@,

BiolVled Central

BIVIC Bioinformatics

Software

Squid - a simple bioinformatics grid

Paulo C Carvalho*, Rafael V Gloéria, Antonio B de Miranda and
Wim M Degrave

Address: Laboratory for Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil

Email: Paulo C Carvalho* - carvalhopc@fiocruz.br; Rafael V Gléria - rvg@fiocruz.br; Antonio B de Miranda - antonio@fiocruz.br;
Wim M Degrave - wdegrave@fiocruz.br

* Corresponding author

Published: 03 August 2005
BMC Bioinformatics 2005, 6:197 doi:10.1186/1471-2105-6-197

Received: 18 February 2005
Accepted: 03 August 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/197

© 2005 Carvalho et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: BLAST is a widely used genetic research tool for analysis of similarity between
nucleotide and protein sequences. This paper presents a software application entitled "Squid" that
makes use of grid technology. The current version, as an example, is configured for BLAST
applications, but adaptation for other computing intensive repetitive tasks can be easily
accomplished in the open source version. This enables the allocation of remote resources to
perform distributed computing, making large BLAST queries viable without the need of high-end
computers.

Results: Most distributed computing / grid solutions have complex installation procedures
requiring a computer specialist, or have limitations regarding operating systems. Squid is a multi-
platform, open-source program designed to "keep things simple" while offering high-end computing
power for large scale applications. Squid also has an efficient fault tolerance and crash recovery
system against data loss, being able to re-route jobs upon node failure and recover even if the
master machine fails. Our results show that a Squid application, working with N nodes and proper
network resources, can process BLAST queries almost N times faster than if working with only
one computer.

Conclusion: Squid offers high-end computing, even for the non-specialist, and is freely available at
the project web site. Its open-source and binary Windows distributions contain detailed
instructions and a "plug-n-play" instalation containing a pre-configured example.

Background

Bioinformatics includes some highly repetitive and com-
puting intensive applications, such as comparison of
nucleotide or peptide sequences in search for similarities.
The BLAST algorithm (Basic Local Alighment and Search
Tool) is well known for its performance [1]. Even though
BLAST is "fast", it is an increasingly time-consuming oper-
ation when many sequences are to be queried against
large databases.

Web pages offering BLAST capabilities are limited in the
number of query sequences and available databases to
search, while local facilities can easily get overloaded due
to limited computing resources when dealing with data
intensive operations in smaller research centers. Grid
computing permits usage of idle resources and is an inex-
pensive alternative to large multiprocessor machines or
dedicated clusters.

Page 1 of 4

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16078998
http://www.biomedcentral.com/1471-2105/6/197
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:197

"A computational grid is a hardware and software infra-
structure that provides dependable, consistent, pervasive
and inexpensive access to high-end computational capa-
bilities" [2]. There are high-quality grid initiatives such as
Globus [3], N1 Grid Engine 6, MyGrid [4] and EUROG-
RID [5] among others. Such software acts as middleware
interlinking resources of multiple computers within or
between institutions using open and general purpose pro-
tocols for secure high performance distributed comput-
ing. Although some of these solutions are very complete,
their installation is quite complex, and may require spe-
cialist management, or have limitations regarding the
operating system. Currently, a few non-commercial pack-
ages specialized in performing distributed BLAST are
available. Among them stand out S-BLAST [6], BeoBlast
[7], CondorBLAST [8], Soap-HT-BLAST [9], W.ND BLAST
[10], and mpiBLAST [11]. However, only SOAP- HT-
BLAST and W.ND BLAST present GUIs, and the latter is
only Windows based. Thus a few drawbacks for these
solutions are: GUI absence, the need for extensive net-
working skill for implementation, low fault tolerance [10]
and not being multi-platform, resulting in limited utility
for the end-user.

In this work a simple, low-cost, platform independent,
easy to install and use computational grid interface was
constructed and applied to BLAST implementation. This
environment called Squid is based on TCP/IP [12], auto-
matically manages available computing resources and
makes large BLAST queries possible, even for small labo-
ratories with limited computing resources.

Implementation

The Squid environment is programmed in Perl (version
5.8.6) and is composed of two programs, Squid and Ten-
tacle, each having their configuration file in text format,
which can be edited by the user to reflect the local config-
uration. The graphic user interface (GUI - images can be
seen at project web site) can be used to view the currently
available computing resources, select query sequence files
and choose databases to confront. Squid can also be fully
controlled through the command prompt allowing expe-
rienced users to encapsulate it within other programs and
pipelines. Each grid node must have a copy of the BLAST
and Tentacle programs installed and, ideally, a copy of the
database. Although remote DB copies can be accessed,
this can heavily overburden the connecting network and
degrade performance. Squid can be installed under Linux,
Unix, Mac OS and Windows operating systems. As soon as
the user submits a job, Squid will test which of the nodes
are up and properly configured to receive jobs. Squid also
timely checks the availability of new up-nodes.

The user-submitted file containing the query sequences is
split into smaller files called "work fragments" with user

http://www.biomedcentral.com/1471-2105/6/197

preconfigured size (ex. a file with 10000 query sequences
can be split in 200 files with 50 query sequences each),
and kept in a work directory. By knowing the up time and
availability of nodes, fragment size can be adapted to best
suit various working environments. Each fragment is sent
to an available node for BLAST execution. Only when the
BLAST results file is successfully returned, the respective
fragment file is removed from the work directory. Squid
will continue to send jobs to nodes until there are no
more fragments located in the work directory. This
approach is a simple yet highly efficient job control and
crash recovery system.

Tentacle is responsible for a single nodes internal admin-
istration. The communication semantics consists in
receiving a command, (i.e. blast, reset_node,
erase_work _files, authenticate, etc.), followed by required
complementary data. The command is validated, proc-
essed and an answer is always sent back to the central
administration node running Squid.

Squids' remote node administration core works by man-
aging three lists: the up_node (nodes that are ready to
receive work), down_node (nodes that are not respond-
ing), and busy_node (nodes that are currently process-
ing). After creation of the "work fragments" in the work
directory, node classification as belonging to the up_node
or down_node list is performed. This is quickly accom-
plished by sending preset messages to every remote node
and validating if the proper response is returned, much
like the ping command in most operational systems.

Successfully validated nodes are added to the up_node
list. Subsequently, "work fragment" files are selected from
the work directory and sent to nodes in the up_node list,
together with the blast command. The receiving nodes are
moved from the up_node list to the busy_node list. Squid
continues to send jobs and manage them in different
threads until no more nodes are available in the up_node
list. When a BLAST result is fully received from a remote
node, it is written to disk and its corresponding work frag-
ment is then deleted from the work directory. Finally the
node is changed from the busy_node to the up_node list.
It is important to note that a small overhead occurs for
every communication established, therefore larger work
fragments can result in less overhead.

To check if processing nodes are still up, validation com-
mands are timely sent. If validation fails, indicating that
the node has stopped serving the grid, it is immediately
removed from the up_node or busy_node list and placed
in the down_node list. A thread timely sends validation
requests to nodes in the down_node list. If the node
responds again, a node reset command is sent, clearing
local work files, and it is again moved to the up_node list.

Page 2 of 4

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:197

The "lost fragment" will be re-routed to a new node, since
Squid only erases the "work fragment" from the work
directory after receiving and saving its complete BLAST
result.

A fault recovery routine is also implemented to handle
occasions where the main node goes down. Before reacti-
vating Squid, the crash recovery button in the GUI can be
clicked. This makes Squid jump the routine where the ini-
tial FASTA file is read and fragmented into "work frag-
ments" that are placed in the work directory; thus only the
work fragments that haven't been processed will remain.
Squid will once again go through node validation and
pick up right from where it left.

Data can be lost in intermediate networks or in unstable
connections, but the TCP/IP communication protocol is
capable of detecting such errors and automatically trigger
retransmission until data is correctly and completely
received. Squid's node communication is fully based on
TCP/IP addressing and data transfer verification through a
user configured port. Even though Squid authenticates a
remote node before receiving input, enhanced security
can be obtained by setting up a virtual private network
(VPN) when working across unsafe networks. A VPN per-
forms data tunnelling (making sure that it cannot be inter-
cepted) and encryption; linking it with Squid should
guarantee a secure and reliable data transmission, espe-
cially when sensitive data is involved. Since there is always
a loss in performance when using encrypted data, such
degree of safety should be evaluated.

Results and conclusion

Squid is designed to "keep things simple" offering grid
power for large scale applications (BLAST in the current
configuration) for smaller labs, so the user gets to worry
about analyzing results while Squid worries about distrib-
uted computing and getting the job done. Squid stands
out among other software because it can simultaneously
work with Windows / Linux nodes and efficiently manage
job control but above all, it is meant to be user friendly.
One can subsequently use BioParser, also available at our
lab page to further process large BLAST outputs. Various
tests were carried out to analyze Squids' performance and
robustness where the following should be noted:

1. A grid containing N nodes is able to execute multiple
BLAST queries almost N times faster than if working with
only one node.

2. Overhead occurs due to computer communication, net-
work latency and initiating new computer processes. Thus
the size of fragment files should not be too small.

http://www.biomedcentral.com/1471-2105/6/197

3. For maximum performance, each node should have a
copy of the database, but remote copies can also be used.

4. Squid successfully handles problems such as unex-
pected remote node shutdown or even main node acci-
dental shut down. Squid picks up right from were it left.

Every time a node is available for a job, Squid sends it a
work fragment. If the node stops serving the grid while
processing, its uncompleted work file will be eliminated
and Squid will eventually re-route the "skipped fragment"
to another available node. Being so, by knowing the up
time and availability of nodes, fragment size can be
adapted to best suit for various working environments.

Further help and instructions are included within the dis-
tribution. Open source and binary Windows versions also
come with a pre-configured example for evaluation pur-
poses.

Availability and requirements
¢ Project name: Squid - A simple bioinformatics grid

¢ Project home page: Squid is available for download at
the projects website [13]. Once in the site select softwares
and Squid to view the project page and download links.

e Operating system(s): Platform independent
® Programming language: Perl 5.8.6
¢ License: Creative Commons - Commons Deed [14].

e Any restrictions to use by non-academics: license
needed

Authors' contributions

PCC performed software engineering, coding, elaboration
of manuscript. RVG, ABM and WD performed software
testing, benchmarks, helped in GUI coding, debugging
and manual / manuscript revisions.

Acknowledgements
We thank CNPq, FAPER|, CYTED-RIB, LACBioNet, RNP-GIGA,
FIOCRUZ-PAPES/PDTIS, 10C for financial support.

References

. Altschul SF, Warren G, Webb M, Eugene WM, David |L: Basic local
alignment search tool. | Mol Biol 1990, 215:403-10.

2. Foster lan: What is the Grid? A Three Point Checklist. 2002
[http://www-fp.mcs.anl.gov/~foster/Articles/VWhatlsTheGrid.pdf].

3. Foster |, Kesselman C: The Globus Project: A Status Report. I.
Proc IPPS/SPDP'98 Heterogeneous Computing Workshop 1998:4-18.

4. MyGrid [http://www.mygrid.org.uk/]
5. EUROGRID [http://www.eurogrid.org]
6. S-BLAST: Federated BLAST Using Sorcer [http://
liru.ars.usda.gov]
Page 3 of 4

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.mygrid.org.uk/
http://www.eurogrid.org
http://liru.ars.usda.gov
http://liru.ars.usda.gov

BMC Bioinformatics 2005, 6:197

Grant JD, Dunbrack RL, Manion FJ, Ochs MF: BeoBLAST: distrib-
uted BLAST and PSI-BLAST on a Beowulf cluster. Bioinfor-
matics 2002, 18:765-6.

Condor BLAST [http://www.cs.wisc.edu/condor/tools/BLAST/]
Soap-HT-BLAST [http://mammoth.bii.a-star.edu.sg/webservices/
htblast/index.html]

Dowd SC, Zaragoza }, Rodriguez JR, Oliver M, Payton PR: Windows
.NET Network Distributed Basic Local Alignment Search
Toolkit (W.ND-BLAST). BMC Bioinformatics 2005, 6:93.

Darling A, Carey L, Feng W: The Design, Implementation, and
Evaluation of mpiBLAST. ClusterWorld 2003 conference 2003
[http://mpiblast.lanl.gov/].
Introduction to TCP/IP
TCPIP.HTM]

Squid project homepage [http://www.dbbm.fiocruz.br/labwim/
bioinfoteam/]

Creative Commons — Commons Deed
mons.org/licenses/by-nc-nd/2.0/]

[http://www.yale.edu/pclt/ COMM/

[http://creativecom

http://www.biomedcentral.com/1471-2105/6/197

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 4 of 4

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050075
http://www.cs.wisc.edu/condor/tools/BLAST/
http://mammoth.bii.a-star.edu.sg/webservices/htblast/index.html
http://mammoth.bii.a-star.edu.sg/webservices/htblast/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15819992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15819992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15819992
http://mpiblast.lanl.gov/
http://www.yale.edu/pclt/COMM/TCPIP.HTM
http://www.yale.edu/pclt/COMM/TCPIP.HTM
http://www.dbbm.fiocruz.br/labwim/bioinfoteam/
http://www.dbbm.fiocruz.br/labwim/bioinfoteam/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results and conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

