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Abstract
Background: Recognition codes for protein-DNA interactions typically assume that the
interacting positions contribute additively to the binding energy. While this is known to not be
precisely true, an additive model over the DNA positions can be a good approximation, at least for
some proteins. Much less information is available about whether the protein positions contribute
additively to the interaction.

Results: Using EGR zinc finger proteins, we measure the binding affinity of six different variants of
the protein to each of six different variants of the consensus binding site. Both the protein and
binding site variants include single and double mutations that allow us to assess how well additive
models can account for the data. For each protein and DNA alone we find that additive models are
good approximations, but over the combined set of data there are context effects that limit their
accuracy. However, a small modification to the purely additive model, with only three additional
parameters, improves the fit significantly.

Conclusion: The additive model holds very well for every DNA site and every protein included
in this study, but clear context dependence in the interactions was detected. A simple modification
to the independent model provides a better fit to the complete data.

Background
Zinc finger proteins are the largest family of transcription
factors in the human genome. The EGR sub-family of
C2H2 zinc finger proteins has been extensively studied to
determine the basis of DNA-protein binding specificity.
The structure of the DNA-protein complex has been deter-
mined for the wild-type EGR1 (zif268) protein bound to
its consensus site [1,2] and for several other variants of the
interaction [3-5]. From the structure, the interaction
appears very modular with each protein containing sev-
eral zinc finger domains and each finger interacting with
adjacent 3 base-pair (or overlapping 4 base-pair) seg-
ments of the binding site. Analysis of binding sites for this

family of proteins suggested there were simple rules that
relate the sequence of the zinc finger protein to its pre-
ferred binding site sequence [6], and that those rules
could be used to design proteins with desired specificities
[7,8]. Soon after, experimental techniques of in vitro rand-
omization and selection were employed to greatly expand
the collection of protein-DNA high affinity interactions
[9-12]. Several reviews [4,13-18] have analyzed the pro-
tein-DNA crystal structures, summarized the results of the
in vitro selection experiments, described rules for predict-
ing high affinity protein-DNA interacting pairs and
assessed the success of those rules for designing proteins
to recognize particular sequences. Most of the recognition
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rules that have been developed are qualitative, specifying
the amino acid and base-pair combinations that are pre-
ferred at each position in the binding sites [18]. Such rules
can be effectively used to design proteins with preferred
binding sites that are desired [19].

Despite the success of the qualitative recognition codes for
designing proteins with desired preferred binding sites,
the utility of such codes is still quite limited. If one com-
pares the collection of known protein-DNA interacting
pairs obtained in in vitro selection experiments, more than
half of the fingers contain at least one amino acid/base-
pair interaction that is not included in the code [20]. Fur-
thermore, the code only predicts the preferred binding site
for each protein sequence, or preferred protein for each
DNA binding site. But it does not, by its qualitative
nature, attempt to predict differences in affinities to simi-
lar sequences. Because all of these proteins bind with lim-
ited specificity, sites that are very similar to the preferred
binding site can often bind with only slightly reduced
affinity. Therefore predicting the quantitative binding spe-
cificities is important for a comprehensive view of their
functions.

Several quantitative binding models have been devel-
oped, either specifically for the zinc finger proteins or for
general protein-DNA interactions [20-26]. In many cases
such codes can accurately predict the preferred binding
sites as well as the qualitative codes, but the overall accu-
racy of the quantitative predictions is limited, undoubt-
edly for a combination of reasons. One reason is that
there are limited data upon which to infer the model
parameters using statistical approaches. Another reason is
that many of the models are overly simplified, for instance
assuming that each amino acid/base-pair contact is inde-
pendent of any of the surrounding structure. We know, for
instance, that the interactions of the protein and DNA are
not completely additive [27,28], and it is also known that
both intermolecular and intramolecular interactions con-
tribute to protein-DNA recognition (24). But it has also
been shown that models which are additive over the DNA
positions can be a reasonably good approximations, at
least for some proteins [29,30]. Most studies of additivity
have focused on the DNA binding site, testing whether
independent models for each base-pair fit the binding
data well [29,31,32]. But equally important to the recog-
nition codes is whether additivity holds within the pro-
tein. In one example from the EGR family, additivity
within the protein was shown to be approximately addi-
tive (within 0.5 kcal) for one pair of mutated amino acids
[33]. But very few studies have addressed the issue. Even
though many variants of EGR family proteins have been
used in SELEX and phage-display selection studies (see
[20] for a summary), very few of the affinities have been
quantified. Bulyk et al [28] did measure the affinity to

each of 64 different binding sites for five different pro-
teins, but the proteins were different at too many posi-
tions to be useful for determining additivity. One needs to
have a set of single mutations and their double mutant
combinations in order to determine whether the contri-
butions to binding are independent or not. Several struc-
tural studies have highlighted the substantial
rearrangements that can occur at the protein-DNA inter-
face and can cause single amino acid or base-pair substi-
tutions to influence the interactions at neighboring
positions [3,15,34,35]. Such context effects may limit the
predictive accuracy of simple recognition codes, although
it is also possible that additivity can hold approximately
even in the presence of such rearrangements. In the Mnt
protein, a single amino acid change can alter the preferred
binding site primarily at two adjacent positions, and more
weakly over a longer distance [36,37]. Nevertheless, a
complete quantitative analysis of the adjacent positions
that were primarily affected showed that the interaction
was largely additive for a wide variety of amino acid sub-
stitutions [30].

In this study we analyze the additivity of the interaction in
both the DNA binding sites and in the interacting posi-
tions of the protein. We measure binding affinities for
each of six different proteins, with single and double
mutations compared to the wild-type protein, to each of
six different DNA sites, also with single and double muta-
tions from the wild-type binding site. We show that for

Amino acid-base contacts observed in co-crystal structuresFigure 1
Amino acid-base contacts observed in co-crystal structures. 
The amino acid residues at -1, +2, +3, and +6 for zif268 are 
R, D, E and R, while the DNA bases at positions 7, 8, 9 and 
10 for wild-type operator of zif268 are G, C, G and T.
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any specific protein or DNA an additive model fits the
data quite well. However, there are clear context effects
such that no single interaction model fits all of the pro-
tein-DNA combinations. But only a small modification to
the additive model, with just three additional parameters,
improves the fit significantly.

Results and discussion
Figure 1 diagrams the direct interactions between the
amino acids of finger 1 of the zif268 protein with the
bases of the consensus binding site as determined by X-ray
crystallography [1,2]. In order to study the additivity of
the interaction on the side of protein, we constructed
wild-type zif268 and five mutants where mutations occur
in finger one. These five mutants include two single
mutants of zif268 at position -1 in which arginine (R18)
(referred to as RE) was replaced by glutamine (Q)
(referred to as QE) and aspartic acid (D) (referred to as
DE), separately, one single mutant at position +3 where
glutamic acid (E21) was mutated to asparagine (N)
(referred to as RN), and two corresponding double
mutants (referred as to QN and DN, respectively). The six
DNA sites used for this study were chosen primarily based
on the qualitative code that represents the correlations
between amino acids located at different positions and
the DNA bases that they specify [4,15,34]. Specifically, the
anticipated base specificity for amino acids arginine,
glutamine and aspartic acid at position -1 are G, A and C
at position 9 in the DNA sequence, respectively. The favo-
rable bases for amino acids glutamic acid and asparagine
at position +3 are C and A at position 8. The oligos used

to generate the six DNA sites are shown in Table 1. They
share common sequences except for the DNA bases that
are recognized by the amino acids at the position of +3
and -1 of finger 1, referred as CG, CA, CC, AG, AA, and AC,
respectively. We measured the affinity of each of six pro-
teins to each of six DNA sites, and we use these data to
analyze the additivity in both the protein and the DNA
binding sites.

For each protein we determined the relative affinity of
each different binding site compared to the wild type site
(CG) using the QuMFRA assay (Table 2). For the wild-
type protein, the relative affinities of CA, CC, and AG to
the reference site CG in this study are 0.27, 0.082 and
0.15, respectively. These data are in good agreement with
the relative affinities previously determined by Miller and
Pabo (0.21, 0.ll and 0.20, respectively [34]). Table 2
shows only the wild-type protein (RE) binds preferentially
to the wild-type binding site (CG), all of the other pro-
teins preferring a different binding site sequence. The
range of affinities varies considerably between the differ-
ent proteins. RE has about a 25-fold difference between
the highest and lowest sites, while QE only varies by about
2-fold between the highest and lowest. We also measured
the absolute binding affinity of each protein to one of the
DNA binding sites with a Scatchard analysis (Table 3). The
Kd for wildtype zif268 binding to the DNA site CC is 3.0 ×
10-8 M, which converts to a Kd for wildtype binding site
CG of 2.5 × 10-9 M. This value is almost the same as that
determined by Hamilton et al (2.2 × 10-9 M) [41]

Table 1: Oligos applied in this study. I: Synthesized DNA templates bearing either wild-type binding site (Zif_1) for zif268 or one of its 
variants (Zif_2 to Zif_6) used for generating DNA binding sites by PCR amplification, where KS-1 and SK-1 are two primers (low case). 
II: Oligos employed to construct five zif268 variants with QuickChange™ XL site-directed mutagenesis Kit (Stratagene) using pzif268 
as a template.

I Zif_1 tcgaggtcgacggtatcGCGTGGGCGCtccactagttctagagcggccgccac
Zif_2 tcgaggtcgacggtatcGCGTGGGCACtccactagttctagagcggccgccac
Zif_3 tcgaggtcgacggtatcGCGTGGGCCCtccactagttctagagcggccgccac
Zif_4 tcgaggtcgacggtatcGCGTGGGAGCtccactagttctagagcggccgccac
Zif_5 tcgaggtcgacggtatcGCGTGGGAACtccactagttctagagcggccgccac
Zif_6 tcgaggtcgacggtatcGCGTGGGACCtccactagttctagagcggccgccac
KS-1 tcgaggtcgacggtatc
SK*-1 gtggcggccgctctagaact (SK-1 was fluorescent labeled with either FAM, HEX, TAMRA, ROX, or CY5)

II 18Q_plus 5' CGCCGCTTTTCTcagTCGGATGAGCTTACCCGCC
18Q_minus 5' GGCGGGTAAGCTCATCCGActgAGAAAAGCGGCG
18D_plus 5' CGCCGCTTTTCTgatTCGGATGAGCTTACCCGCC
18D_minus 5' GGCGGGTAAGCTCATCCGAatcAGAAAAGCGGCG
21N_plus 5' CGCCGCTTTTCTCGCTCGGATaacCTTACCCGCC
21N_minus 5' GGCGGGTAAGgttATCCGAGCGAGAAAAGCGGCG
18Q_21N_plus 5' CGCCGCTTTTCTcagTCGGATaacCTTACCCGCC
18Q_21N_minus 5' GGCGGGTAAGgttATCCGActgAGAAAAGCGGCG
18D_21N_plus 5' CGCCGCTTTTCTgatTCGGATaacCTTACCCGCC
18D_21N_minus 5' GGCGGGTAAGgttATCCGAatcAGAAAAGCGGCG
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(previously reported values for this Kd range from 0.04 to
6.5 nM, depending on the binding condition used [33]).
No similar data exist for the other proteins in our collec-
tion. Combining the data from Tables 2 and 3, we derive
the association constant of each protein for each different
DNA sequence, which differ by over 300-fold between the
highest and lowest affinities (Table 4).

From the binding data we can assess the additivity of the
interaction for both the protein and the DNA. In a
perfectly additive interaction the binding energy for each
sequence would be the sum of the independent contribu-
tions at each position. For example, for any protein j, the
binding energy to any DNA sequence XY, would be the
sum of the interactions with base X and base Y:

∆Gj(X8Y9) = ∆Gj(X8) + ∆Gj(Y9).  (1)

The important assumption of the additive model is that
the interaction energy at position 8, for example, doesn't
depend on which base occurs at position 9. We do not
expect additivity to hold precisely [30,27,28], but it can be
a very good approximation, at least for some proteins
[27,29]. Previously, studies of additivity have focused on
whether the positions in the DNA binding site contribute
independently to the binding of a particular protein.
Using the data of Table 4 we can also determine whether
the positions in the protein contribute additively to the
binding of a particular DNA site. That is, we can reverse
the symbols of equation 1 to refer to the binding of a par-
ticular DNA sequence, i, to a protein sequence UV:

∆Gi(U-1V3) = ∆Gi(U-1) + ∆Gi(V3).  (2)

Table 2: Relative binding constants for six DNA binding sites for wild-type of zif268 and its 5 derivatives, where wild-type operator of 
zif268 was used as the reference. Each data were obtained from 5 or more independent examinations, inside of parenthesis are the 
standard deviations.

DNA\Prot RE(wt) QE DE RN QN DN

CG(wt) 1 1 1 1 1 1
CA 0.27(0.06) 1.50(0.54) 1.16(0.49) 0.36(0.14) 0.49(0.19) 1.21(0.33)
CC 0.082(0.076) 2.17(0.91) 1.91(0.83) 0.41(0.23) 0.53(0.36) 2.61(0.59)
AG 0.15(0.10) 1.30(0.34) 1.48(0.56) 1.29(0.28) 4.45(2.64) 14.5(5.18)
AA 0.064(0.017) 1.36(0.48) 2.25(1.30) 0.68(0.28) 2.47(1.34) 4.02(1.56)
AC 0.041(0.045) 1.93(1.01) 3.08(0.45) 0.94(0.26) 2.78(0.80) 11.8(4.44)

Table 3: Experimental determined association constants (106M-1) for individual indicated DNA binding site binding to its 
corresponding protein. Each value is the mean from 5 or more independent determinations and the standard deviations are shown in 
parenthesis.

DNA\Prot RE(wt) QE DE RN QN DN

CC 33(7) 6.4(1.7) 4.7(2.6) 33(14)
AG 33(18) 17(6)

Table 4: Absolute Ka(106M-1) for six DNA binding sites and six variants of zif268, derived from the combination of Table 2 and Table 3.

DNA\Prot RE QE DE RN QN DN

CG 406 3.0 2.5 81 7.4 1.2
CA 109 4.5 2.8 30 3.5 1.4
CC 33 6.4 4.7 33 3.9 3.1
AG 63 3.9 3.6 105 33 17
AA 26 4.0 3.7 56 18 4.8
AC 16 5.7 5.5 77 21 14
Page 4 of 11
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:176 http://www.biomedcentral.com/1471-2105/6/176
Of course, we have not measured affinities to all possible
DNA sequences or for all possible protein sequences, but
because we have both single and double mutants in both
the protein and the DNA, and have measured the binding
affinities of all combinations, we can determine how well
additivity holds on both sides, the DNA and the protein,
at least for this limited set of variants.

We cannot actually measure the binding affinities to sin-
gle positions because they always occur in some context.
But we can find the "best fit" values for the independent
interactions, and then determine how well the total data
fits the additive model using those values. One method to
obtain the best fit independent parameters is to apply
multiple linear regression to the total data [31,32]. How-
ever, we have argued previously [29] that a better criterion
is to minimize the difference in total free energy between
the observed data and the model.

The  and  values are those obtained as the best fit
parameters (those which minimize M) for each position
assuming independence. The ω refers to either the protein
or the DNA, and α,β refer to the residues at the two inter-
acting positions. The first term inside the sum represents
the probability that each particular residue sequence will
be bound, and so weights the energy differences by their
contribution to the total free energy of the system. As can
be seen in the last form of the equation, M is the "mutual
information" between the positions, the amount of total
information content in the data that cannot be explained
by the best independent model. We use log2 so that the
mutual information is measured in bits.

Given the best fit independent parameters we can calcu-
late the specificity information, Ispec, of each position inde-
pendently [42]. For example the specificity information
for the protein or DNA ω at the first interacting position is

Ispec measures the amount of specificity in the interaction
in bits; any non-specific protein or DNA would have Ispec =
0. Figure 2 shows sequence logos [43] for each of the six
proteins and the six DNA sequences for which we have
measured the affinity. We have added the symbol "M" to
each one which shows the amount of mutual information
in each interaction [44,27,30]. That is the amount of total
free energy, or specificity information, which is not cap-
tured by the best fit additive model. Half of the total
mutual information is displayed above each position.
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Sequence logos for each of six zinc finger proteins and the six DNA sites for which we have measured the affinityFigure 2
Sequence logos for each of six zinc finger proteins and the six 
DNA sites for which we have measured the affinity. M in 
each logo is the mutual information content in each interac-
tion. The label at the top of each logo represents the DNA 
site (for the top two rows) or the protein (bottom two 
rows). The amino acid order is reversed so that they are 
lined up with the bases they contact. For example, the logo 
labeled "ER" shows the specificity for the RE (wild type) pro-
tein. In the lower six panels the maximum value on the y-axis 
is 0.5 bits.
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Several interesting results are evident in Figure 2. As stated
above, the proteins vary considerably in their specificity,
with RE (shown as "ER" in the figure) showing large dis-
crimination between the different DNA sites, whereas QE
and DE are fairly non-specific. The same holds for the dif-
ferent DNA sites, where CG is much more specific than
CC or AC. It is interesting that every DNA site prefers R at
position -1 of the protein, showing that it contributes to
the total affinity of each protein as well as to the specificity
of some proteins. The small degree of mutual informa-
tion, the "M" in each logo, means that every interaction
fits well with an additive model. Not only do the DNA
positions contribute very additively, as has been shown
previously for this family of proteins [29], but the contri-
butions of the amino acids in the protein are also largely
additive. The conclusion that additive models are good
approximations to the true data holds for every DNA site
and every protein included in the analysis. However, it is
also true that there is not a single set of additive parame-
ters that fit well for every case. This is consistent with the
context effects previously noted for this family [15,34].
For example, R prefers to bind to G over A or C, but the
magnitude of that preference is much larger if position +3
is an E instead of N. And an N at position +3 always
prefers an A over C in the binding site, but that preference
is much weaker with an R at position -1 than with a Q or
D. Similarly, E at position +3 prefers a C very strongly in
the context of an R, but is quite non-specific with either a
Q or D at position -1. Similar effects, but of smaller mag-
nitude, can be seen in the context effects of the DNA sites.
These results show that additive models can be good
approximations not only for the DNA sites in binding to
any particular protein as has been seen before [29], but
also for the proteins in binding to any particular DNA site.
But the results also show that additivity for specific pro-
teins and DNA sites is not sufficient to generate a general
recognition code because context effects can still be
important when both the DNA and protein can be varia-
ble. The small amounts of mutual information observed
for any specific protein or DNA can be reinforced to give
much larger amounts when measured over combinations
of both components.

To get a more detailed view of the dependencies in the
data, it is useful to reformat it as in Figure 3A. Those data
are the same as in Table 4 except that it has been normal-
ized to a sum of 1000. In an experiment where every pro-
tein and DNA was equally available for binding, those
elements in the table are 1000-times the probability of
picking that particular combination from all of those in
the bound state. The data are arranged in a four-dimen-
sional (4D) table, with one dimension for each of the two
positions in the protein and the two positions in the DNA.
For example, the 335 at the RE-CG element of the table
corresponds to the wild-type association constant of 406

from Table 4 after normalization. From the data in Figure
3A it is easy to obtain different lower dimensional views
by summing over the other dimensions. For example, Fig-
ure 3B shows the 2D view of the interaction of the amino
acid at position -1 with the base-pair at position 9
obtained by summing over all of the combinations of E,N
at protein position +3 and C, A at binding site position 8
(inside the bold lines of Figure 3A). Similarly, Figure 3C
shows a 2D view of the interaction between the amino
acid at position +3 and the binding site position 8. Those
two 2D views are orthogonal and together cover the 4D
space of Figure 3A. We also show the remaining 2D views
in Figures 3D–G. The pairs in Figure 3D,E and 3F,G are
also orthogonal and together cover the 4D space of the
data. If the binding interaction was completely additive,
the true data of 3A could be calculated as the (renormal-
ized) outer product of any pair of orthogonal matrices.
Such predictions are not too bad, but demonstrate limita-
tions of the additive model (see below).

Because the data in Figure 3 are in probabilities (if divided
by 1000), the information specificity can be calculated
more easily than in equation (4):

Ispec(α) = log2Nα - Hα  (5)

where α is any of the positions or combination of posi-
tions, Hα is the Shannon entropy of the data at those posi-
tions and Nα is the number of entries in the data. For
example, position -1 of the protein has three entries, R, Q
and D, with overall probabilities of 0.852, 0.093 and
0.054, respectively, which gives Ispec(- 1) = 0.84 bits. The
upper half of Table 5 shows the specificity information for
each of the positions (along the diagonal) as well as the
specificity information for each of the pairs of positions
(from the data shown in Figure 3). If the two positions
contribute independently to the total specificity then the
information for the paired positions is just the sum of the
information at the each position. In this case the mutual
information between the positions is the amount of
information in the pair that exceeds the sum of the indi-
vidual positions:

M(α,β) = Ispec(α,β) - (Ispec(α) + Ispec(β))  (6)

Those values are shown in the lower half of Table 5. From
the standard model of interaction between the DNA and
protein we would expect there to be very little mutual
information for any of the 2D datasets of Figure 3D–G,
and that expectation is met. But we do expect high mutual
information for the datasets in Figure 3B and 3C because
those are the interacting positions. Just as we get high
mutual information for positions that interact in RNA
structures [44], we expect to see compensating changes
between the amino acids and base-pairs that interact. That
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expectation is met for the combination of protein posi-
tion +3 and base-pair position 8 (Figure 3C) where there
is a clear preference for E binding to C and for N binding
to A. In that case the mutual information is 0.19 bits,
which is the main contribution to the total information of
that pair, 0.24 bits. However, protein position -1 and
base-pair position 9 also interact but show little mutual

information because R is the preferred amino acid for
each different DNA sequence and G is the preferred base-
pair for each different protein. That pair has high specifi-
city information, 1.09 bits, but it is very additive with only
0.02 bits of mutual information.

The total specificity information in the complete data of
Figure 3A is 1.46 bits. The sum of the information for the
interacting pairs, -1,9 and 3,8, is 1.33 bits, which shows
that the complete specificity is reasonably well fit by
assuming independent contributions from those interact-
ing positions, as in most recognition code models [18]. If
one predicts the complete data of Figure 3A as the outer-
product of the matrices of Figure 3B and 3C (not shown),
the correlation coefficient between the observed and pre-
dicted binding energies is 0.87 (Model 1 of Figure 5), sim-
ilar to what had been observed previously for data in
which only the DNA site had been varied [29]. While that
result is reasonably good overall, examination of the com-
plete data in Figure 3A identifies one clear source of con-
text dependence between the interacting positions. When
protein position -1 is R and the base-pair at position 9 is
either G or A, there is a clear preference for the specific
combination of E with C and a weak preference for N with
A. But for all other combinations of positions -1 and 9,
there is a strong preference for N with A, but very little
preference for E. That is, the preference of E for C depends
on the R with G or A combination being adjacent. In the
structure of zif268 with the wild-type DNA there is no
hydrogen bound between the position +3 E and the C
base-pair, but rather it interacts with the backbone and
with the neighboring R amino acid [2,1]. Various qualita-
tive codes for the interactions of this protein family do not
include E as an acceptable amino acid at position +3
[4,15]. But in the compilation of SELEX and phage-dis-
play results used by Benos et al [20], the combination of
RE-CG was much more frequent than expected from the
individual or pair occurrences (p-value less than 0.001).
That is consistent with our result that in general E contrib-
utes little to the specificity of the binding site at position
8 except in the case where the adjacent interaction is R
with G or A. Such context dependencies are not included
in the simple recognition code models, but we can easily
add that to the basic model. In Figure 4 we show two dif-
ferent specificity tables for the interaction of positions +3
and 8. Figure 4A represents the general case, and Figure 4B
is for the special case of R with G or A at positions -1 and
9. If we now predict the complete data using these models,
combined with the general model for positions -1 and 9
in Figure 3B, we obtain the values shown in Figure 4C. The
specificity information of this data is 1.44 bits, showing
that it models quite accurately the complete data. The cor-
relation coefficient for those predicted binding energies
with the measured energies is 0.96, a significant improve-
ment over the model without the context dependent

DNA binding specificities for six DNA sites for zif268 and its five derivativesFigure 3
DNA binding specificities for six DNA sites for zif268 and its 
five derivatives. A: four-dimensional table representing bind-
ing specificities for all DNA sites and zinc finger proteins in 
this study. It is converted from Table 4 by normalization to a 
sum of 1000; B: 2D table of combinations for the interaction 
of the amino acid at position -1 with the base-pair at position 
9; C: 2D table of combinations for the interaction of the 
amino acid at position +3 with the binding site position 8; D: 
2D table of combinations between amino acids at position -1 
and +3; E: 2D table of combinations between DNA bases at 
position 8 and 9; F: 2D table of combinations between amino 
acid position 3 and base position 9; G: 2D table of combina-
tions between amino acid position -1 and base position 8.

A.
G A C              9/8

-1,3 C A C A C A
E 335 52 89 21 27 14R
N 67 87 24 46 27 63
E 2 3 4 3 5 5Q
N 6 27 3 15 3 17
E 2 3 2 3 4 5D
N 1 14 1 4 3 12

B.
-1  \  9 G A C

R 541 180 131
Q 38 25 30
D 20 10 24

C.
3  \  8 C A

E 470 109
N 135 285

D.
3 \ -1 R Q D

E 538 22 19
N 314 71 35

E.
8  \  9 G A C

C 413 123 69
A 186 92 116

F.
3  \  9 G A C

E 397 122 60
N 202 93 125

G.
8  \  -1 R Q D

C 569 23 13
A 283 70 41
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parameters (Model 2 of Figure 5). This improvement is at
the cost of only three additional parameters due to the
separation into two distinct classes depending on whether
or not position -1 is an R that interacts with G or A. The
completely additive model has 8 free parameters for the
interaction of positions -1 and 9 (the 9 values in Figure 3B
minus 1 for the total fixed sum) and 3 free parameters for
the interaction of positions +3 and 8 (from the 4 values in

Figure 3C). By separating the matrix of Figure 3C into two
separate cases, shown in Figure 4A,B, we need 3 additional
parameters in the model, for a total of 14. The model is
used to predict data with 35 free values (the 36 elements
of Figure 3A minus 1 for the fixed sum), so the additional
parameters are only a small reduction in the degrees of
freedom remaining to assess the fitness of the model.

The EGR family of proteins is an ideal case to study the
effectiveness of a recognition code for protein-DNA inter-
actions. The collection of crystal structures along with a
large number of examples from selection experiments
provides a wealth of information for determining the

Table 5: Information for the position dependence. The diagonal is the specificity information for each of positions -1, 3, 8, and 9. The 
upper half of the matrix is the specificity information for each of the pairs of positions, and the lower half is the mutual information 
between pairs of positions.

Position -1 3 8 9

-1 0.84 0.91 0.94 1.09
3 0.05 0.02 0.24 0.28
8 0.06 0.19 0.03 0.29
9 0.02 0.04 0.04 0.22

DNA binding specificities with the two component modelFigure 4
DNA binding specificities with the two component model. 
A: The 2D table of interactions for amino acid position 3 
with base position 8 obtained from the data in Figure 3A for 
all cases except R with G or A (and normalized to a sum of 
1000). B: The 2D table of interactions for amino acid posi-
tion 3 with base position 8 for the cases with R and G or A 
(normalized to 1000). C: The predicted binding probabilities 
for the entire dataset using the two component model. The 
elements for the cases of R with G or A are obtained by the 
outer product of the matrix from B with the R/G,A elements 
of the matrix in Figure 3B. The rest of the elements are 
obtained from the outer product of A with the remaining 
elements of the matrix from Figure 3B.

A.
3  \  8 C A

E 165 129
N 158 547

B.
3  \  8 C A

E 588 101
N 126 184

C.

G A C              9/8
-1,3 C A C A C A

E 318 55 106 18 22 17R
N 68 100 23 33 21 72
E 6 5 4 3 5 4Q
N 6 21 4 14 5 16
E 3 3 2 1 4 3D
N 3 11 2 5 4 13

Scatter plot of the observed (Figure 3A) and predicted bind-ing probabilitiesFigure 5
Scatter plot of the observed (Figure 3A) and predicted bind-
ing probabilities. Model2 is the two component model, so 
those points show the fit between Figure 3A and Figure 4C. 
Model1 is for the single component model obtained from the 
outer product of Figure 3B and Figure 3C (table of predicted 
probabilities not shown).
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relationship between the protein sequence and the affin-
ity for different DNA sequences. Simple qualitative mod-
els that predict the preferred interactions can be very
effective and useful for designing new TFs [14,19]. Quan-
titative models, that predict relative binding affinities to
multiple DNA sites, are more challenging but some
success has been achieved by statistical approaches as well
as by structure based approaches [20-26]. Most current
models of this type assume independence of the contribu-
tions to binding between the positions in the interactions.
In this work we show that additive models can be a good
approximation for any particular EGR protein and also for
binding to any particular DNA site; additivity holds well
for both the DNA and protein side of the interaction. But
we also show that there is not a universal set of parameters
that work for all proteins or all DNA sites, rather there is
context dependence in the interactions. However, at least
in the cases studied here, a simple addition to the inde-
pendent model that divides sites into two classes provides
a much better fit. This holds promise that, even though
additivity does not hold precisely, it may still be possible
to determine an additive recognition code by identifying
a small set of classes that cover the entire set of interac-
tions. How many classes will be needed is unknown at
this time. The 36 combinations in our study required only
two classes to give a very good fit but this is still far from
a comprehensive analysis. The total number of adjacent
amino acid pairs is 400 and the number of di-nucleotide
combinations is 16, so there are 6400 possible combina-
tions of the two. Quantitative analyses that cover all pos-
sible combinations of even a single zinc finger are
impossible at this time. But more thorough sampling of
the space of high affinity interactions, followed by quan-
titative binding assays, will provide much valuable infor-
mation regarding the nature of recognition codes. While a
completely additive model for the interaction of the pro-
tein and DNA is not correct, it may be that only relatively
minor modifications are needed to make significantly bet-
ter predictions.

Conclusion
By determining the binding affinities of single and double
mutants in both the DNA binding site and in the protein
we were able to assess the degree of additivity in both
halves of the interaction. Although only a limited number
of combinations were tested, we find that for every DNA
sequence and for every protein sequence an additive
model is a good approximation to the real binding data.
However, when all of the data are considered together
there are clear context effects that are not well fit by a sin-
gle additive model. A slightly more complex model does
provide a good fit to the observed data, suggesting that
quite simple may still be employed to predict quantitative
binding interactions of proteins with DNA. Further data

are needed to determine how well these findings general-
ize to more variations and to other protein families.

Methods
Construction of wild-type zif268 DNA binding domain 
(DBD) and its variants
A plasmid containing the DNA binding domain of wild-
type zif268 was obtained from Gendaq Limited [38]. The
portion of zif268 cDNA encoding the three zinc-finger
DBD (cDNA nucleotides 996–1262, amino acids 331–
420) was amplified by PCR and subcloned into expres-
sion vector pET-28a-c(+) (Novagen) to create His-tagged
fusion protein. The resulting construct, denoted pzif268,
was verified by DNA sequencing. Five zif268 mutants with
alterations in the base-contacting residues in finger one of
zif268 DBD were constructed with QuikChange™ XL site-
directed mutagenesis Kit (Stratagene) using pzif268 as a
template: 3 single substitution mutants R18Q, R18D,
E21N, and two double substitution mutants R18Q/E21N
and R18D/E21N. The mutagenic primers containing the
desired mutations used to create the five mutants are
shown in Table 1. The resulting plasmids p18Q, p18D,
p21N, p18Q21N and p18D21N were verified by DNA
sequencing. Hereafter, the proteins are referred to by their
amino acids at positions -1 and +3: RE (wild-type), QE,
DE, RN, QN and DN.

Expression and purification of His-tagged-zif268 fusion 
protein and its variants
E. coli BL21 cells bearing pzif268 or one of its derivatives
were grown in 2xYT medium at 37°C with constant
shaking at 250 rpm. IPTG was added to a final concentra-
tion of 1 mM when OD600 reached 0.6–1.0. Cells were
harvested 3 hrs after IPTG induction by centrifugation at
4000 rpm for 20 min. The pellets were then resuspended
in 15 ml of lysis buffer (50 mM Tris-HCl pH 8.0, 300 mM
NaCl, 10 mM DDT and 1 tablet of protease inhibitor cock-
tail tablets (Roche) and lysed with sonication. The pellets
were then separated by centrifugation at 6000 rpm for 20
min and insoluble material removed. The His-tagged
fusion protein was purified with Ni-resin chromatography
similar to those described previously [39]. The elutions
were collected as 2 ml fractions. Fractions were analyzed
on 12% SDS-PAGE gel, followed by silver staining. Finally
the fractions were pooled and dialysed against dialysis
buffer (30 mM Tris-HCl pH 8.0, 50 mM NaCl, 3 mM DTT)
at 4°C, followed by concentration with a Centricon filter
(Amicon) and kept at -80°C until usage. The protein con-
centration was determined with BioRad assay kit.

Multiple quantitative fluorescence relative affinity 
(QuMFRA) assay to determine the relative binding 
constants
The relative binding constants of each protein to different
binding sites were determined by the QuMFRA assay [27]
Page 9 of 11
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with some modifications. Double-strand oligonucleotide
binding sites used in this study were generated by PCR
reactions. In each PCR reaction, a synthesized oligo
containing either the wild-type binding site (zif1) of
zif268 or one of its variants (Table 1) was used as template
and the two primers are KS and SK (Table 1). The SK
primer was labeled with one of the following four fluoro-
phores: FAM, HEX, TAMRA, or ROX [27]. The PCR prod-
ucts were dissolved in TS buffer (10 mM Tris-HCl pH 8.0,
50 mM NaCl) after purification and precipitated with 1/
10 vol of 3M NaAc and equal volume of isopropanol. The
concentration of DNA was determined using a method
similar to those as described previously [40].

The competitive binding assay [27] was performed by
mixing 4 different fluorophore-labeled DNA binding sites
with a certain amount of His-tagged zinc finger protein in
1x reaction buffer (30 mM Tris-HCl pH 8.0, 50 mM NaCl,
0.1 mg/ml BSA, 3 mM DTT, 20 uM ZnSO4, polydI-dC 5
ug/ml), in which the fluorophore-labeled zif1 served as an
internal reference in each reaction. The reaction was
equilibrated for 1 hr on ice before being electrophoresed
on a 10% polyacrylamide gel. Each of 4 fluorophore-
labeled PCR products was also loaded individually onto
the same gel. After electrophoresis, the gels were scanned
by a Typhoon Variable Scanner (Molecular Dynamics,
Sunnyvale, CA) to obtain the fluorescent intensities of the
separated bands (bound and unbound) at 4 different
emission wavelengths using the same machine settings as
employed by Man and Stormo [27]. For each separated
band, the resultant fluorescence intensities at four emis-

sion wavelengths make up the output vector . Using the
fluorescence intensities of the 4 individual fluorophore-
labeled DNA at each emission wavelength we obtain the
emission matrix E [27]. The input mixture of the 4 DNAs

in each band, represented as the vector , were computed
by a program developed for this study using the Gaussian
elimination algorithm from the following relationship:

From the amount of each DNA in the bound and
unbound bands of each lane, the relative binding affinity
can be calculated by the following formula, where the
wild-type binding site of zif268 (zif1) serves as the
reference:

Kb test/Kb ref = [P·D]test[D]ref/[D]test[P·D]ref

Kb test/Kb ref = IP-DtestIDref/IDtestIP-Dref

where IP-D and ID are the intensities of the specified DNAs
in the bound and unbound bands, respectively.

Determination of the absolute binding constant of a zinc 
finger protein to a binding site by Scatchard analysis
Scatchard analysis [41] was applied here to examine the
absolute association constant, Ka, of a zinc finger protein
to a binding site. Specifically, a fixed amount of purified
His-tagged zinc finger protein, [P]total, was mixed with
increasing Cy5-labeled DNA generated by PCR reactions
in 1x reaction buffer for 1 hr on ice. The bound and
unbound DNA were separated by electrophoresis on
a10% polyacrylamide gel, as above, and the gels were
scanned by a Typhoon Variable Scanner using the excita-
tion wavelength of 633 nm and emission wavelength of
670 nm. From the following relationship

it can be seen that the association constant for the partic-
ular combination of protein and DNA, Ka(P,D), can be

obtained from a plot of  at multiple DNA

concentrations. At least five independent determinations
were made for each protein.
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