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Abstract
Background: One of the primary tasks in analysing gene expression data is finding genes that are
differentially expressed in different samples. Multiple testing issues due to the thousands of tests
run make some of the more popular methods for doing this problematic.

Results: We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE)
detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple
univariate normal-uniform mixture model, in combination with new normalization methods for
spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed
(2002) [1]. It takes account of multiple testing, and gives probabilities of differential expression as
part of its output. It can be applied to either single-slide or replicated experiments, and it is very
fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by
other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of
Microarrays (SAM), and Empirical Bayes for microarrays (EBarrays) with both Gamma-Gamma and
Lognormal-Normal models.

Conclusion: The method gives a high probability of differential expression to genes known/
suspected a priori to be differentially expressed and a low probability to the others. In terms of
known false positives and false negatives, the method outperforms all multiple-replicate methods
except for the Gamma-Gamma EBarrays method to which it offers comparable results with the
added advantages of greater simplicity, speed, fewer assumptions and applicability to the single
replicate case. An R package called nudge to implement the methods in this paper will be made
available soon at http://www.bioconductor.org.

Background
Differentially expressed genes between two or more sam-
ples may be of interest to researchers for different reasons,
for example, looking at causes of or treatments for dis-
eases such as cancer. Given appropriately processed data,
the researcher needs a methodology for assessing the
genes in order to separate out ones of interest, i.e. genes
with "significantly" different levels of expression in differ-

ent samples. Widely used methods for single slide data
include examining the ratio of expression levels for the
gene in each of the two samples/channels (or the log
ratio), which was the quantity examined in one of the first
statistical analyses for differential expression in cDNA
microarrays [2]. One of the earliest uses of this quantity
for determining differential expression was the "rule of
two", where if the gene's ratio of expression levels in the
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two channels/samples is greater than two or less than half,
it is considered to be differentially expressed [3].

Methods for data with replicate slides include the stand-
ard t test, which requires adjustment for the multiple com-
parisons being made. Modifications of this approach to
account for multiple comparisons include the approach
of Dudoit, Yang, Callow and Speed [1], which used a per-
mutation analysis on Welsh's t-statistics, and the Signifi-
cance Analysis of Microarrays (SAM) method, which
modifies the t-statistic by adding a constant to the denom-
inator [4]. A good summary of multiple testing adjust-
ments is given by [5].

The idea of modeling the data as two groups of genes, one
differentially expressed and one not, seems to be a natural
and intuitive approach. This approach has been used in
the context of a Bayesian analysis [6], EBarrays, assuming
that the observed ratios had a gamma distribution the
reciprocal of whose scale parameter itself had a gamma
distribution, or, as an alternative assumption, that the
observed log ratios were normally distributed and the
prior for the mean was normal also. A two-component
mixture model was used to model the two groups and the
posterior probability was used to make inference about
differential expression. This follows from work done for
single slide data with a Gamma-Gamma hierarchical
model [7]. Another approach using mixture models is
given by Pan, Lin and Le [8].

This paper presents a very simple methodology based on
mixture models called Normal Uniform Differential Gene
Expression (NUDGE) detection. It is applicable to both
single slide and replicated cDNA microarray datasets, pro-
duced by two of the more widely used experimental set-
ups. After standardizing, the log ratio (or averaged across
replicates log ratio) observations are modeled with a two-
component mixture model; a normal component for
those genes that are not differentially expressed and a uni-
form component for those that are. The mixture gives pos-
terior probabilities of differential expression which do not
need to be adjusted for multiple testing. This methodol-
ogy is applied to three different experiments. The experi-
ments include single replicate data (Like-Like), multiple
replicate data (HIV and Apo Al), experiments with differ-
ent samples being labeled with their own dyes (HIV) and
experiments with all samples being labeled with one dye
and compared to a reference sample (Apo Al). The results
given by NUDGE are compared with those given by some
other methodologies for these types of cDNA microarray
experiments (different comparison methods used for dif-
ferent types of experiments). An R package called nudge to
implement the methods in this paper will be made avail-
able soon at [9]

Results
HIV dataset
The HIV dataset that we analyze consists of four replicate
experiments comparing cDNA from CD4+ T cell lines at 1
hour after infection with HIV-1BRU with non-infected cell
lines on each slide; see [10] for details. There were four
slides in total with the same RNA preparations hybridized
to each. This dataset is useful in testing the specificity and
sensitivity of methods for identifying differentially
expressed genes, since there are 13 genes known to be dif-
ferentially expressed (spots containing PCR products from
segments of the HIV-1 genome which the cDNA of the
infected cells should hybridize to and the non-infected
should not) called positive controls, and 29 genes known
not to be (non-human genes which neither infected nor
non-infected cDNA samples should hybridize to) called
negative controls. There are 4608 gene expression levels
recorded in each replicate. The four replicates have bal-
anced dye swaps, so no mean normalization of the (aver-
aged across replicates) log ratios was necessary provided
we always used one sample (say the infected sample) in
the numerator of the log ratio and the other (non-infected
sample) in the denominator regardless of which dye was
used to label which sample in each array/slide.

NUDGE took a few seconds to run. All 13 positive con-
trols, no negative controls and three other genes were
found to be differentially expressed (with posterior prob-
ability greater than 0.5).

It is clear from Figure 1 that the rule of two under any nor-
malization gave less than optimal results. In all cases the
rule of two correctly found the positive control genes to be
differentially expressed. However, in the unnormalized
case it also incorrectly found 3 of the 29 negative controls
to be differentially expressed, as well as 58 other genes
(including the three found by NUDGE). In the variance-
normalized case, it incorrectly found one of the 29 nega-
tive controls to be differentially expressed, as well as 27
other genes (including the three found by NUDGE). Even
though the rule of two is suboptimal, its performance can
be improved through the use of the normalization meth-
ods suggested here.

Table 1 shows the results of different methods for the con-
trol genes. NUDGE had a perfect result for these genes,
with no false positives and no false negatives. The Bonfer-
roni-corrected t test was the only method considered that
recorded any false negatives. The rule of two (normalized
or unnormalized), SAM and the EBarrays Lognormal-Nor-
mal model all had false positives. Only the EBarrays
Gamma-Gamma model equaled NUDGE's performance
on these control genes.
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Different Normalizations of HIV DataFigure 1
Different Normalizations of HIV Data. Different normalizations of HIV data: (a) raw data, (b) data normalized with 
respect to the variance. The bullets are the positive controls: NUDGE correctly found them all to be differentially expressed. 
Other genes found to be differentially expressed by NUDGE are indicated by a plus sign, and all genes found not to be differ-
entially expressed by NUDGE are shown by small dots. Negative controls are indicated by a box. No negative controls were 
found to be differentially expressed by NUDGE.

Table 1: Summary of Results for HIV data for control genes

Method Number of False Negatives Number of False Positives

Rule of Two (on unnormalized data) 0 3
Rule of Two (on variance normalized data) 0 1

NUDGE 0 0
SAM 0 2

EBarrays (GG) 0 0
EBarrays (LNN) 0 1

t test 0 1
Bonferroni corrected t test 1 0
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In order to assess the stability of the different methods,
the four replicates were split into two different subsets of
two replicates each (still with balanced dye swaps), and
the agreements and disagreements between the genes
found to be differentially expressed in each of the two
datasets was calculated for each of the methods. A sum-
mary of the results is given in Table 2. The number of
genes found to be differentially expressed in each of the
datasets by each method is given in Table 3.

Comparison of results depends on how one weights
agreement (roughly indicating true positives) against dis-
agreement (roughly indicating false positives). NUDGE
had more agreement and less disagreement than EBarrays-
LNN, and thus dominated it on both these criteria. The t
test, both raw and corrected, and SAM, had more agree-
ment, but at the cost of a much higher level of disagree-
ment than NUDGE. NUDGE had more agreement, but
also significantly more disagreement, than EBarrays with
a Gamma-Gamma model.

Finally in order to check the empirical fit of the model to
this data (where we know we have both differentially and
non-differentially expressed genes) we plot the model's
fitted density over a histogram of the normalized log
ratios in Figure 2. The model seems to fit the normalized
data fairly well.

Like-like dataset
This dataset is from a microarray experiment where the
same samples (with different dyes) were hybridized to an
array with 7680 genes. The expression levels in the red and
green dyes were extracted from the image using custom-
ized software written at the University of Washington
(Spot-On Image, developed by R. E. Bumgarner and Erick
Hammersmark). The genes should be equally highly

expressed, as each sample is the same, so ideally we
should find few differentially expressed genes.

Figure 3 (a) shows the log ratios plotted against the log
intensities. Here we see evidence of the dye effect, since if
it were not present the data would fall with some variation
about a zero-intercept horizontal line. Figure 3 (b) is a
plot of the mean-normalized log ratio against the log
intensity. In Figure 4 we plot the absolute mean-normal-
ized log ratio as a function of log intensity. We use a loess
smoother of this as a robust estimate of how spread
depends on log intensity. This is used to get the loess var-
iance-normalized log ratios, which are plotted against the
log intensities in Figure 3 (c). The data now look much
more normal and homoscedastic. The NUDGE method
took less than 5 seconds to run with 10 iterations of the
EM algorithm.

The results are summarized in Table 4. NUDGE found 28
differentially expressed genes (with posterior probability
greater than 0.5). This is a false positive rate of 0.4%. With
no normalization, the rule of two declared 3233 genes to
be differentially expressed, 42.1% of the total; clearly this
is not appropriate. After the data had been mean-normal-
ized, the rule of two found 281 differentially expressed
genes, a false positive rate of 3.7%. When the data have
been mean- and variance-normalized, the rule of two
finds 105 genes, a false positive rate of 1.4%, still higher
than NUDGE. Since there is only one replicate in this case,
neither t tests, SAM nor EBarrays can be used to test for dif-
ferential expression.

Apo AI dataset
This dataset was analyzed in [1] and 8 genes were sug-
gested to be differentially expressed. The data was
obtained from 8 mice with the Apo AI gene knocked out

Table 2: Number of agreements and disagreements between the differentially expressed genes found in the two sets of two replicates 
for the HIV data

NUDGE SAM EBarrays GG EBarrays LNN t test Bonferroni t test

Agreements 14 19 13 13 34 15
Disagreements 27 153 16 32 531 217

Table 3: Number of genes declared to be differentially expressed by each method for the HIV data using 2 and 4 replicates

NUDGE SAM EBarrays GG EBarrays LNN t test Bonferroni t test

All 4 replicates 16 42 24 19 26 12
Replicates 1&3 30 49 23 27 193 83
Replicates 2&4 25 142 19 31 406 164
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and 8 normal mice. However the replicates were not cre-
ated simply by comparing samples from control labeled
with one dye versus knock-out mice labeled with the
other. Instead, cDNA was created from samples from each
of the 16 mice (both control and knock-out) and labeled
with a red dye. The green dye was used in all cases on
cDNA created by pooling all 8 control mice. The statistic
used in [1] was

We used the numerator of this statistic, which is the same
as M defined in equation (7) below, in place of ordinary
average log ratios, as detailed in the Methods section.
Again the method took only a few seconds to run. Figure
5 shows the data at different stages of normalization along
with the genes found to be differentially expressed in [1].
Table 5 shows the gene position numbers of those genes
whose posterior probability of being differentially
expressed was in the top sixteen found by NUDGE. All
eight of the genes found by [1] to be differentially
expressed were also found to be differentially expressed
with high probability by our method. The lines in Figure

Overlay of the model's fitted density on the normalized log ratiosFigure 2
Overlay of the model's fitted density on the normalized log ratios. Plot (a) shows a histogram of the normalized aver-
age log ratios for the HIV data along with a dashed line showing the model-fitted density. Plot (b) shows a close-up of the right-
hand tail of the histogram (where the positive controls lie) with a dashed line showing the model-fitted density.
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5 indicating the rule of two cut-off appear either to miss
genes that are differentially expressed (in the unnormal-
ized and mean-normalized cases), or to give a large
number of possible false positives (in the mean- and var-
iance-normalized case).

For application of SAM, the data were normalized in the
standard way, by centering the log ratios across genes
within a replicate about zero. Two different levels of the
SAM control parameter delta gave reasonable answers
when using SAM on this data set. The first level (0.61)
found 15 genes to be differentially expressed, including
the eight genes found in [1] and by NUDGE, and the False

Discovery Rate was estimated to be 5.3%. If we assume
that only these eight genes are correct, this would actually
correspond to a False Positive Rate of 46.7%. The second
level (3.53) found six genes to be differentially expressed,
a subset of the eight genes found by [1], and the False Dis-
covery Rate was estimated to be 13.3%. Assuming that
only those eight genes are correct, this corresponds to a
False Positive Rate of 0% but a False Negative Rate of 25%.
These were the best results we obtained using SAM.

For similarly normalized data, both the t test and the Bon-
ferroni adjusted t test found the 8 genes identified by [1]
to be differentially expressed. However, the t test found an

Different Normalizations of Like-like DataFigure 3
Different Normalizations of Like-like Data. Different normalizations of Like-like data: (a) raw data, (b) data normalized 
with respect to the mean, (c) data normalized with respect to both mean and variance. Diff. Exp. genes are genes found to be 
differentially expressed by NUDGE (with posterior probability greater than 0.5).
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additional 852 genes to be differentially expressed at the
5% significance level (13.5% of all genes), and the Bonfer-
roni adjusted t test found an additional two genes to be

differentially expressed. A summary of the results for the
Apo data is given in Table 6.

Conclusion
We have proposed a simple method for detecting differen-
tially expressed genes that is fast and can be applied to sin-
gle-slide and multiple-replicate experiments, as well as to
log ratio difference experiments. It accounts for the multi-
ple comparisons involved, and produces a posterior prob-
ability of differential expression for each gene, rather than
just a yes/no testing result. The posterior probabilities can
be used either to declare which genes are differentially
expressed, or to produce a ranked list of genes for further
analysis. The method worked well for the three datasets
that we analyzed. In terms of known false positives and
false negatives, the method outperforms all multiple-rep-

Absolute mean normalized log ratio versus log intensity for Like-like DataFigure 4
Absolute mean normalized log ratio versus log intensity for Like-like Data. Absolute mean normalized log ratio ver-
sus log intensity for Like-like Data. The loess line in this plot represents the estimate of the gene-specific Mean Absolute Devi-
ation (MAD), a robust estimator of spread.
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Table 4: Results for the Like-like data

Method Estimated False 
Positive Rate

Rule of Two (on unnormalized data) 42.1%
Rule of Two (on mean loess normalised data) 3.7%

Rule of Two (on mean and variance loess 
normalised data)

1.4%

NUDGE 0.4%

SAM, EBarrays and t tests are not applicable to single slide data.
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licate methods except for the Gamma-Gamma EBarrays
method to which it offers comparable results with the
added advantages of greater simplicity, speed, fewer
assumptions and applicability to the single replicate case.

Our method can be seen as a parametric alternative to
adjustment of tests for multiple comparisons using false
discovery rate ideas [11], or empirical Bayes formulations
[12]. A similar idea was proposed in [13] for large num-
bers of tests, in which the distribution of the test statistic
was modeled as a mixture of two normals, one corre-
sponding to the null hypothesis being true, and the other
to its being false. This differs from our approach in that we
use a uniform distribution for the mixture component
that corresponds to departures from the null, rather than
a mean-shifted normal. Because of this, a method such as
[13] could not find both over- and underexpressed genes.

A similar idea with different distributional assumptions,
using only normally distributed components is given in
[8]. Instead of the average log ratios used in the method
presented in this paper, [8] use a t-type statistic using the
difference of average gene intensities. A more complex
approach given by [14] involves modeling each level of
differential expression with its own normal component.

In our approach the important aspect of the mixture is the
cutoff points where the weighted normal density falls
below the height of the weighted uniform density. Points
beyond the cutoff are declared to be differentially
expressed (under a 0.5 posterior probability rule). These

cut-off points are relatively unaffected by outliers which
affect the range of the data and thus the range and height
of the uniform component, because the normal density
falls off very rapidly towards the tails, and also because the
estimated mixture weights change accordingly.

An important part of the method is normalization in
terms of variance as well as mean. This extends the
original lowess normalization in [1]. As a preprocessing
step, it improves the performance not only of NUDGE,
but also of other methods, including the simplest of all,
the rule of two. Thus, this normalization method may be
useful as a preprocessing tool for analysis of differential
gene expression, regardless of which method is used to
draw final inferences.

Methods
Model for detecting differential expression
Our methods are applied to averages of normalized log
ratios; we discuss the specification of these quantities in
different experimental settings in the section on normali-
zations below. In this section we will refer to them simply
as observed log ratios. We use logarithms to base 2.

Our model is a normal-uniform mixture model [15,16].
We begin by modeling the genes as two different groups:
differentially expressed and non-differentially expressed.
Each group is modeled by its own density, and so the data
as a whole are modeled by a weighted mixture of these
densities, where the weights correspond to the prior prob-
abilities of being in each of the two groups. This results in

Table 5: NUDGE's Top 16 Genes from the Apo data

Top 16 genes in terms of NUDGE posterior probability of differential expression

Row numbers in data matrix Probability of differential expression Found by Dudoit et al [1]?

540 1.000 Yes
2149 1.000 Yes
5356 1.000 Yes
1739 0.999 Yes
4139 0.999 Yes
2537 0.998 Yes
4941 0.993 Yes
1496 0.829 Yes

5986 0.330 No
541 0.263 No
716 0.099 No
2538 0.087 No
1224 0.066 No
799 0.060 No
1204 0.057 No
3729 0.050 No
Page 8 of 14
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a mixture model with two components. Since genes that
are not differentially expressed have a true log ratio of
zero, we model the observed log ratios for these genes,
after an appropriate transformation, as a group with a
Gaussian density. The differentially expressed genes have
log ratios that are, for the most part, in some sense "far"
from the other group. So these genes can be viewed as out-
liers from the main distribution of non-differentially
expressed genes. These genes are modeled as uniformly
distributed over an appropriately wide range.

The model is

where xi is the observed log ratio for gene i, π is the prior
probability that a gene is not differentially expressed, N
(x|µ, σ2) denotes a Gaussian distribution with mean µ and
variance σ2, U[a,b](x) denotes a uniform distribution on
the interval [a, b], and N is the number of genes.

We estimate the model by maximum likelihood using the
EM algorithm [17]. We define the unknown labels, zi, i =
1,..., N, where zi is 0 if gene i is not differentially expressed
and 1 if it is. There are two steps in the algorithm: the
Expectation, or E step, where the labels are estimated
given the current parameter estimates, and the
Maximization, or M step, where the model parameters, π,
µ and σ2, are estimated given the current estimates of the

Different Normalizations of Apo DataFigure 5
Different Normalizations of Apo Data. Different Normalizations of Apo data: (a) raw data, (b) data normalized with 
respect to the mean, (c) data normalized with respect to both mean and variance. Diff. Exp. genes are genes found to be differ-
entially expressed by NUDGE (with posterior probability greater than 0.5).
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labels. The maximum likelihood estimates of a and b are

 = min{xi : i = 1,..., N}, and  = max{xi : i = 1,..., N};
these do not change during the algorithm. The steps in the
algorithm are as follows:

Iteration k
Expectation Step

Maximization Step

The likelihood for the model given parameter estimates at
iteration k is

The above steps are iterated until convergence. Conver-
gence can be checked by calculating the parameter esti-
mates, the labels, and the logarithm of the likelihood at
each step, given the current estimates of the parameters.
Once the change in these quantities between steps gets
small enough the algorithm is deemed to have converged.
The increasing property of the EM algorithm guarantees

that a local maximum is reached, but a global maximum
cannot be guaranteed. This depends on the starting val-
ues. For the analyses in this paper, the starting value for
the label zi was 1 if gene i's observed log ratio, minus the
mean value for all genes and divided by the standard devi-
ation of the values across all genes, was greater than 2 in
absolute value, and 0 otherwise. This appeared to give
good results.

The final label estimate for gene i, , is the posterior
probability that it is differentially expressed, given the
parameter estimates. The posterior probabilities do not
need to be adjusted for multiple comparisons.

Normalizations
There are two different types of experimental setup for
which we will discuss normalization. The first is where the
two different samples, say control and treatment, have
each been labeled with a different color dye, say treatment
with red (Cy5, R) and control with green (Cy3, G). In the
second experimental setup, the treatment and control
samples have replicates, with both control and treatment
replicates being labeled with the same dye, say red (Cy5,
R), and these are compared to a reference sample labeled
with the other dye.

Two of the data sets analyzed in this paper, the HIV and
the Like-like datasets, are of the first type of setup. The
other data set analyzed in this paper is the Apo AI mouse
data [1] which is of the second type of setup, with pooled
control mRNA used as its reference sample. Since there are
slightly different normalizations and quantities of interest
used for analysis in these two cases, we will discuss them
separately below, referring to the first experiment type as
the log ratio experiment (since the log ratios are the quan-
tities of interest), and to the second as the log ratio differ-
ence experiment (since the differences of log ratios
between control and treatment samples are the quantities
of interest).

Table 6: Results for the Apo data

Method Number of 8 Dudoit et al [1] genes found 
to be differentially expressed

Number of other genes found to be 
differentially expressed

Rule of Two (on unnormalized data) 3 0
Rule of Two (on mean normalized data) 7 0

Rule of Two (on mean and variance normalized data) 8 134
NUDGE 8 0

SAM (delta = 0.61) 8 7
SAM (delta = 3.53) 6 0

t test 8 852
Bonferroni corrected t test 8 2
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Normalizations for the log ratio cDNA experiment
The main problem in applying the Normal-Uniform mix-
ture model is that the data need to be normalized in order
for this model to be appropriate. In the basic type of
cDNA experiment, the log ratio of expressions in the two
samples is the quantity of interest. There are dye and other
effects that add a bias, making the mean of the non-differ-
entially expressed log ratios non-zero (see the Like-like
example in the Results section). Also, the variance of the
log ratios depends on the log of the total intensity, where
the total intensity is defined as the product of the red and
green intensities. We need to ensure that any normaliza-
tion does not "pull in" the differentially expressed genes.

Single slide normalizations
The normalization of single slide log ratios is a two-step
process. In the first step, the observed log ratios are
regressed nonparametrically on the log intensities, using
the lowess regression smoother [18], and the fitted value
is subtracted from the observed log ratios. In our imple-
mentation, a modification, the loess smoother [19], is
used in place of lowess. Specifically,

where R and G are the intensities in the red and green
channels, and c(log(RG)) is the fitted value from loess
regression of log(R/G) on log(RG), a situation we denote

by .

We got good results with a loess span in the range 60% to
80%. This generally did a good job of normalizing the
mean but not the spread.

The spread depends on the log intensity, log(RG), and we
estimate a running mean absolute deviation by loess
regression of the absolute mean-normalized log ratio on
the log intensity. We then divide the mean-normalized
log ratio by the loess-estimated mean absolute deviation
in order to get our final estimate,

where .

We got good results with a span between 10% and 20%.
As can be seen from the figures in the Results section, this
does a good job of making the log ratios for non-differen-

tially expressed genes approximately normal and
homoscedastic.

Multiple slide normalizations with dye swap
In dye swap experiments, there is an even number of rep-
licates and they are divided into two groups with equal
numbers of replicates. In the second group of replicates,
the assignment of dyes to samples is the reverse of that in
the first group. Log ratios in this case are taken with the
different samples as numerator and denominator (since
the assigned dyes will be different for the two groups and
averaging must be done over the same ratio of samples
not the same ratio of dyes). In that case, mean normaliza-
tion is unnecessary, although normalization of the vari-
ance is still required. This is because we take the average of
the log ratios across replicates, ensuring that the dye effect
cancels out.

Multiple slide normalizations without dye swap
Here we take the average of log ratios and log intensities
across replicates for each of the genes and apply the mean
lowess normalization, given by equation (4), with average
ratios and intensities in place of the single replicate log
ratios and intensities.

The variance normalization is not the same for multiple
replicate slides as for a single slide. Because the average log
ratios are not robust to outliers, even after mean normali-
zation, we carry out a normalization based on variation
across replicates rather than on variation depending on
intensities, to downweight the influence of outlying
observations. If the empirical standard deviation of the
log ratios across replicates is greater than the absolute
mean-normalized average log ratio for a gene, we divide
its mean-normalized average log ratio by its standard
deviation. If the empirical standard deviation of the log
ratios across replicates is small, defined as smaller than
the absolute mean-normalized average log ratio, we
divide instead by a constant. The constant is chosen to be
a high percentile (we use the 99th) of the distribution of
the standard deviations of genes for which the absolute
mean-normalized average log ratio is greater than the
standard deviation. This avoids a gene being declared dif-
ferentially expressed just because its empirical across-rep-
licate standard deviation is small, as can easily happen by
chance when there are few replicates. Thus the mean- and
variance-normalized log ratio for a given gene is:

where m is the number of replicates, qj is the mean-nor-
malized log ratio of replicate j, s is the standard deviation
of log ratios across replicates, and k is the chosen percen-
tile of the distribution of standard deviations of genes
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whose absolute mean-normalized average log ratio is
greater than their standard deviation.

Normalizations for the log ratio difference cDNA experiment
Here the quantity of interest is the difference in log ratios
between control and treatment replicates. We define

where ntreatment is the number of treatment replicates, ncontrol
is the number of control replicates, n = ntreatment + ncontrol,
qtreatment,i is the log ratio of treatment replicate i and qcontrol,j
is the log ratio of control replicate j. With these definitions
we give the multiple-replicates normalizations, defined
analogously to those in the log ratio type experiment.

Multiple slide normalizations
We again use loess to allow dependence of the mean nor-
malization of M on A in the following way:

Mnorm = M - c(A)  (9)

where c(A) = loess(M ~ A), with the recommended span for
the loess smoother being between 60% and 80%.

For the variance normalization we again use the informa-
tion about the variance contained in the replicates to get a

robust estimator of the overall variance. We calculate the
variance of log ratios across the ncontrol replicates in the
control dataset and call this Vcontrol. Similarly we calculate
the variance of log ratios across the ntreatment replicates in
the treatment dataset and call this Vtreatment. Our estimate
for the standard deviation s, in M for each gene is given by

We then develop the variance normalization similarly to
the previous log ratio type experiment case. The variance
normalization is given by

Summary of model and normalizations for different 
experiments
A summary of the quantities of interest (used in the nor-
malizations and normal uniform mixture model) and the
normalizations is given in Table 7. An R package called
nudge to implement the different normalizations and fit
the model in this paper will be made available soon at [9].

Methods for comparison with NUDGE
We now give brief descriptions of the methods for finding
differentially expressed genes that will be used for com-
parison with NUDGE in the datasets examined in the
Results section.

Table 7: Summary of Methods

Type of Experiment Multiple Replicates? Dye Swap? Quantity of Interest Mean Normalization Variance 
Normalization

Sample 1 = Red, 
Sample 2 = Green

No NA Equation (4) Equation (5)

Sample 1 = Red, 
Sample 2 = Green

Yes No Equation (4) Equation (6)

Sample  = Red, 

Sample  = Green 

Sample  = Green, 

Sample  = Red

Yes Yes NA Equation (6)

Sample 1 & 2 = Red, 
Reference = Green

Yes NA M, Equation (7) Equation (9) Equation (11)
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Rule of two
This simple but popular method, mentioned in [3],
involves examining the ratios or average ratios of the two
channels for each gene, and calling those genes with a
ratio or average ratio greater than two or less than half, dif-
ferentially expressed. It requires some initial normaliza-
tion and its performance can depend on the
normalization.

t test and adjusted t test
One of the most obvious first approaches to try for this
problem is the classical t test, as used, for example, in [20].
A simple normalization consisting of centering the mean
of the log ratios within each replicate is often used in this
case. One needs to be able to estimate the standard devia-
tions as well.

Because of the large number of tests being run (thousands
in the usual cDNA experiment setup), the standard t test
needs to be modified to account for the multiple testing.
Traditionally the most popular adjustment has been the
Bonferroni correction, as mentioned in [21]. For the Bon-
ferroni correction with N genes/tests and significance level
α, we instead call each test significant only if it is

significant at the  level, controlling for the probability

of one or more false positives.

EBarrays
This follows a hierarchical Bayes approach for modeling
the gene expression levels as detailed in [22]. As in our
approach, the data are assumed to be generated by a two-
component mixture model, one component for differen-
tially expressed and the other for non-differentially
expressed genes, each with their own distribution. The
parameters specifying these distributions are estimated
from the data, whence the name Empirical Bayes.

Results in this framework are given for two different para-
metric models in [22]. In the first model, the observed
intensities for the replicates in each channel are assumed
to be independently generated from a gamma distribution
with a channel-specific scale parameter. The scale param-
eters are, in turn, assumed to have an inverse gamma dis-
tribution, whose parameters are estimated from the whole
dataset. In the second model, the log ratios are assumed to
be normally distributed, with gene-specific means that are
themselves normally distributed. To normalize, the
authors divided the log ratio for a given gene and replicate
by the average log ratio across genes for that replicate.

Significance analysis of microarrays (SAM) [4]
The statistic used to test for differential expression is a reg-
ularized t statistic, i.e. the mean value divided by the sum
of the standard deviation and a constant. SAM controls

the False Discovery Rate (FDR), i.e. the number of genes
declared to be differentially expressed that are not in truth
differentially expressed.

A rejection region is fixed and SAM uses a permutation
analysis to estimate the FDR. The user then decides on an
acceptable rejection region based on their preferences for
FDR.
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