase of growth (as is documented in the Swiss-
Prot record of that gene), while the later exhibits the
opposite behavior. In view of the expression data it is
unlikely that the two genes participate in this pathway at
the same time, and gene BAT2 is probably assigned only
during the stationary phase where the pathway activity is
reduced.

We compared our results with the reconstructed meta-
bolic network of Saccharomyces cerevisiae, as described in
[18] (see 'Related Studies'). This network is not compart-
mentalized into separate metabolic pathways, however,
the reactions are grouped according to the cellular process
they are involved with. The comparison revealed discrep-
ancies between the pathway data from Metacyc and SGD

Table 1: Summary of pathway assignments. For each pathway in the test set we report the number of reactions, the number of 
assignments considered, the number of curated (SGD verified) assignments, and the maximal and minimal assignment scores. The 
score reported is the weighted average score per pair of compared enzymes. The score reflects the average significance of a pairwise 
relation within a pathway. The larger the score the more significant is the relation. Negative scores suggest anti-correlation and near-
zero scores provide no evidence that the two genes are related. Pathways are sorted based on assignment score.

Pathway Number of 
reactions

Number of 
assignments

Number of curated 
assignments

Max(Min) Score 
Normalized

methionine and S-adenosylmethionine synthesis 2 2 2 10.45 (7.34)
isoleucine biosynthesis I 5 12 4 10.32 (3.00)
leucine biosynthesis 4 4 4 10.08 (4.01)
valine biosynthesis 4 4 4 10.14 (4.99)
asparagine biosynthesis I 2 4 4 8.80 (-4.88)
proline biosynthesis I 3 1 1 8.43 (8.43)
homoserine methionine biosynthesis 2 1 1 7.33 (7.33)
tryptophan biosynthesis 5 2 2 5.29 (4.13)
aspartate biosynthesis II 2 4 4 4.85 (0.75)
non-oxidative branch of the pentose phosphate pathway 5 8 8 4.82 (0.84)
folic acid biosynthesis 11 48 32 4.63 (1.26)
glutamate biosynthesis I 2 2 2 4.08 (-4.88)
glutathione biosynthesis 2 1 1 4.03 (4.03)
glutamate degradation VIII 5 1 1 3.92 (3.92)
serine biosynthesis 3 2 2 3.58 (-0.58)
purine biosynthesis 2 14 16 8 2.50 (2.06)
homocysteine and cysteine interconversion 3 2 1 2.35 (2.01)
biotin biosynthesis I 3 1 1 2.27 (2.27)
homocysteine degradation I 2 1 1 2.01 (2.01)
threonine biosynthesis from homoserine 2 1 1 0.87 (0.87)
glutamine – glutamate pathway II 1 1 1 0.00 (0.00)
tyrosine biosynthesis I 3 2 2 -0.53 (-0.58)
glycine biosynthesis I 2 2 2 -0.91 (-3.60)
phenylalanine biosynthesis I 3 2 2 -2.09 (-2.80)
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and the metabolic network model, which complicated the
comparison of the results.

For example, the "isoleucine biosynthesis I" MetaCyc
pathway overlaps with the reaction group "Valine, leu-

cine, and isoleucine metabolism". The group has 24 reac-
tions while the MetaCyc pathway has five, of which four
are part of the group and the fifth (reaction 4.3.1.19 which
appears first) is part of the "Threonine and Lysine Metab-
olism" group. Moreover, while the EC numbers and the

The Isoleucine Biosynthesis pathway diagramFigure 2
The Isoleucine Biosynthesis pathway diagram. The pathway layout is retrieved from the MetaCyc database. For each 
reaction we list the genes that can catalyze the reaction. A plus or minus sign indicates if the gene was assigned to the pathway 
in SGD. The expression profiles and their similarity score are shown for selected pairs of genes. Mapping between gene names 
and Biozon identifiers is given in Table 6.
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sequence of reactions with respect to the EC numbers are
the same in MetaCyc and the network model, the reac-
tions are different because they do not use the same sub-
strates as intermediary metabolites.

Interestingly, the first four reactions in the isoleucine bio-
synthesis MetaCyc pathway take place inside the mito-
chondrion, while the last step of the pathway, reaction
2.6.1.42 (catalyzed by BAT1 and BAT2), takes place both
in the mitochondrion and in the cytoplasm. Indeed, it has
been verified experimentally that BAT1 resides in the
mitochondrion while BAT2 resides in the cytoplasm (see
Figure 3). In order to obtain cytoplasmic isoleucine, a
transport reaction is necessary to transfer the final inter-

mediary metabolite. That might explain why BAT2 is
slightly uncorrelated with the other genes in the pathway.
Such situations lead to "forks", where two branches are
uncoupled even if they have the same EC number. Our
assignments are consistent with these observations.

The folic acid biosynthesis
The metabolic network along with other cellular processes
form the computational elements of the cell and as with
any computation of this magnitude it needs to be regu-
lated and synchronized. This regulation is reflected in the
expression levels of genes. A possible synchronization
device might require for example that reaction A is not
started until reaction B is completed. Therefore, the

Table 2: Assignments for the pathway isoleucine biosynthesis I. Only reactions with alternative assignments are listed (last column), 
and the selection number refers to Figure 2. For example, the top assignment selects the second gene (ILV1) to catalyze reaction 
4.3.1.19. Assignments are sorted based on the normalized score. Second column marks which assignments are true assignments, and 
which are considered false assignments. For each assignment we list the total number of pairwise similarities, the number of positive 
and negative scoring pairs and the number of zero scoring pairs (when no expression data is available).

Number Match Normalized 
Score

Number of 
Pairs

Positive Pairs Negative Pairs Zero Pairs Assignments

1 + 10.32 10 10 0 0 4.3.1.19 : 2
4.1.3.18 : 2
2.6.1.42 : 1

2 + 9.54 10 10 0 0 4.3.1.19 : 2
4.1.3.18 : 1
2.6.1.42 : 1

3 + 7.37 10 10 0 0 4.3.1.19 : 2
4.1.3.18 : 2
2.6.1.42 : 2

4 - 6.49 10 8 2 0 4.3.1.19 : 3
4.1.3.18 : 2
2.6.1.42 : 1

5 + 6.30 10 9 1 0 4.3.1.19 : 2
4.1.3.18 : 1
2.6.1.42 : 2

6 - 6.08 10 6 0 4 4.3.1.19 : 1
4.1.3.18 : 2
2.6.1.42 : 1

7 - 5.52 10 6 0 4 4.3.1.19 : 1
4.1.3.18 : 1
2.6.1.42 : 1

8 - 5.00 10 7 3 0 4.3.1.19 : 3
4.1.3.18 : 1
2.6.1.42 : 1

9 - 4.78 10 8 2 0 4.3.1.19 : 3
4.1.3.18 : 2
2.6.1.42 : 2

10 - 3.84 10 6 0 4 4.3.1.19 : 1
4.1.3.18 : 2
2.6.1.42 : 2

11 - 3.00 10 6 4 0 4.3.1.19 : 3
4.1.3.18 : 1
2.6.1.42 : 2

12 - 3.00 10 5 1 4 4.3.1.19 : 1
4.1.3.18 : 1
2.6.1.42 : 2
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The Isoleucine Biosynthesis pathway from the reconstructed metabolic network of Saccharomyces Cerevisiae [18]Figure 3
The Isoleucine Biosynthesis pathway from the reconstructed metabolic network of Saccharomyces Cerevisiae 
[18]. Reproduced with permission from Cold Spring Harbor Laboratory ©2004 (Duarte et al. 2004 [18]). The EC numbers and 
the genes associated with the reactions were added to diagram. The part that overlaps with the MetaCyc isoleucine biosynthe-
sis pathway is circled.
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enzymes that can catalyze A and B are not expected to be
active at the same time, a state that can be achieved by
controlling the expression levels of the corresponding
genes. This type of mechanism will create a functional
anti-correlation which will be awarded with a negative
score by our scoring system. Beyond controlling timing of
reactions, anti-correlation might also reflect a control
mechanism that is used to govern pathway activity and
metabolic rate.

An illustration of this mechanism is the pathway folic acid
biosynthesis whose trajectory traverses both the mitochon-
drion and the cytoplasm. This is a quite complex pathway
(see Figure 4) and the mechanism might occur between
genes FOL1, FOL2 and FOL3. FOL1 is present in the mito-
chondrion while FOL2 and FOL3 are in the cytoplasm.
Gene FOL1 is strongly anti-correlated with genes FOL2
and FOL3 while these two genes are strongly correlated
between them. Note that the input to the last reaction cat-
alyzed by FOL1 is the output from two different parallel
branches of the pathway (top part). The anti-correlation
might serve as a synchronization mechanism to control
the reactants flow in the pathway in the presence of forks
(that split into or merge different branches).

Interestingly, gene FOL1 is an enzyme with multiple enzy-
matic functions positioned between the reactions cata-
lyzed by FOL2 and FOL3. FOL1 has three different
enzymatic domains, classified as 4.1.2.25, 2.7.6.3 and
2.5.1.15. There are no other genes that are classified
(based on database annotations or sequence similarity) to
either of these three enzyme classes. This further supports
our assumption that multi-domain enzymes are more
likely to catalyze several reactions in the same pathway,
are are preferred over different enzymes, each assigned to
a different reaction.

Multi-domain enzymes are also used in the lower part of
the pathway. Both MIS1 and ADE3 catalyze three different
consecutive reactions. Both are assigned to this pathway
by SGD, however, surprisingly, their mutual expression
similarity is negative (-2.09), indicating anti-correlation.
Interestingly, the three reactions are shared with other
pathways (glycine degradation, formylTHF biosynthesis
and carbon monoxide dehydrogenase pathway), and it is
hypothesized that the two isozymes, MIS1 and ADE3,
serve as switches, to control the pathway activity and its
coupling with other pathways. Indeed, such a mechanism
has been suggested in [25] to control pathway flow.

To better understand these mechanisms we compared our
results with the metabolic network model of [18]. The
pathway from MetaCyc has 15 reactions, of which 12
overlap with the reaction group "Folate Metabolism",
which has 29 reactions. Four out of these 12 reactions are

duplicated in the metabolic network model with one
instance in the cytoplasm and one in the mitochondrion.
The discrepancy between MetaCyc and the network model
involves the sequence of reactions 4.1.2.25, 2.7.6.3 and
2.5.1.15, all catalyzed by FOL1 gene, which are differently
connected in the network model (see Figure 5). The net-
work model also shows a fourth catalytic function for
FOL1. The location of the enzymes and reactions in the
network model indicate the intricate trajectory between
cytoplasm and mitochondrion.

In view of these discrepancies, choosing the "right" model
for this pathway is difficult. However, our results confirm
the interplay between cytoplasm and mitochondrion and
can help distinguish between mitochondrial and cyto-
plasmic genes, as each subgroup is mutually co-expressed,
suggesting that the pathway expression is controlled by
two distinct regulatory programs.

The asparagine biosynthesis pathway
Not always it is possible to explain negative pathway
scores (anti-correlation or no correlation). Sometimes, a
gene that can catalyze a specific reaction in a pathway is
not coordinated with the other genes in the pathway. This
might be due to the fact that the gene functions in the
pathway only under certain conditions while inactive
under others [27]. Or the gene might serve as a backup
gene that is activated only when the main one is missing
or is malfunctioning [47]. This problem is especially pro-
nounced if the main gene has not been identified yet.
Indeed, despite extensive annotation efforts, many genes
have not been characterized yet.

By analyzing pairwise scores within a pathway, our
method can suggest which genes fit together better in the
context of the pathway and which genes are unlikely to
work together. Moreover, if the overall assignment score is
negative then it might be the case that the pathway is not
active in the expression data collected or the pathway
might not exist in the organism at all. Negative scores
might also expose errors in pathway assignments. One
interesting example is the asparagine biosynthesis path-
way (Figure 6). This pathway is intriguing, having four
curated assignments, two of them with negative scores.
This is a small pathway with only two reactions. It is gene
AAT1, which catalyzes the first reaction of the pathway
(2.6.1.1), that is responsible for the negative scores of two
assignments. This gene is strongly anti-correlated with
genes ASN1 (-2.24) and ASN2 (-4.87), which catalyze the
second reaction. On the contrary, gene AAT2 is strongly
correlated with both genes ASN1 (8.80) and ASN2 (8.56).
Interestingly, the reaction 2.6.1.1 is shared with other
three pathways (asparagine degradation, aspartate biosyn-
thesis and glutamate degradation VII). Our results suggest
that the two isozymes, which can catalyze the same
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reaction, are used selectively in different pathways; AAT2
is involved in asparagine and aspartate biosynthesis,
while AAT1 is involved in asparagine and glutamate deg-
radation (where it is assigned a high positive score). But
why was AAT1 assigned to the asparagine biosynthesis
pathway? A closer look at the entry for AAT1 in the SGD
database reveals that the curator assigned this enzyme to
the pathway based on its enzymatic activity only, which

was determined experimentally. In the literature AAT1 is
associated with aspartate degradation. Obviously synthe-
sis and degradation cannot appear at the same time and
hence the anti-correlation between AAT1 and genes ASN1
and ASN2. This is a clear example of the assignment prob-
lem, suggesting that even curated assignments can be fur-
ther improved using our method. The metabolic network
model [18] confirms the previous conclusions. This path-

The folic acid biosynthesis pathway diagramFigure 4
The folic acid biosynthesis pathway diagram. See Figure 2 for description. Note that FOL1, ADE3 and MIS1 are multi-
functional enzymes.
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way has two reactions that are entirely contained in the
"Alanine and aspartate metabolism" group, which has 15
reactions (see Figure 7). There are 3 instances of the reac-
tion 2.6.1.1 in the network model, one in peroxisome
(catalyzed by AAT2), the second in cytoplasm (also cata-
lyzed by AAT2) and the third in mitochondrion (catalyzed
by AAT1) (see Figure 7). On the other hand, the reaction
6.3.5.4 takes place in cytoplasm. The expression profiles

are in agreement with these subcellular locations and
indeed the cytoplasm genes ASN1/ASN2 are highly corre-
lated with AAT2, while anti-correlated with the mitochon-
drion AAT1.

Genome wide results
We repeated our analysis, this time with a larger set of
pathways from the MetaCyc database, to generate genome

The folic acid biosynthesis pathway from the reconstructed metabolic network of Saccharomyces Cerevisiae [18]Figure 5
The folic acid biosynthesis pathway from the reconstructed metabolic network of Saccharomyces Cerevisiae 
[18]. Reproduced with permission from Cold Spring Harbor Laboratory ©2004 (Duarte et al. 2004 [18]). The EC numbers and 
the genes associated with the reactions were added to diagram. The parts that overlap with the MetaCyc folic acid biosynthesis 
pathway are circled. The green circles indicate consistency while the red one indicates inconsistency.
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wide assignment of genes to pathways. Most pathways
were not represented in the Yeast genome, and we
restricted our analysis to pathways for which we could
assign genes to all reactions (64 pathways). We eliminated
pathways that had only one fully characterized reaction
since our algorithm is based most dominantly on expres-
sion similarity, and therefore assumes at least two reac-
tions in a pathway. Reactions with incomplete EC number
or which could not be assigned to a gene in the Yeast
genome were ignored. In total, 52 pathways were
considered.

We ran our procedure using the two different expression
data sets (see the 'Data sets' section). The results are sum-
marized in Table 3, where the pathways are divided into
four categories based on their assignment score. Note that
the majority of the pathways is assigned a high positive
score > 4, indicating strong correlation between the
expression profiles of members in these pathways, and

supporting our very initial assumption. Only a few
pathways are assigned negative scores. These are usually
short pathways where one gene is highly anti-correlated
with the others. It should be noted that both expression
datasets generate very similar results. However, since the
Rosetta data set is based on many more experiments than
the time-series data set, the pairwise expression similarity
scores are much more significant, resulting in higher path-
way assignment scores (results not shown). In other
words, our confidence in the assignments is stronger with
the Rosetta dataset (detailed information about
assignments is available at [48] and will be later made
available at the Biozon website at [41].

Lastly, it is interesting to compare the assignments before
and after resolving conflicts. The pathway relation graph
for the 52 pathways contains 10 connected components
and 30 singletons. When using the time-series data to
assign genes to pathways, we observe conflicts for 9 con-

The asparagine biosynthesis pathwayFigure 6
The asparagine biosynthesis pathway. See Figure 2 for description. Both ASN1 and ASN2 are correlated with AAT2 but 
are anti-correlated with AAT1 (selected pairwise similarities are shown). The later is localized to a different cellular compart-
ment than the others, and is likely to be involved in other pathways (see text for details).
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The asparagine biosynthesis pathway from the reconstructed metabolic network of Saccharomyces Cerevisiae [18]Figure 7
The asparagine biosynthesis pathway from the reconstructed metabolic network of Saccharomyces Cerevisiae 
18. Reproduced with permission from Cold Spring Harbor Laboratory ©2004 (Duarte et al. 2004 [18]). The part that overlaps 
with the MetaCyc asparagine biosynthesis pathway is circled.
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nected components. The final conflict graph contains 9
connected components and possibly 12 resolvable con-
flicts (shared edges). 12 of these conflicts are resolved
with a small decrease in the assignment score, as is
reported in Table 4. Information on the final assignments
is given in Table 5. Overall, only a few additional negative
pairs are reported after conflicts are resolved, with 32 of
the 52 pathways consisting solely of positively scoring
pairs (compared to 33 pathways, before conflicts are
resolved).

Conclusion
Ongoing sequencing and annotation efforts produce a
wealth of data consisting of genes and their products. On
the other hand, new types of biological data such as
expression and interaction data provide new insights into
the mechanisms governing cellular activity. In this light,
data integration is necessary in order to accurately analyze
the function of genes and other biological entities. The
study of biochemical pathways is especially central to
these efforts.

Information on cellular pathways is available for several
genomes that were studied extensively. However, for most
genomes pathway information is not available, what trig-
gered the development of pathway prediction algorithms.
Pathway prediction is a difficult problem; Since pathways
are not a physical entity, there is no consensus on the def-
inition of a pathway. The pathways that are defined by
databases like BioCyc are small subgraphs of a large net-
work of reactions. However, in reality these pathways do
not function independently but are rather linked and
coordinated with other subnetworks. In an attempt to
understand the processes involving metabolism the net-
work has been traditionally divided into smaller subnet-
works that can be associated with specific functions. These
subnetworks can be considered as the building blocks of
the metabolic network and the whole network can be par-
tially reconstructed by integrating the metabolic knowl-
edge contained in these pathways.

In attempt to extrapolate metabolic pathways from one
organism to another, several studies developed proce-

dures for assigning genes to pathways. However these pro-
cedures ambiguously assign genes to pathways as they
usually rely solely on the enzyme class of genes and there-
fore assign each gene to all the pathways that contain the
reactions it can catalyze.

In this paper we present an algorithm for accurate assign-
ment of genes to pathways that attempts to eliminate this
ambiguity. For this task, our algorithm utilizes expression
data. It has been argued that the metabolic network is co-
expressed locally, and an enzyme is co-expressed with the
genes catalyzing reactions upstream and downstream of
the reaction it catalyzes. We further assume that for the
most part pathways are local neighborhoods in the meta-
bolic network and therefore genes assigned to each path-
way tend to be co-expressed. Based on this premise, our
algorithm assigns genes by maximizing the co-expression
of genes that participate in the same pathway. Our algo-
rithm addresses the assignment problem on a genome
level, by simultaneously optimizing the co-expression
scores for multiple pathways while minimizing the
number of conflicts (genes that are shared between
different pathways). Our assumption is that if there are
multiple genes that can catalyze the same reaction, and
that reaction is used in multiple pathways, then each gene
is optimized for a different pathway. Conflicts that are
detected after initial assignment are reconsidered and our
algorithm proceeds by refining the assignment of genes to
pathways within connected components in the pathway
conflict graph.

Our tests show that for most pathways it is possible to
identify a group of genes that can catalyze the pathway
reactions and are similarly expressed. Our algorithm can
find the most probable assignment of specific genes for
each pathway, detect erroneous assignments and suggest
control mechanisms of pathways, given a specific
expression dataset. The algorithm tackles also the special
case of multi-functional enzymes. Since it is difficult to
analyze the global network, an alternative approach to
detecting pathways of prescribed functions is to search for
subnetworks or local neighborhoods in the metabolic net-
work that consist of co-expressed genes, regardless of

Table 3: Distribution of pathway assignment scores. For each data set we ran our algorithm for pathway assignment. The algorithm 
considers all pathways simultaneously attempting to maximize expression similarity while minimizing the number of conflicts. The 
final normalized pathway assignment scores Score(A(P)) are divided into four categories based on the average expression similarity of 
their genes: strongly correlated genes (4 ≤ Score), mildly correlated genes (1 <Score < 4), weakly or uncorrelated genes (-1 ≤ Score ≤ 1) 
and anti-correlated genes (Score < -1).

Data Set Assignment Score < -1 score -1 ≤ Score ≤ 1 1 <Score < 4 4 ≤ Score

Time-series 4 5 11 32
Rosetta 2 2 7 41
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pathway blueprints. Finding the co-expressed subnet-
works of a metabolic network is the methodology of [49]
and other studies (as discussed on 'Related Studies' in the
paper). However, while this assumption is valid in general
it does not always hold and unfortunately these co-
expressed subnetworks do not necessarily correspond or
overlap with known pathways (as is also indicated by
some of our examples). This discrepancy makes it difficult
to assess and compare pathway prediction algorithms.

The manually curated pathways that are stored in data-
bases such as MetaCyc and SGD provide an excellent
benchmark and perhaps the most accurate reflection of
the existing biochemical knowledge, as of today. Our goal
is extrapolate that knowledge when predicting pathways
in organisms that haven't been studied so far and refine
procedures that rely on pathway blueprints and use just
EC numbers. Since our algorithm does not rely on manual

analysis, it can be most successfully applied to the
genomes of organisms that have not fully characterized,
once expression data for these genomes becomes
available. With the pace in which new genomes are
revealed it would be impossible to peruse manual analysis
for all and the need for automated procedures becomes
evident. The examples we provided prove the effectiveness
of our method.

While our algorithm makes advances in the field of path-
way prediction it is also faced with several problems. For
example, when isozymes are similarly expressed our
method picks the best assignment (given the expression
data) and only one isozyme is associated with every reac-
tion. However, in some cases multiple isozymes might
participate in the same pathway in response to slightly dif-
ferent conditions and substrates. Future versions of our
algorithm will handle these cases and estimate the affinity

Table 4: Genome wide analysis. Connected components' scores before and after resolving conflicts. For each component we list the 
names of the constituent pathways, the number of conflicts (shared assignments) and the component score. Note that not all conflicts 
are solvable. For example, the first connected component contains three pathways, and the best initial assignment results in 6 
conflicts. Of these only two are solvable (i.e. there are multiple enzymes that can be assigned to these reactions). The final assignment 
resolves these conflicts while reducing the score of the connected component only slightly (9.31 compared to 10.22).

Component 
Number

Pathways Number of Conflicts 
(solvable conflicts)

Component score

Before After Before After

1 isoleucine biosynthesis I
valine biosynthesis
leucine biosynthesis

6(2) 4 10.22 9.31

2 aerobic glycerol degradation II
glycolysis

5(3) 2 7.58 7.22

3 asparagine biosynthesis I
glutamate – aspartate pathway
glutamate degradation VI
aspartate biosynthesis II
aspartate biosynthesis and degradation

4(0) 4 6.82 6.82

4 trehalose anabolism
galactose metabolism
UDP-glucose conversion
trehalose biosynthesis

4(1) 3 6.64 6.62

5 pentose phosphate pathway, Mycoplasma pneumoniae
ribose degradation
non-oxidative branch of the pentose phosphate pathway

5(2) 3 5.60 4.78

6 serine biosynthesis
cysteine biosynthesis II

3(0) 3 3.98 3.98

7 glycine biosynthesis I
glycine cleavage
folic acid biosynthesis

3(2) 1 3.41 3.41

8 arginine biosynthesis, Bacillus subtilis
de novo biosynthesis of pyrimidine ribonucleotides

0(0) 0 2.08 2.08

9 alanine degradation 3
alanine biosynthesis II

1(1) 0 0 0

10 phenylalanine biosynthesis I
tyrosine biosynthesis I

2(1) 1 -1.31 -1.33
Page 17 of 25
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:217 http://www.biomedcentral.com/1471-2105/6/217
Table 5: Genome wide analysis. Statistics of the final assignments. For each pathway we list the number of possible assignments, the 
maximum and minimum scores observed over these assignments, and the final score (note that the final score might not be the 
maximum score, due to conflicts that were resolved at the refinement stage). The last column gives the number of pairwise relations 
considered in each assignment, and the number of negative-scoring pairs in the final assignment (in parentheses). Negative scores 
indicate anti or no correlation. Pathways are sorted by the final assignment score. Note that most pathways are assigned a high 
positive score, and almost all pairs in the final assignments are positive pairs.

Pathway Number of 
Assignments

Max Score Min Score Final Score Number of pairs 
(negative Pairs)

pentose phosphate pathway, Mycoplasma pneumoniae 2 11.03 -0.73 11.03 1(0)
sulfate assimilation 2 1 11.02 11.02 11.02 1(0)
methionine and S-adenosylmethionine synthesis 2 10.45 7.34 10.45 1(0)
isoleucine biosynthesis I 12 10.32 3.00 10.32 10(0)
valine biosynthesis 4 10.14 4.99 10.14 6(0)
trehalose biosynthesis 2 10.02 9.65 9.65 1(0)
glutamate degradation I 1 9.64 9.64 9.64 3(0)
arginine biosynthesis I 1 9.58 9.58 9.58 3(0)
chorismate biosynthesis 2 9.24 8.19 9.24 21(0)
glycolysis 180 8.98 3.16 8.87 28(0)
asparagine biosynthesis I 4 8.80 -4.88 8.80 1(0)
trehalose anabolism 8 8.80 0.27 8.80 6(0)
proline biosynthesis I 1 8.43 8.43 8.43 3(0)
galactose metabolism 4 7.91 4.62 7.91 6(0)
glycine degradation III 2 7.73 7.73 7.73 1(0)
methylglyoxal degradation 2 7.59 0.98 7.59 1(0)
tRNA charging pathway 49152 7.41 1.69 7.41 171 (2)
glyoxylate cycle 72 7.37 0.27 7.37 10(0)
homoserine methionine biosynthesis 1 7.33 7.33 7.33 1(0)
pyruvate dehydrogenase 2 6.43 4.33 6.43 1(0)
removal of superoxide radicals 4 5.93 -0.45 5.93 1(0)
aerobic glycerol degradation II 180 6.19 1.64 5.58 28(1)
aspartate biosynthesis II 4 4.85 0.75 4.85 1(0)
non-oxidative branch of the pentose phosphate pathway 8 4.82 0.84 4.82 10(1)
oxidative branch of the pentose phosphate pathway 6 4.78 1.07 4.78 3(0)
arginine biosynthesis, Bacillus subtilis 3 4.55 2.69 4.55 34(4)
leucine biosynthesis 4 10.08 4.01 4.31 3(0)
UDP-N-acetylglucosamine biosynthesis 1 4.22 4.22 4.22 1(0)
cysteine biosynthesis II 2 4.19 0.94 4.19 6(0)
tryptophan biosynthesis 2 4.13 3.99 4.13 10(1)
glutamate biosynthesis I 2 4.08 -4.88 4.08 1(0)
glutathione biosynthesis 1 4.03 4.03 4.03 1(0)
arginine degradation I 1 4.00 4.00 4.00 3(0)
arginine proline degradation 1 3.84 3.84 3.84 3(0)
serine biosynthesis 2 3.58 -0.58 3.58 3(0)
folic acid biosynthesis 48 3.49 0.23 3.49 55 (12)
histidine biosynthesis I 1 2.48 2.48 2.48 12(2)
purine biosynthesis 2 16 2.43 2.01 2.43 90 (27)
homocysteine and cysteine interconversion 2 2.35 2.01 2.35 3(1)
biotin biosynthesis I 1 2.27 2.27 2.27 3(2)
homocysteine degradation I 1 2.01 2.01 2.01 1(0)
glutamate degradation VIII 1 1.86 1.86 1.86 8(2)
homoserine biosynthesis 1 1.14 1.14 1.14 3(1)
threonine biosynthesis from homoserine 1 0.87 0.87 0.87 1(0)
de novo biosynthesis of pyrimidine ribonucleotides 12 0.14 -0.69 0.14 43 (25)
ornithine spermine biosynthesis 2 -0.24 -2.48 -0.24 3(2)
tyrosine biosynthesis I 2 -0.53 -0.58 -0.58 3(1)
glycine biosynthesis I 2 -0.91 -3.60 -0.91 1(1)
UDP-glucose conversion 4 -1.32 -2.04 -1.32 3(2)
ribose degradation 2 8.06 -1.74 -1.74 1(1)
phenylalanine biosynthesis I 2 -2.09 -2.80 -2.09 3(2)
tryptophan kynurenine degradation 1 -2.46 -2.46 -2.46 1(1)
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of each isozyme to each pathway that contains the corre-
sponding reaction.

A host of other problems add to the ambiguity of gene-to-
pathway assignments, not all them can be addressed with
expression data. For example, some enzymes have low
specificity and can accept diverse substrates and therefore
participate in several different reactions. On the other
hand an EC number might specify not a single reaction
but rather a class of reactions having common characteris-
tics. One such example is the alcohol dehydrogenases
which oxidize a variety of alcohols. The corresponding EC
number 1.1.1.1 represents the class of reactions in which
either a primary or a secondary alcohol is oxidized, and all
alcohol dehydrogenases are annotated with the EC
number 1.1.1.1. In yeast there are 6 enzymes annotated
with 1.1.1.1. These are the genes ADH1, ADH2, ADH3,
ADH4, ADH5 and SFA1. All ADH genes can catalyze the
reactions reducing the aldehydes indole acetaldehyde,
phenylacetaldehyde and acetaldehyde into the respective
alcohols (indole-3-ethanol, phenylethanol and ethanol).
However, SFA1 takes as substrate only indole-3-ethanol
and phenylethanol. Therefore, as this example demon-
strates, EC numbers might not be specific enough, and
even database annotations may not be sufficient to differ-
entiate between the different functions of these enzymes.

Our method uses a collection of data sets, including path-
ways, expression data and statistical models of protein
families. We intend to augment these data sets with other
relevant biological data sets. For example, integration of
interaction data and regulator-regulatee data is necessary
in order to predict the global structure of pathways cor-
rectly in situations as the one described in 'Discussion' for
the isoleucine biosynthesis pathway. Future versions of
our algorithm will also account for the topology of the
network within pathways and the subcellular location of
genes. Other future enhancements include better methods
for prediction of enzyme domain families from sequence,
to detect new candidates for assignments (thus improving
the accuracy of our method) and better mapping proce-
dures from protein annotations to reactions. It should be
noted though that our method can be easily extended to
other pathways with non-enzymatic reactions. Finally, we
are working on probabilistic algorithms which are based
on the Expectation-Maximization algorithm, to predict
simultaneously gene functions, the existence of pathways,
and gene assignments.

Methods
Data sets
Pathways
As the pathway blueprints we used the set of 468 path-
ways in the MetaCyc database [6] as of May 2003. This
database contains a complete biochemical description of

pathways that are observed in different organisms. These
descriptions are used as templates when predicting similar
pathways in other organisms. We extracted from these
descriptions the composition of a pathway as a collection
of EC classes. It should be noted that most of the pathways
in the MetaCyc database were observed experimentally
and are linear as opposed to the pathways in KEGG where
a reference pathway might integrate the metabolic infor-
mation from multiple alternative pathways.

Expression data
We used two different expression data sets. The first is the
publicly available cell-cycle data set from the Saccharomy-
ces cerevisiae website [26,40]. From this data set we
extracted four time series of synchronized S. cerevisiae
cells going through the cell cycle. In our analysis each ORF
is represented by an extended expression profile derived
by concatenating these time series together. The dimen-
sions of these expression vectors range from 1 to 73. This
data set has been normalized by [26] to correct for exper-
imental variation between the different microarrays. The
second set is the Rosetta Inpharmatics Yeast compendium
data [27]. This data set consists of 300 different condi-
tions, mostly deletion mutants. We refer to this set as the
Rosetta data set.

Sequence data
Our sequence data is the set of protein sequences in the
Yeast sequence database with a total of 6298 proteins.
Almost all (5894 out of 6298) of the ORFs in the expres-
sion data sets can be mapped to genes in the Yeast
sequence database through the ORF label.

Enzyme families
Each pathway is associated with a set of families, usually
a list of enzyme families with their enzyme classification
(EC) numbers. To assign proteins to EC families we use a
composite non-redundant (NR) database that contains
more than 1 million unique sequence entries compiled
from more than 20 different databases (the database is
available at Biozon [41]). Based on the annotations in
these databases, 71,638 proteins can be assigned to one
(or more) of 2051 EC families. A total of 70,397 are
assigned to a single enzyme family, 1241 are possibly
multi-domain proteins with at least two different EC des-
ignations, and 498 are ambiguous (or suspicious) in the
sense that different databases assign them to different EC
families (but within the same level of the EC hierarchy, i.e.
the first two levels are identical).

To assign Yeast genes to EC families we match the Yeast
sequence database against this composite database. Of the
6298 Yeast genes, 832 can be assigned an EC number,
either based on their annotation or the annotation of
entries with identical sequences from the other databases.
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Of these genes, 27 are proteins with multiple enzymatic
domains.

Predicted EC membership
We extend the set of enzymes by creating a model
(sequence profile) for each EC family. The profiles are
generated by first grouping proteins with the same,
known EC designation from the Biozon NR database. For
each EC family we then use an iterative PSI-BLAST proce-
dure [42] to generate a profile. It should be noted that in
most cases several profiles are needed to cover all mem-
bers of the protein family. This is because of the large
sequence diversity observed in enzyme families, some of
which are composed of several subfamilies that do not
exhibit any apparent sequence similarity [22]. Of the
2051 EC families, 597 are composed of more than one
subfamily. These models are searched against the Yeast
genome, and all genes that are detected as similar with
evalue < 0.001 are assigned to the corresponding family,
with a confidence value that depends on the evalue.

Metrics
In a previous study [43] we analyzed and assessed the sen-
sitivity and accuracy of different measures of similarity
between expression profiles. The measures were assessed
in terms of their ability to detect functional links between
genes, such as protein-protein interactions, pathway
membership, promoter co-regulation, and sequence
homology. Our analysis showed that the z-score based
measure that combines the Pearson correlation and the
Euclidean metric has the maximal information content.
Formally, given two expression vectors V and U of dimen-
sion d, denote by Dist(V, U) the normalized Euclidean
metric

and denote by Corr(V, U) the Pearson correlation of the
two vectors

The two distance measures are converted to zscores based
on the permutation method described in [43]. This
method provides reliable measure of significance as it
adjusts to the "compositions" of the vectors compared.
The zscores are then summed to determine the final simi-
larity score. Since higher correlation scores are assigned
positive zscores, and smaller Euclidean distances are
assigned negative zscores, the final score is defined as

sim(V, U) = Z [Corr(V, U)] - Z [Dist(V, U)]

with higher scores indicating stronger similarity. For anal-
ysis and performance evaluation see [43]

Appendix – Related work
Metabolic processes make up a substantial part of the
cell's activity, and therefore much of the research on
pathways so far focused on creating new databases for
metabolic pathways as well as extrapolating the known
biochemical information from one organism to other.
The goal of this research goes beyond just storing, analyz-
ing and extrapolating the metabolic information and
strives to improve the known data by discovering varia-
tions to pathways in different organisms as well as to dis-
cover novel pathways. In this section we review the
literature on the main pathway databases and metabolic
pathway reconstruction methods and especially methods
that use microarray expression data to analyze pathways.

Pathway databases
Most pathway databases were created by compiling meta-
bolic information from different literature sources.
Among the first such databases was the Enzymes and Met-
abolic Pathways (EMP) database [1,50]. It contained
information about enzymes and metabolic pathways
from over 10000 journal articles, and as of 1996 it stored
2180 pathways from about 1400 organisms. This data-
base was later replaced by the Metabolic Pathways Data-
base (EMP/MPW) [2]. The latter was used as the reference
database for metabolic pathway prediction in the WIT
("What Is There?") system [3]. This collection contains
2800 pathway diagrams and their logical structure is
encoded in terms used for electronic circuits. Another
metabolic database is KEGG [5,51,52]. This database is
represented as a graph structure based on binary relations
between data items [53]. The pathway database consists of
more than 200 reference diagrams taken from the bio-
chemical charts that represent all known realizations of a
pathway. The database has three parts: the pathway part,
the genes part and the reaction and compound part [54].
BioCyc [55] is composed of a family of databases called
Pathway Genome databases (PGDB) where each one is
centered around a specific genome. The exception is Met-
aCyc [6,56] that contains over 491 pathways from multi-
ple organisms.

It is also worth mentioning The University of Minnesota
Biocatalysis/Biodegradation Database (UM-BBD) that
specializes microbial catabolic metabolism of xenobiotic
organic compounds [4,57]. Other pathway databases
include aMAZE [58], NCGR PathDB [59], ExPASy – Bio-
chemical Pathways [60] and Biocarta [61].

Pathway prediction based on pathway blueprints
One approach for pathway prediction/recovery in a new
organism is based on associating genes that encode
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enzymes with blueprints of pathways collected either
from biochemical charts or from actually observed path-
ways in different organisms. For example, in order to
predict pathways in new genomes, WIT matches the iden-
tified enzymes in that genomes with the pathway dia-
grams from the MPW database [3]. Recently WIT was
extended in systems like PUMA2, SEED and ERGO. For
example, PUMA2 [62] uses comparative evolutionary
analysis of genomes and MPW pathways to extrapolate
pathways to new genomes. SEED [8] is an open source
system for manual genome annotation where experts can
annotate a specific subsystem in multiple genomes at
once. It is built around the notion of a "molecular subsys-
tem" which is a collection of functional roles that together
fulfill a function. ERGO [7] is a private domain tool that
is based on similar principles, and integrates different
types of data such as genomic data, regulatory data and
essentiality data. No details are available as for the
procedures that are used for functional annotation or
pathway reconstruction. KEGG matches enzymes to the
reference pathways and depending on the degree of com-
pletion it assumes that the pathway exists or not [63].
PathFinder [64] is a system that predicts and visualize
pathways using the KEGG pathway blueprints using a
similar methodology. In UM-BBD, biodegradation path-
ways of chemical compounds are predicted using a
knowledge-based system that matches the compound to a
set of biotransformation rules [65]. A biotransformation
rule is composed of a sequence of biotransformation
functions that transform a compound into its products.
The prediction is completed when the resulting com-
pound can no longer be transformed using the rules in the
knowledge base or it is one of the termination
compounds. In BioCyc, the MetaCyc database is used as
the blueprint for the pathway prediction software Patho-
logic [46,66] which matches enzyme coding genes in a
specific genome to reactions in known pathways (but
unlike KEGG, they do not re-annotate genes but rather use
only existing annotations). Applying Pathologic on a
genome results in the creation of a computationally
derived PGDB. After creation, a PGDB is curated by min-
ing the literature and new pathways are studied and added
to the database. The curated pathways are integrated into
MetaCyc to improve the diversity of the database.

All these programs try to address also the problem of find-
ing missing enzymes either by considering alternative
reactions or by looking for similar proteins based on
sequence similarity or using machine learning models
[20-22,24].

Reconstructing pathways from metabolic networks
Reconstructing pathways from metabolic networks is an
emerging direction in pathway prediction that does not
use the previously known pathway blueprints. This

approach uses existing knowledge on reactions and
enzymes and chemical rules to create a complete graph of
a possible metabolic network, where pathways are
defined as sequences of reactions that transform a metab-
olite into another. For example, in [9] each metabolite is
considered a state and a reaction is considered as a
transformation from one state to another. The reactions
are compiled from the KEGG Ligand database [54]. This
state space is searched heuristically for pathways that link
metabolites using the A* algorithm with a cost function
that is based on the chemical efficiency of the pathway.
Similarly, in [10] the metabolic information is structured
as a directed graph with two types of nodes: participants
(substrates, enzymes) and events (reactions), and edges
link reactions to their constituents. Reactions are weighted
with the probability that an enzyme catalyzing this reac-
tion exists in the input genome, using sequence similarity.
This graph is then searched for maximally weighted path-
ways using a depth-first strategy. A similar graph is built in
[11], who assert pathways from clusters of co-regulated
genes that correspond to connected subgraphs. In [12] the
authors represent the metabolic information as Petri nets
which are bipartite graphs where nodes are of two types:
places and transitions. Reactions correspond to transi-
tions and metabolites to places. Pathways are then
generated as sequences of transitions in these Petri nets.
Related to the prediction of pathways is the analysis of the
topological properties of metabolic networks [67]. They
shows that metabolic networks from different organisms
have the same scaling properties. Furthermore these net-
works comply with the design principles of scale-free
networks.

Similar principles were used in several studies that con-
structed genome-wide metabolic networks for organisms
such as Escherichia coli [13-15], Haemophilus infiuenzae
[16], Helicobacter pylori [68], and Saccharomyces cerevi-
siae [17,18]. In contrast to the automatic methods
described above, these studies were based on manual
analysis of multiple data sources and mostly the literature.
Though time-consuming and expensive, manual analysis
is also more accurate and the constructed networks ena-
bled realistic simulations of metabolic networks. For
example, in [17] the Saccharomyces cerevisiae metabolic
network is reconstructed and its basic features are ana-
lyzed. The information was compiled from databases such
as KEGG, YPD, SGD and the literature and was aug-
mented with manual functional annotations. The path-
ways in the model are compartmentalized between
cytosol, mitochondria and extra-cellular, and transport
steps are added to the model. Extended information
about the reactions such as stoichiometry, reversibility
and cofactors is also added to the model in order to facil-
itate the analysis later on. This model is extensively ana-
lyzed in [69] and the phenotype of yeast is simulated
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using a procedure that considered stoichiometric, thermo-
dynamic and reaction capacity constraints. They tested the
effect of gene loss and different growth media on the
network viability. Most of the simulations were in agree-
ment with the experimental data. In [18] the model is
extended by fully compartmentalizing the metabolic reac-
tions by adding five more cellular locations to the model
and revising functional assignments for gene products.
They also refine the definitions of reactions to include fac-
tors such as mass conservation and charge balance. Their
results were quite consistent with the experimental data.

Expression data and pathway prediction
Another approach to pathway prediction is based on the
analysis of expression data. The main idea behind this
approach is that genes participating in the same cellular
process are functionally interconnected and this intercon-
nection can be induced from expression data by clustering
(e.g. [70]). For example, in [31] the authors cluster genes
using expression data, and if multiple genes from a cluster
belong to a certain pathway they infer that the other mem-
bers of the cluster might also belong there. Clustering is
also used in [32]. The authors define a distance function
between enzyme coding genes that is a combination of
the distance between the two reactions they catalyze in the

pathway reaction graph, and the correlation-distance
between their expression profiles. Similarly, in [33] the
expression data and the metabolic information is encoded
into two kernel functions and canonical correlation anal-
ysis is used to search for correlations between pathways
and expression data and therefore identify active path-
ways. The work is extended in [71], by including a kernel
function based on protein-protein interactions. An
approach for filing holes in pathways based on expression
data is presented in [23]. In this paper a scoring function
based on a distance function between expression profiles
and the topology of the metabolic network is used to score
candidate genes.

Module discovery from expression data is another
approach to pathway prediction related to clustering. The
assumption is that each cellular process is a module
involving multiple genes that are co-regulated and hence
are co-expressed. Moreover, the same gene may partici-
pate in more than one process (module) and therefore
each process accounts for a fraction of the genes expres-
sion at a particular measurement. In [72], a probabilistic
relational model for each processes is defined and an algo-
rithm to train it is introduced. A similar model based on
combined expression data and protein-protein interac-
tion data is developed in [34]. A model for the discovery
of transcriptional modules and their common binding
site motifs as well as the learning algorithm is developed
in [73]. The work is extended to co-regulated gene mod-
ules and their regulation program (a small common set of
regulators) in [74]. In that work the modules were consid-
ered disjoint but in [75] a new model is developed which
considers overlapping processes and tries to find the regu-
lation program for each process. All the above models are
probabilistic graphical models that employ EM like learn-
ing methods.

A different approach is taken in [49], who focus on metab-
olites as the driving force behind the evolution of meta-
bolic regulation. They search for metabolites around
which the most significant transcriptional changes occur
(as measured by the expression data of the genes that cat-
alyze reactions in which this metabolite is involved) and
identify significantly correlated subnetworks of enzymes.
In [25], the authors study regulation in metabolic net-
works and construct a hierarchy of pathways based on
their mutual correlation as measured by expression data.
The authors also suggest that correlation in expression
profiles is an indication of linear pathways that consist of
sequences of reactions. Different isozymes might be inde-
pendently co-regulated with different groups of genes and
therefore might be used to switch between the alternate
routes or in the differential regulation of reactions that are
shared between different pathways. Expression data was
used not only for pathway prediction but also in pathway

Table 6: The correspondence of genes to Biozon NR identifiers. 
We refer to genes using their unique and stable Biozon NR 
identifiers, at http://biozon.org [41]. To view an entry with 
identifier x follow the URL: http://biozon.org/Biozon/ProfileLink/
x.

Gene NR Identifiers

ILV1 005760000068
CHA1 003600000165
YKL218C 003260000219
ILV2 003090000098
ILV6 006870000019
ILV5 003950000069
ILV3 005850000040
BAT1 003930000034
BAT2 003760000122
FOL2 002430000075
FOL1 008640000008
FOL3 004270000071
DFR1 002110001504
MIS1 009750000001
ADE3 009460000003
SHM1 005650000392
SHM2 004690000046
YKL132C 004300000053
MET7 005480000035
AAT1 004510000006 004510000730
AAT2 004320000601 004170000010
ASN2 005720000349 005710000020
ASN1 005720000348 005710000019
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analysis. Efforts for integrating expression data with met-
abolic information started by trying to visualize the
expression data on top of the pathways diagrams. In Path-
way Processor [36] the system tries to assess the probabil-
ity that the expression of a large number of genes in any
given pathway is significantly changed in a given experi-
ment and each pathway is scored using this probability.
Similarly, MAPPFinder [76] annotates the GO hierarchy
with expression data. The method first associate the GO
terms with genes and then calculates the percentage of the
genes that meet a user specified criterion. A zscore is com-
puted in order to quantify the significance of the obtained
percentage. PathMAPA [77] is a system that visualizes
metabolic pathways and expression data in Arabidopsis
Thaliana, where pathways are represented in terms of
enzymes annotated with EC numbers. The tool estimates
the significance of a pathway being up regulated or down
regulated in a given experiment. In [35] the authors sug-
gest three functions to score pathways: based on the activ-
ity of the genes in the pathway, co-regulations of the genes
and the topology of the pathway. The method is then
applied to putative pathways in the KEGG database in
order to asses the biological significance of these path-
ways. In [37] the authors present a scoring method for
classes of genes. These classes are based on Gene Ontology
classification and the scoring is based on expression data.
Three types of scores are proposed: co-expression of genes
in the same class, statistical significance of gene expres-
sion changes, and the learnability of the classification. The
scores are converted to p-values to assess their statistical
significance, in search of classes with significant scores.
Similarly, the biological significance of the pathways
asserted in [12] (see previous subsection) is computed by
using a scoring function based on expression data in [30].
They score both pathways and genes using two different
types of scores (conspicuousness of the expression profile
and the synchrony), and the scores are used to asses which
are the most probable pathways. Another pathway scoring
approach was developed in [38], in search of active path-
ways. This approach scores a gene set (the set of genes
which catalyze reactions in a pathway) by summing all
pairwise similarity of the genes in the set. The score
obtained is then transformed to a pvalue. All these
approaches are related to our approach. However, our
method does not score pathways but rather it scores gene
assignments to determine the best assignment and iden-
tify alternative assignments. Furthermore, our algorithm
is geared toward simultaneous prediction of multiple
pathways while minimizing shared assignments.
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