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Abstract
Background: High throughput methods of the genome era produce vast amounts of data in the
form of gene lists. These lists are large and difficult to interpret without advanced computational
or bioinformatic tools. Most existing methods analyse a gene list as a single entity although it is
comprised of multiple gene groups associated with separate biological functions. Therefore it is
imperative to define and visualize gene groups with unique functionality within gene lists.

Results: In order to analyse the functional heterogeneity within a gene list, we have developed a
method that clusters genes to groups with homogenous functionalities. The method uses Non-
negative Matrix Factorization (NMF) to create several clustering results with varying numbers of
clusters. The obtained clustering results are combined into a simple graphical presentation showing
the functional groups over-represented in the analyzed gene list. We demonstrate its performance
on two data sets and show results that improve upon existing methods. The comparison also
shows that our method creates a more simplified view that aids in discovery of biological themes
within the list and discards less informative classes from the results.

Conclusion: The presented method and associated software are useful for the identification and
interpretation of biological functions associated with gene lists and are especially useful for the
analysis of large lists.

Background
Recent developments in biosciences have created a dra-
matic change from the analysis of a few genes to large gene
lists. These lists are usually selected at the genomic level by
criteria such as activity in a stress treatment [1], impor-
tance to cell survival in a specific growth condition [2], or
as a result of clustering genes by expression profiles [3]. As
current high throughput methods produce a vast amount
of data as gene lists, the subsequent analysis tends to be a

bottleneck due the size of the data set and the high prob-
ability of false positive genes among the lists.

One solution to analyse a gene list is to draw information
either from the existing literature or from the databases
representing whole genome [4,5] or proteome annota-
tions [6,7], and then using these to guide the analysis.
Most of these databases simplify the analysis by classify-
ing genes to the biological categories or classes that
present their function, localization, or partnership in
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some protein complex. A further step is to estimate the
statistical significance of associations between the classes
and genes of the obtained list. Several applications have
been recently reported for such analysis [8,9]. Most of
these applications compare the frequency of gene classes
in the user supplied gene list, obtained by various criteria,
to the remaining genes that did not fulfill the criteria. The
latter often includes the rest of the genes from the whole
genome. The usual outcome from these methods is a
sorted list of biological classes considered important.
These methods have been beneficial to data analysis by
guiding the process towards the most important features
in the gene list [10-13]. In addition, the observation of
multiple genes from the same functional class increases
confidence in results obtained from high throughput
methods.

While these methods are useful, several weaknesses are
associated with this approach. A gene list can have a het-
erogeneous structure with multiple dissimilar gene groups
such as stress response, a specific metabolic pathway, and
protein degradation. The basic statistics used by the previ-
ously mentioned methods are often insufficient to reveal
this kind of heterogeneity from the associated functional
classes. Rather, they have a tendency to be biased toward
the gene sub-group associated with the most over-repre-
sented functional classes within the analyzed list of genes.
This overwhelms many important, but less over-repre-
sented, classes that are associated with the rest of the genes
in the list. Therefore, it could be hypothesized that there
exists other interesting biological functions among the
genes that are not members of the best scoring classes. As
such, the existing methods do not address this question
and thus there is a need for an approach that would con-
centrate on the possible heterogeneity in the gene list. In
the current work, we propose the clustering of a gene list
for finding gene groups that differ in functional class
annotations.

Results
Principle of the method
Our method takes, as input, the user given gene list cho-
sen by some selection criteria. The selected list is referred
to as a sample gene list, and the gene list that did not meet
the criteria is referred to as a reference gene list. The aim is
then clustering the sample gene list for finding gene
groups with different functional class annotations. The
clustering is solely based on the gene associations with
functional classes obtained from Gene Ontology (GO)
database [14], and the measurements like gene expression
level or sequence similarity are not used. As a clustering
method, we use Non-negative Matrix Factorization (NMF)
[15] to create a k-means like partition. The well known
weakness with this type of clustering approach is the
requirement to select the number of clusters and the ini-

tialization for the algorithm. We circumvent this weakness
by using a non-nested hierarchical clustering scheme,
which allows parallel visualization of several different
clustering results. Here, a gene list is repeatedly divided
into a growing number of clusters by clustering from ran-
dom starting initializations. The different clustering
results are presented in consecutive levels ordered with
the number of clusters, with the first level presenting the
gene list without any clustering. Strongly correlating clus-
ters between the consecutive levels are connected by edges
forming a non-nested hierarchy (see figures 1, 2, 3). The
output graph highlights the clusters that stay similar
through the different clustering levels despite the varying
number of divisions and different random starting initial-
izations. The resulting visualization can be used either for
obtaining suitable grouping for a gene list, or identifying
individual clusters that are of interest.

In the non-nested clustering hierarchy, the cluster con-
tents are described with the most representative func-
tional classes. For this, a combination of three different
measures was used to show over-represented classes
within each cluster. The measures are positive/negative
signed ten based logarithmic transforms [10] of p-values
calculated with Fisher's test [16,17], which compares class
frequencies between two sets of genes. The first measure,
"Original log(p)" (denoted by O.log(p)), makes a com-
parison between the whole user given sample and refer-
ence gene lists. It reports class over-representation that
was observed before any clustering. Because of the wide
usage of this measure reported in the literature [10,11,18],
it is suitable for method comparison. As a comparison,
the second measure, "Sample log(p)" (denoted by
S.log(p)), concentrates fully on clustered sample gene list
by comparing a single cluster against the other genes in
the sample list. It highlights the classes that contributed
most to the formation of the cluster. The third measure,
"Complete log(p)" (denoted by C.log(p)), compares a
single cluster against the other genes of the sample gene
list and reference. It takes into account both the contribu-
tion to the formation of a cluster and the over-representa-
tion in the sample list before clustering, and thus we use
it for reporting the contents of a cluster. C.log(p) is partly
dependent on the preceding clustering, and thus can
report some classes that are not over-represented in the
whole user given sample gene list, which we are aiming to
analyze. Therefore, such hits are filtered by excluding the
classes with weak O.log(p) from the report. Similarly,
classes that have not contributed to the formation of the
analyzed cluster are removed by discarding the classes that
do not show even slight over-representation with
S.log(p). As a result of filtering, the remaining classes are
over-represented in both the analyzed cluster and in the
original sample list. In this description, only O.log(p)
gives statistically analyzable results because C.log(p) and
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Graphical results from the analysis of H2O2 datasetFigure 1
Graphical results from the analysis of H2O2 dataset. The figure shows the non-nested hierarchical clustering tree 
obtained from GENERATOR with the H2O2 dataset. Each layer presents one clustering solution and each box a single cluster. 
Boxes show the two best scoring functional classes and the colour of the box corresponds to the over-representation of the 
best scoring functional class. Best correlating clusters between the consecutive clustering layers are connected with lines. A 
thicker line indicates a stronger correlation. The correlation value is indicated beside each line. The lines between the first and 
second level (marked with asterisks) do not present any value as the correlation measure is not defined here. Section A 
presents a view where two functional classes that contributed most to the cluster formation are shown for each cluster. Sec-
tion B shows more informative visualization, the default view of GENERATOR, where two classes that were most over-repre-
sented in both the original sample list and in the cluster in question are shown. Note the conserved clusters across the 
different clustering results. We have marked them with Roman numerals.
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Replications of non-nested hierarchical clustering tree with H2O2 datasetFigure 2
Replications of non-nested hierarchical clustering tree with H2O2 dataset. The figure presents the four replications 
for the non-nested hierarchical clustering graph for H2O2 dataset. We have marked the conserved gene clusters with the same 
Roman numerals as in figure 1. Notice that most clusters (especially I, II and III) can be observed over several levels in each 
cluster tree.
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Graphical results from the analysis of itraconanzole datasetFigure 3
Graphical results from the analysis of itraconanzole dataset. The figure shows the non-nested hierarchical clustering 
tree obtained from GENERATOR with the itraconanzole dataset. Section A shows the tree with functional classes that con-
tributed most to the formation of each cluster. Section B shows the default view of GENERATOR with the highest over-rep-
resented functional classes in the original list and in the cluster in question. The details of the presentation are explained in text 
for figure 1. Also in this figure we highlight some conserved clusters with roman numbers.
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S.log(p) are both based on the same data with the preced-
ing clustering. Nevertheless, the latter two are suitable for
highlighting the classes that are over-represented within
the clusters. A more detailed description of the non-nested
clustering scheme is given in the Methods section.

Software implementation
In order to make the method applicable for others, we
have developed an end-user program called GENERATOR
(GENElist Research Aimed Theme-discovery executOR)
for the Windows 2000/XP environments. It takes, as
input, the sample and reference lists of genes that can be
comprised of gene names or identifiers supported by GO
database. The list of available species and allowable nam-
ing systems are described more in GENERATOR user man-
ual [21] and in GO web site [22]. Alternatively,
GENERATOR can be used to analyze existing binary data
matrices like in-house created functional gene classifica-
tions or other similar binary data analysis problems con-
sisting of sample and reference groups. The first outcome
from the program is a non-nested hierarchical clustering
tree, which shows the discovered gene sub-groups from
the user given sample gene list. The content of each cluster
is described by the two most over-represented classes. A
more detailed analysis is also possible for each cluster by
viewing the sorted list of over-represented classes or by
viewing the clustered genes. The program can create mul-
tiple cluster trees, produce statistical evaluations for clus-
tering divisions and single clusters, and provide flexibility
in changing the parameters for clustering execution and
visualizations. Results can be saved as graph figures and
tab-delimited files describing different gene groups or
class contents within them. These functions are further
described in the program manual. GENERATOR will be
updated twice in a year including the GO database within
it and is freely available [21].

Analysis with GENERATOR
Gene list from yeast under H2O2 stress
We have analyzed the data obtained from growing yeast
deletion strains during oxidative stress [2]. Yeast deletion
strains have deletions in genes not needed in normal
growth conditions (non-essential genes). The research
aims to find new genes and functionalities that are impor-
tant for the cells to survive and grow in the presence of
oxidative stress. We limit the analysis to the gene list
obtained from hydrogen peroxide stress (H2O2 stress).
This was used as a sample list for GENERATOR and it
included 117 genes of which 109 were recognized by the
GO database. The remaining 4589 non-essential yeast
genes were used as a reference list of which 4115 were rec-
ognized by the database. The use of a whole genome as a
reference here might cause some error in the results as it is
natural to assume that different functional groups have
different proportions of non-essential genes. The princi-

pal observation when analyzing the results as one group
in the original article is the clear association with mito-
chondrion [2].

Clustering was done with 2 to 6 groups. In the first step
the obtained clusters were analyzed against the other clus-
ters using S.log(p) values to determine which functional
classes contributed most to the formation of each cluster.
The obtained graphical view is shown in figure 1A. The
figure shows a cluster of ribosome genes that forms the
clearest separate group (marked with I) and remains
although the number of clusters changes from 2 to 6. The
strong link between the different clustering results (thick
lines showing correlations higher than 0.9) highlights
this. Similarly, a cluster of genes with RNA associated
function (marked with II) is clearly separated and is
shown on several levels. Also, a small cluster of 'mito-
chondrial inner membrane' genes (marked with III), a
cluster of genes with unknown function (marked with V),
and a cluster associated with 'transcription regulation' and
'nucleus' (marked with IV) can be seen. All of these five
clusters stay similar over many levels of the visualization
despite the changing number of clusters and different ran-
dom starting points. The whole cluster tree step was also
replicated four times, each showing similar results. These
replications are detailed below.

The previous information obtained by S.log(p) explains
the clustering, but it does little to help understand the
original sample list. This is due to the exclusion of the ref-
erence list from the analysis. For example, the previous
results do not provide emphasis on mitochondrial func-
tions although it is the most significant theme when ana-
lyzing the data as one group (see table 2). Figure 1A also
presents 'molecular function unknown' class, although it
is under-represented in the original sample list. Therefore,
the second step of the analysis is to take the reference gene
list into account. Here, classes are sorted with C.log(p)
values and O.log(p) and S.log(p) are used as cut-offs to
remove non-relevant information. The rationale of using
the cut-offs and the purpose of the different values is dis-
cussed more in the Methods (Description of the cluster con-
tents). This is also the default view of GENERATOR. The
resulting graph is presented in figure 1B. Now the
obtained view is different showing 'mitochondrial ribos-
ome' cluster (I, previous ribosome cluster), 'tRNA ligase'
cluster (II, previous RNA associated cluster), 'mitochon-
drial inner membrane' cluster (III) and 'transcription reg-
ulation' cluster (IV, previous transcription and nucleus
cluster) and a 'mitochondrial genome maintenance' clus-
ter (V, previous cluster of unknown genes). The clusters
are the same as the ones shown in the figure 1A but now
each one of the clusters shows the functional classes, over-
represented in the original sample list, that are associated
with the clustered genes. The over-represented classes for
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clustering with 5 clusters from figure 1 are shown in table
1. In order to see how robust the results are, the non-
nested hierarchical clustering was replicated four times.
The replications are in figure 2 and show that similar clus-
ters can be obtained with each.

Analysis of the results in figures 1 and 2 (result summary
shown in tables 1 and 5 [see Additional file 5]) shows that
within the group of genes that first seem homogeneous,
there are sub-groups differently associated with the mito-
chondrial functionality. The strongest feature in the
obtained results is the group of mitochondrial ribosome
clusters that stays similar whether clustering from 2 to 6
clusters. Analysis of this cluster actually reveals that there
are two genes (YNR036C and YPL183W-A) that are
reported as hypothetical mitochondrial ribosome pro-
teins. The fact that the mitochondrial ribosome proteins

are strongly over-represented in the dataset support the
notion that they are mitochondrial ribosomal proteins.

One small group, not mentioned in the original analysis
[2], is the group of tRNA ligases (cluster II). Although this
group only includes 6 members, its O.log(p) was 6.64
making the over-representation significant. A more
detailed analysis reveals that the genes in question are
mitochondrion associated tRNA ligases and one of them
is a hypothetical mitochondrial tRNA ligase. Again its
importance for the growth of yeast cells in oxidative stress
further confirms its association with mitochondrial func-
tion. The rank of these ligase associated categories starts at
23 in the sorted class list for the original sample gene list
(see table 2) and therefore this group can go easily unno-
ticed if the sample list is analyzed without clustering. The
rest of the cluster II (in fig. 1, when using five clusters)
includes proteins that link to RNA processing and to

Table 1: Results from GENERATOR with H2O2 dataset using five clusters. The table shows the reported classes for five clusters from 
GENERATOR clustering shown in figure 1. The three over-representation values described in Methods section and figure 5 are 
reported for each class. Results are also compared to graphical output from SGD GO term finder (figure 8 [see Additional file 3]). 
Abbreviations in this column are: MF, molecular function; CC, cellular component; BP, biological process. Classes reported as 'missing' 
were not observed in the SGD GO term finder graphs. A more detailed view of the data is available in table 5 [see Additional file 5]. 
Classes with S.log(p) < 1 (marked with -) are not included to analysis although they are still shown here.

CLUSTER FUNCTIONAL CLASS C.log(p) O.log(p) S.log(p) SGD

I organellar ribosome 46.7 26.1 21 CC
mitochondrial ribosome 46.7 26.1 21 CC
mitochondrial matrix 41.6 30.5 14.9 CC
Ribosome 36.9 14.5 23.7 CC
structural constituent of ribosome 35.9 14.8 22.3 MF

II RNA ligase activity 13.3 6.68 6.64 MF
tRNA ligase activity 13.3 6.68 6.64 MF
ligase activity, forming aminoacyl-tRNA and related compounds 13.3 6.68 6.64 MF
ligase activity, forming carbon-oxygen bonds 13.3 6.68 6.64 MF
ligase activity, forming phosphoric ester bonds 13 6.42 6.64 MF

III mitochondrial membrane 13.9 3.66 11 CC
inner membrane 13.1 3.99 9.6 CC
mitochondrial inner membrane 13.1 3.99 9.6 CC
Mitochondrion 8.91 40.1 1.03 -
respiratory chain complex III 8.03 4.32 3.74 CC

IV transcription regulator activity 12.3 2.52 11.5 MF
nucleobase, nucleoside, nucleotide and nucleic acid metabolism 8.99 2.15 7.51 BP
mediator complex 8.97 5.15 3.88 Missing
general RNA polymerase II transcription factor activity 7.94 4.16 3.88 MF
DNA-directed RNA polymerase II, holoenzyme 7.81 4.04 3.88 Missing

V mitochondrial genome maintenance 7.22 5.97 2.02 Missing
mitochondrion organization and biogenesis 6.74 4.06 3.05 Missing
mitochondrial chromosome 4.23 3.18 1.05 - (CC)
soluble fraction 3.1 2.52 1.09 -
helicase activity 3 3.35 0.79 -
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translation, for example, NAM1, two mitochondrial elon-
gation factors, and YDR194C.

Cluster V shows 'mitochondrion organization' and
'genome maintenance' (5 and 7 genes, with O.log(p) 4.06
and 5.97) but the analysis of the cluster content shows no
clear common theme. Instead, most of the genes have no
known function, and therefore this cluster does not seem
to contribute to the analysis. Indeed the unknown func-
tion was associated to this cluster in figure 1A. A separate
cluster of unknown genes is an expected behavior for our
method as these genes have highly different GO classifica-
tion profiles from the known genes. We have also
observed it regularly with other datasets. Still, this cluster
was able to highlight the small group of genes associated
with mitochondrion genome maintenance.

Cluster IV shows nucleus-associated functionalities ('tran-
scription regulator activity', 'regulator complex', 'general
RNA polymerase II transcription factor activity'). When

the actual cluster content is analyzed, the cluster includes:
RNA polymerase II holoenzymes, transcription factors,
and transcription regulators. This cluster of genes was
unexpected and seems to show a link from nucleus driven
functionalities to mitochondrial functionalities. Clusters
II and IV show nicely mitochondrion linked functions
elsewhere in the cell, but at the same time these groups are
harder to detect when analyzing the data as one group
(see tables 2 and 7 [see Additional file 7]). In summary,
GENERATOR has shown that within the mitochondrion
associated gene list, the main members are mitochon-
drion ribosomal proteins, mitochondrion membrane
genes, tRNA ligases, unknown genes, and genes associated
with transcription regulation.

Gene list from drug treated yeast
Another dataset that was analyzed includes the gene
expression differences in yeast during itraconanzole treat-
ment, a drug known to affect sterol biosynthesis and nor-
mal growth [20]. Both up and down regulated genes were

Table 2: Comparison of sorted class list against GENERATOR clustering with H2O2 dataset. The table shows the sorted list of over-
represented functional classes for H2O2 dataset. Only the 25 best scoring classes are shown to limit the size. Columns indicate the 
obtained log-p-values (O.log(p)), class names and its rank in the list, and the corresponding GENERATOR cluster number, if the class 
was included into the obtained GENERATOR result. Notice that the most of the functional classes are associated with mitochondrial 
ribosome proteins. Detailed results are shown in table 7 [see Additional file 7].

Rank Class name O.log(p) In cluster

1 Mitochondrion 40.06 first level
2 mitochondrial matrix 30.45 II
3 organellar ribosome 26.09 II
4 mitochondrial ribosome 26.09 II
5 protein biosynthesis 21.69 II
6 organellar large ribosomal subunit 18.61 II
7 mitochondrial large ribosomal subunit 18.61 II
8 macromolecule biosynthesis 15.6 not reported
9 structural constituent of ribosome 14.84 II

10 Ribosome 14.53 II
11 Biosynthesis 13.15 not reported
12 structural molecule activity 12.87 not reported
13 ribonucleoprotein complex 12.52 II
14 protein metabolism 12.34 not reported
15 Metabolism 11.75 not reported
16 large ribosomal subunit 11.33 not reported
17 organellar small ribosomal subunit 7.94 not reported
18 mitochondrial small ribosomal subunit 7.94 not reported
19 aerobic respiration 7.3 IV
20 cellular respiration 7.03 not reported
21 Cytoplasm 7.02 not reported
22 RNA ligase activity 6.68 III
23 tRNA ligase activity 6.68 III
24 ligase activity, forming aminoacyl-tRNA and related compounds 6.68 III
25 ligase activity, forming carbon-oxygen bonds 6.68 III
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used for the analysis. These contained 255 genes of which
248 were recognized by the GENERATOR GO database.
The remaining 6102 non-regulated yeast genes consti-
tuted the reference list of which 5369 were recognized by
our database. When the obtained gene list is analyzed nor-
mally with the sorted class list, the most significant feature
observed is the massive over-representation of the 'ami-
noacid biosynthesis' and related functional classes (table
4).

Similar to the previous analysis, two steps were used and
the classes that contributed most to the clustering were
monitored first. The results show the 'carboxylic acid bio-
synthesis' associated cluster (marked with I) a cluster asso-
ciated with 'cellular process' class (III); a 'macromolecule
biosynthesis' associated cluster (II); and a cluster associ-
ated with unknown functionality (IV). With a larger
number of clusters, 'nucleobase metabolism' and 'tran-
scription' associated cluster (V) can be seen.

When the clustering view is changed to show the over-rep-
resentation reported by C.log(p) (figure 3B), the previous
clusters obtain different annotations (result summary
shown in tables 3 and 6 [see Additional file 6]). This anal-
ysis step was again repeated four times to see how similar
the results remained (figure 6 [see Additional file 1]).
Cluster I, that showed in fig. 3A carboxylic acid biosynthe-
sis, is now associated with amino acid and carboxylic acid
biosynthesis. It forms the most stable cluster and it is seen
regularly on several clustering levels also in the replica-
tions. Cluster II (macromolecule biosynthesis) is now
associated with steroid biosynthesis. Genes in the cluster
represent sterol biosynthesis associated functions and
other macromolecule biosynthesis functions (for example
synthesis of phospholipids). Steroid synthesis is a known
target of the drug and that it is now nicely separated from
other functionalities that are likely more secondary
responses to the drug. Third, a regularly seen cluster is one
enriching the plasma membrane and cell wall associated
functionalities (III). The genes in this cluster show many
membrane associated functions, like transporting

Table 3: Results from GENERATOR with itraconanzole dataset using five clusters. The table presents the reported classes from 
GENERATOR clustering with six clusters shown in figure 3. Columns and abbreviations are the same as in table 1. A more detailed 
view is presented in table 6 [see Additional file 6]. We omit the classes with S.log(p) smaller than 1 from the comparison with SGD (-
). One outlier cluster is also omitted (shown in more detailed view).

CLUSTER FUNCTIONAL CLASS C.log(p) O.log(p) S.log(p) SGD

I amino acid metabolism 51.48 14.7 38.32 BP
carboxylic acid metabolism 50.64 14.77 36.64 BP
organic acid metabolism 50.64 14.77 36.64 BP
amino acid and derivative metabolism 50.36 13.75 38.32 BP
amino acid biosynthesis 49.98 19.07 31.6 BP

II steroid metabolism 19.83 8.89 11.36 BP
lipid biosynthesis 17.88 5.24 14.07 BP
lipid metabolism 17.87 5.05 13.81 BP
sterol metabolism 17.3 8.02 9.61 BP
steroid biosynthesis 16.95 7.69 9.61 BP

III plasma membrane 9.08 2.58 7.5 Missing
cell wall (sensu Fungi) 4.18 4.37 1.43 CC
cell wall 4.18 4.37 1.43 CC
external encapsulating structure 4.18 4.37 1.43 CC
structural constituent of cell wall 3.97 2.23 1.8 Missing

IV cell wall (sensu Fungi) 2.4 4.37 0.54 -
cell wall 2.4 4.37 0.54 -
external encapsulating structure 2.4 4.37 0.54 -
acid phosphatase activity 1.25 3.1 0.22 -

V specific RNA polymerase II transcription factor activity 10.18 3.24 7.48 MF
nucleobase metabolism 3.26 2.85 1.52 Missing
purine base metabolism 2.56 2.58 1.09 Missing
aromatic compound metabolism 2.54 5.85 0.72 -
heterocycle metabolism 2.22 2.65 1.02 Missing
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activities. Unexpectedly, another cluster, associated with
cell wall (cluster IV) can be regularly observed. A detailed
analysis of these clusters still reveals that they are differ-
ent. Cluster III is associated strongly with 'plasma mem-
brane' and 'cell wall'. The other cell wall cluster (cluster
IV) is more connected to unknown cellular component
than to cell wall and the connection to cell wall is also
very weak. Even a slight raise of the cut-off for S.log(p)
would filter this link. A more detailed analysis of the clus-
ter IV reveals that 55 out of the 65 genes in the cluster have
biological process unknown. Moreover, molecular func-
tion is unknown for 58 of these genes. Therefore this clus-
ter does not contribute to the analysis of the gene list.
Cluster V does not seem as stable as the earlier clusters.
Still, it is observed in most of the replications (figure 6 [see
Additional file 1]). It groups together genes associated
with nucleobase metabolism and transcription. Detailed
analysis shows transcription factors associated with regu-
lation of transcription from the Pol II promoter. Among
these genes, some of them are reported to be important
for drug resistance (YLR266C, YCR106W) and to stress
response (YFL031W, YMR037C) and to two associated
with copper uptake (YGL166W, YMR021C). In summary,
we observed with GENERATOR an amino acid biosynthe-

sis associated group, steroid and lipid biosynthesis associ-
ated group, a group of unknown genes, and genes
associated to membrane and transport.

Comparison with competing methods
Sorted class list
GENERATOR was also compared to existing methods.
One of the simplest ways of analyzing a gene list is to take
it as one single group, analyze how over-represented
different classes are, and to report the results as a sorted
list. Sorting is based on the p-values calculated for the
observed over-representation in order to show the best
results at the top of the list. This method does not take
into consideration the heterogeneity in the list, but other-
wise it is similar to analysis done with each of the GENER-
ATOR clusters. Actually, the first level of the GENERATOR
cluster tree graph does this analysis. Therefore we com-
pared GENERATOR clustering to the sorted class list using
the results from the first level. We changed the default set-
tings so that the number of reported functional classes
was not limited.

The comparison used the two previously analyzed data
sets. The results from sorted class list were compared to

Table 4: Comparison of sorted class list against GENERATOR clustering with itraconanzole dataset. The table shows the sorted list of 
over-represented functional classes for itraconanzole dataset. Only the 25 best scoring classes are shown to limit the size. Columns 
are same as in table 2. Notice that most of the functional classes are associated with amino acid biosynthesis. Detailed results are 
shown in table 8 [see Additional file 8].

Rank Class O.log(p) In cluster

1 amino acid biosynthesis 19.07 I
2 amine biosynthesis 18.08 I
3 carboxylic acid metabolism 14.77 I
4 organic acid metabolism 14.77 I
5 amino acid metabolism 14.70 I
6 amino acid and derivative metabolism 13.75 I
7 amine metabolism 13.02 I
8 arginine biosynthesis 11.28 I
9 steroid metabolism 8.89 II

10 nitrogen metabolism 8.79 not reported
11 urea cycle intermediate metabolism 8.66 not reported
12 arginine metabolism 8.66 not reported
13 Biosynthesis 8.52 I, II
14 transaminase activity 8.32 not reported
15 transferase activity, transferring nitrogenous groups 8.32 not reported
16 glutamine family amino acid biosynthesis 8.16 not reported
17 sterol metabolism 8.02 II
18 glutamine family amino acid metabolism 7.99 I
19 sterol biosynthesis 7.77 II
20 steroid biosynthesis 7.69 II
21 ergosterol biosynthesis 6.22 II
22 ergosterol metabolism 6.22 II
23 aromatic compound metabolism 5.85 not reported
24 branched chain family amino acid metabolism 5.61 not reported
25 cyclohydrolase activity 5.50 not reported
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GENERATOR clustering summaries shown in tables 1 and
3. When the number of classes was limited only by the p-
value, an immediately observed drawback of the sorted
list method was the amount of information (number of
classes) obtained. For the H2O2 dataset, we obtained 75
classes and for itraconanzole 76 with -log(p-value) > 2 (55
and 43 with -log(p-value) > 3). The resulting sorted lists
are shown in tables 7 [see Additional file 7] and 8 [see
Additional file 8]. This can be corrected by raising the cut-
off for the included genes. This is also reasonable as we
have not used here any correction for increased risk of
false positives due to multiple testing. Strong filtering
with p-values or limiting the number of reported classes
leaves the most over-represented functional classes. In the
example datasets, the most over-represented functional
classes were all associated with the same gene group. With
H2O2, the first 18 functional classes were associated with
mitochondrial ribosome proteins (see table 2). With itra-
conanzole, the first 19 classes (except classes 9 and 17)
show functions associated with amino acid biosynthesis
(see table 4).

When the GENERATOR results were compared to a sorted
class list, many classes were omitted from the results. With
default settings, GENERATOR shows at maximum ten
classes for each cluster in the output text file. This filters
out the repetitive occurrences of functional classes associ-
ated with the same gene group. In the H2O2 dataset,
classes like macromolecule biosynthesis, protein metabo-
lism, and large ribosomal subunit were excluded in this
way. This seems acceptable as many similar classes are
shown in the results by cluster I. The omitted classes can
be still viewed with the sorted list available for each clus-
ter. Another group of classes that are not reported by GEN-
ERATOR with H2O2 were very broad classes, such as
intracellular, cell, or physiological process. These contrib-
ute very little information to the analysis. Similar observa-
tions were also seen with the itraconanzole dataset, where
many amino acid biosynthesis associated classes were
excluded from GENERATOR clustering results. As an
exception, itraconanzole showed some broad classes in
the results (plasma membrane, cell wall).

Direct acyclic graph
Another way to analyze the obtained gene list is to map
the over-represented functional classes into a tree like
structure that is behind the GO classes and visualize the
results as a graph structure. The benefit to the sorted list
presentation is that the hierarchical structures are now vis-
ible, highlighting the over-represented functional classes
occurring repetitively in the same part of the GO graph.
Also, if there are different branches showing over-repre-
sented functional classes in the GO structure, they are
clearly separated. The major drawback is the large size of
the obtained visualization. The graph obtained from

AMIGO server [23] using the whole list of over-repre-
sented classes from H2O2 dataset was simply too large for
analysis (figure 7 [see Additional file 2]). Instead we
selected a graphical output from GO term finder at Sac-
charomyces Genome Database [8] for comparison. The
GO term finder adds color coding to show which of the
classes showed strongest over-representation. It also tries
to make the obtained graph smaller by discarding some
branches. As the graph for each ontology is obtained sep-
arately, we combined the obtained three graphs to the
same picture for a better view. We used GENERATOR clus-
tering summaries shown in tables 1 and 3 for comparison.

In order to compare the obtained GO graphs with the
GENERATOR results, we flagged each class that was
reported significant if it was included in the GENERATOR
result table (figures 8 [see Additional file 3] and 9 [see
Additional file 4]). We first observed, in the comparison,
that the graphs obtained from SGD GO term finder are
still large for analysis. Also, the important features are
scattered over three graphs, in comparison to the single
table from GENERATOR. It was observed that some
classes in the H2O2 data were not shown in the SGD GO
graph even though their log-p-value results were highly
significant (tables 1 and 3, classes marked as 'missing').
Some of these classes were: aerobic respiration (O.log(p)
7.3), cellular respiration (7.03), and mitochondrial
genome maintenance (5.97). This might be an artifact
caused by the limited size of the GO graph. SGD graph, on
the other hand, showed classes that were not reported by
GENERATOR. These classes were the same classes dis-
cussed when comparing GENERATOR with the sorted
lists. Some of the differences between the results might be
explained by the usage of binomial test for calculating sig-
nificance of the functional classes in GO term finder. It
should be noted that the Fisher's exact test used by GEN-
ERATOR is a more correct method [8], although we
observed similar p-values with both methods. Also the
whole genome is always used as a population by GO term
finder, which might also cause bias in the results with
some datasets (see analysis of H2O2 dataset above).

Comparison to GOToolBox
During the preparation of this manuscript, we also
observed another method that performs similar GO clus-
tering. GO-Proxy in GOToolBox [19], takes the user given
sample gene list, creates the GO classifications for each
gene and clusters the obtained matrix by using
czekanowski-dice distance and hierarchical clustering.
The reported clusters (called classes) are selected from the
different levels of tree with two parameters, defined by the
user. One parameter defines how similar genes have to be
inside the cluster and the other defines the minimum size
for the cluster. The principal difference between the meth-
ods is that GENERATOR (with default parameters) reports
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only the GO-classes that display over-representation in
both the original sample gene list and in the obtained
cluster, whereas GOToolBox concentrates its analysis to
the obtained cluster. Also, GENERATOR gives an overview
of the clustered data with visualization.

In the analysis for H2O2 and itraconanzole datasets,
GOToolBox, with default parameters, created more and
smaller clusters when compared to GENERATOR (tables 9
[see Additional file 9] and 10 [see Additional file 10] for
results with each ontology). The cluster number is proba-
bly larger because the same clusters with minor changes
are selected from different levels of the hierarchical
clustering tree which causes repetition in the results. The
small clusters in GOToolBox results tend to give a scat-
tered view of the data but could be also useful when ana-
lyzing details from the obtained gene list. However, by
setting a larger minimum cluster size they can be filtered.
With larger clusters GOToolBox reported nonspecific
functional classes like cellular process, cell, or metabolism
in addition to the same GO-classes that were previously
reported by GENERATOR (mitochondrial ribosome
classes, tRNA classes etc.). With the default settings,
GOToolBox found also some small clusters that were not
reported by GENERATOR (clusters associated with 'abi-
otic stress', 'RNA metabolism' etc.). These clusters were
quite small and the most associated functional classes did
not show any over-representation in the original sample
list (see table 7 [see Additional file 7]) as GOToolBox does
not filter the results with O.log(p). GENERATOR could be
also run with a larger maximum cluster number in order
to obtain similar smaller clusters.

Discussion
We have presented a method that groups a user provided
gene list into functionally dissimilar gene clusters. The
grouping is done with varying numbers of clusters, which
are used to create a tree-like graphic visualization. Despite
the emphasis on clustering, our method also analyzes the
gene list as a single entity (result with one cluster). The
obtained graph presents the main output of the method
showing the most important simultaneous gene groups
that occur in the data in a single figure. The graph can be
created multiple times to see how stable it remains when
different random initializations are used for clustering.
Our results from clustering replications show that the
most visible gene groups remain, thus increasing confi-
dence in the method.

There are two alternative methods previously used to
obtain an overview of the over-represented functional cat-
egories. Methods like EASE analyze the gene list as one
entity and output the functional categories as a sorted list
according to the significance of the over-representation.
Other methods, like SGD GO term finder, give the over-

represented functional categories as a directed tree-like
graph by using the hierarchical structure of GO. Graph
methods create a much more complex representation
with the danger of overwhelming the user with unimpor-
tant details. The sorted list gives an impression of a
homogenous gene group. As an example, we showed the
results from SGD GO term finder, AMIGO visualization,
and the sorted list of functional classes for the gene list as
one entity. These methods do not group the gene list
before analyzing it. A positive unexpected observation
was that results from the other methods seemed more
informative after we marked them with the corresponding
GENERATOR clusters. For example classes in a sorted list
can be marked according to which cluster they belong to
(see tables 2 and 4). Marking the corresponding clusters
enables the opportunity to combine GENERATOR cluster-
ing results and results from other methods.

We also compared the GENERATOR results to another
gene clustering tool, GOToolBox. The principal difference
in methods is that GENERATOR provides the cluster
description by using filtering procedure which discards
the GO-classes with no over-representation in the original
sample gene list and with weak association to the genes of
the cluster. GENERATOR includes also visualization for
viewing the optional clustering results. Despite the differ-
ences we were able to obtain also similar GO-classes with
both methods when analyzing the H2O2 and itraconan-
zole datasets.

Since partitive clustering has an inherent weakness in the
initialization, we present a novel solution. Instead of
selecting a single clustering number, we monitor the
results with a range of clustering numbers. As a result, we
obtain correlations between the clusters that highlight
those features that can be obtained even though the clus-
ter number would change. The replication of the whole
cluster tree visualization was done in order to further
highlight those features that are conserved. It should be
noted that these ideas could also be used with other clus-
tering applications. Similar work was done by Heger and
Holm [24] by replicating NMF many times and looking
for the conserved features in the obtained matrix factori-
zations and by Brunet et al [25] where optimal cluster
number was selected by replicating NMF clustering many
times.

We analyzed the obtained clusters by concentrating on
those functional categories that were over-represented in
the cluster when compared to the rest of the gene list and
also in the original list of genes when compared to a refer-
ence list of genes. If the over-representation in the cluster
only would be monitored, the obtained cluster would be
well explained, but the drawback would be that the
obtained categories could at worst be such that they were
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under-represented in the original gene list and therefore
produce erroneous conclusions. If the over-representation
in the original list would be only monitored, the cluster-
ing would not be informative to the analysis. The current
way of combining these two over-representations high-
lights those features that are common between the origi-
nal list and the obtained cluster. As the data is grouped to
separate clusters, each of them will represent different
features from the list of over-represented functional
classes for the original gene list. The reporting method
therefore separates those functional categories from the
original gene list that are not associated to the same genes
and groups together those functional categories from the
original gene list that are connected to the same genes. A
good example of genes that were associated to the same
function were the members of the same protein complex
that were often seen as a separate cluster.

The selection of the reported functional categories
requires the definition of the cut-off for the significant
over-representation. Here the threshold was purposely
selected to be liberal (p-value < 0.01, O.log(p) > 2.0). This
is known to be too weak a threshold when the analysis
includes multiple testing as it increases the possibility of
the false positives. Therefore the emphasis was placed in
the later analysis on those functional categories that
showed clearly stronger over-representation than what the
cut-off was and the p-values larger than 0.001 were mon-
itored with caution. Similarly we also discarded classes
with S.log(p) < 1 from our analysis. The P-value borders
could be selected more precisely by doing repetitive test-
ing with a similar sized sample list with randomly selected
members (permutation analysis). The evaluation of the
results using runs with randomized samples from the ana-
lyzed data is one of the planned additions to the GENER-
ATOR software.

The associated software uses a reference list to calculate
over-representation for the original cluster. Although the
whole genome for the organism could be used, the refer-
ence list will ensure that the biases towards some
functional groups in the test situation do not affect the
analysis.

The method demonstrates that a drugs primary target can
be identified within a separate group among different reg-
ulated genes and different cellular functions. Work shown
here was done with yeast allowing the use of detailed
annotation of the yeast genome. Still, we have also
obtained encouraging results from human cell line and C.
elegans gene expression datasets (manuscript in prepara-
tion). As more information is being gathered from the
gene functions, this method should be able to perform
even better. Nonetheless, accuracy in the used gene anno-
tations is the weak link for our method. This should not

necessarily be a hindrance, as the randomly classified
genes should distribute randomly also among the obser-
vations. Another limitation is the recognition of the ana-
lyzed genes. Gene identifiers can be problematic when
working with different naming systems that originate
from various databases or high throughput methods, like
gene chips. These are also the problems faced by other
methods.

The presented software includes the possibility of using it
also with binary matrices. The reference group can be
given as a binary matrix or as a vector that represents a
number of members of each category and also the size of
the reference group. This should enable the analysis of
other similar binary data sets, like SNP datasets, word
occurrences in abstract texts etc. These are being currently
tested as future applications.

Conclusion
We have presented an analysis method and associated
software, GENERATOR, for analysis of large gene lists.
Our aim has been to fulfill the need for an analysis tool to
separate and identify functional gene groups from gene
lists that would otherwise be difficult to find. The method
should be useful especially as larger and more complex
gene lists are produced due to the increased use of high
throughput genomic methods.

Methods
Data representation
The associations between genes and functional classes in
the sample and reference gene lists must be represented as
a binary matrix to enable the analysis (see figure 4, steps
A and a). As functional classes, we use annotations from
the April 2004 delivery of Gene Ontology (GO) database
[14]. GO includes three principal sub-hierarchies, repre-
senting biological processes, cellular components and molecu-
lar functions for a gene. We combine the information from
all these three hierarchies in the clustering process.

The gene and functional class associations are trans-
formed into binary matrix where rows represent genes and
columns represent classes. Association between gene and
class is denoted by one and lack of association with zero
in a matrix cell. In addition to directly associated classes,
a gene is also denoted to associate with its ancestors in the
hierarchical GO structure to assure maximal information
for analysis. The obtained matrix for sample gene list is
inputted for the clustering process whereas the matrix for
the reference list is summed into an occurrence vector (fig-
ure 4, step b) which is used later for analyzing the over-
represented classes within the obtained clusters.
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Clustering technique for binary data
A binary matrix is used as data when clustering the user
given sample gene list into a fixed number of groups (see
figure 4, step B). Many traditional clustering methods
obtain weak results with such data due to its non-contin-
uous nature (see for example [26,27]) and the small pro-
portion of non-zero entries (sparse matrix). Therefore we
have selected a clustering procedure based on Non-nega-
tive Matrix Factorization (NMF, [15]) that has shown
good performance with binary data in the 'topic finding'
literature ([15,28]).

NMF aims to reduce the dimensions of multivariate data
by factorization X ≈ WH where X represents the binary
matrix obtained from the associations of n genes and m
classes in the user given sample gene list. Given the fixed
number for r, two matrices W (size n × r) and H (size r ×
m) are produced as a result, representing the input data X
in compressed form of r factors. The first of the matrices
describes the loadings of the genes on r factors and is fur-
ther used in clustering. In the clustering process, the genes
are deposited into clusters by using a winner-takes-all
approach that finds the factor with the highest loading for
each gene from matrix W. The relation between the high-
est loading and sum of all loadings is used to measure the
fitness of a gene in a cluster. In the visualization (see next

chapter) the fitness is used to present genes in a sorted
order for each cluster. More detailed descriptions concern-
ing clustering binary data with NMF are given in [15,28].
We use the NMF algorithm presented in [29] which mini-
mizes the least squares error (LSE) between the input data
and resulting factorization.

Non-nested hierarchical clustering scheme
The core of the proposed method is a non-nested hierar-
chical clustering tree, which is shown in figure 4, step C.
There the user given sample gene list is repeatedly clus-
tered into r number of groups, where r grows gradually
from two into a user given number. Each partitive cluster-
ing is executed from a random starting initialization using
NMF, producing an independent division level to the vis-
ualization. The levels are placed consecutively in the
growing order of r starting from r = 1, which represents the
sample gene list without any clustering. In the visualiza-
tion, each level is shown with a bar of constant size that is
split into r sections. Each section represents a single
cluster, the size of which is indicated by the width of the
section. Correlations between each cluster in level r and
all clusters of previous level r-1 are calculated by compar-
ing cluster memberships of genes with a correlation meas-
ure between two binary classifications presented in [10].
The strongest correlation for each cluster is denoted by a

Flow diagram of the methodFigure 4
Flow diagram of the method. The gene associations with the GO functional classes in the sample and reference gene lists 
are transformed into binary matrices (A and a) and a sum vector (b). The sample set is clustered with NMF based method (B) 
into a varying number of sub-groups producing a non-nested hierarchical tree (C). Contents of the clusters are described with 
the over-represented classes within them (c and D).
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line between the corresponding clusters. The width of the
line indicates the magnitude of the correlation. The lines
between the first and second levels present only the pro-
portions of the genes, as the binary correlation with the
first level can not be defined. Together the edges and sec-
tions form a non-nested hierarchical tree that visualizes
the underlying heterogeneity in the gene and class associ-
ation data.

Description of cluster contents
We have developed a procedure for describing the con-
tents of gene clusters (figure 4, steps c and D) resulting

from the non-nested hierarchical clustering scheme intro-
duced above. There, a combination of three measures is
applied to find informative classes by studying their over-
representation in the sample gene list with and without
clustering. By definition, the over-representation means a
greater frequency of classes in the collected set of genes
than in the rest of the population. A robust way to test this
is the calculation of p-values from a hypergeometric distri-
bution with Fisher's test [16,17], that we apply. Classes
with low p-values are highly over- or under-represented in
the gene set and thus interesting. Nevertheless, the signif-
icant p-values are small numbers that are difficult to han-
dle and visualize. They neither distinguish the over- and
under-represented classes. Thus, we use signed logarith-
mic transform of p-value introduced before [10] which
has negative or positive sign depending on the under- or
over-representation and suitable scale for visualization.

In our method, we study the over-representation for mul-
tiple purposes. We calculate the p-values for each biologi-
cal class (description in figure 5):

A) From original sample gene list without any clustering
using user given reference gene list as a rest of the popula-
tion. This is denoted by O.log(p).

B) From each individual cluster using other clusters of
sample gene list and reference gene list as a rest of the pop-
ulation. This is denoted by C.log(p).

C) From each individual cluster using other clusters of the
sample gene list as a rest of the population and excluding
the user given reference gene list. This is denoted by
S.log(p).

In the default view of GENERATOR, these measures are
used to show the over-represented functional classes in
the clustering tree. In each cluster description, the basic
over-representation measure C.log(p) is used to sort the
classes. As C.log(p) is dependent on the clustering, it
ranks high in some classes that are over-represented when
measured from the cluster, but not over-represented when
measured from the sample gene list without clustering.
This is caused by the clustering process, when for example
a tight group of genes is associated with the classes that are
under-represented in the non clustered list. Since we aim
at interpreting the whole list, such classes would be mis-
leading and have to be removed. Therefore we filter them
by using O.log(p), which is fully independent on the clus-
tering. Another problem is that C.log(p) can rank high in
some classes that have not contributed to formation of the
analyzed cluster. These classes are under-represented in
the cluster when comparing only to the rest of the sample
gene list. Still they are so strongly over-represented in the
whole sample gene list that C.log(p) shows over-represen-

The measures for studying over-representation of classesFigure 5
The measures for studying over-representation of 
classes. Over-representation of classes is measured by using 
A) the whole sample gene list as a sample and the reference 
gene list as a remainder population, O.log(p); B) a single clus-
ter as a sample and the rest of the sample gene list and the 
reference gene list as a remainder population, C.log(p); and C) 
a single cluster as a sample and the rest of the sample gene 
list as a remainder population excluding the reference gene 
list, S.log(p). In each situation, Fisher's exact test f(x, M, n, k) 
[16] is used to determine the over-representation. O.log(p) 
presents the original over-representation of sample gene list 
without clustering. C.log(p) highlights the classes that are 
over-represented in the original sample gene list and in indi-
vidual cluster. S.log(p) reports the contribution to the forma-
tion of cluster structure.
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tation. As these classes are uninformative for the analysis
of the cluster, we filter them by using S.log(p). By default,
the classes with O.log(p) < 2.0 or S.log(p) < 0.0 are fil-
tered, although we encourage also the use of stricter cut-
offs like 3 and 1, which we have found to work better
especially with S.log(p). In the non-nested tree visualiza-
tion, the two best classes from this filtered list are shown
to describe cluster contents, and the longer list is available
through the user interface (see Software Implementation in
Results). The cluster is coloured according to the C.log(p)
value of its most over-represented class with the strongest
red for largest over-representation.

Analysis protocol
We study two clustering views for each data set in our
analysis. In addition to previously discussed default view,
which shows the over-represented classes in the clustering
tree, we first study the cluster formation. For that, we sort
the classes by S.log(p) within the clusters, which excludes
the reference gene list and fully concentrates on clustered
data. The outcomes from this setting are shown in fig. 1A
and fig. 3A in Results. Similarly, the outcomes from the
default view are shown in fig. 1(B) and fig. 3B. In our
manual analysis (results shown in tables), we further fil-
tered the results from default view by emphasizing the
classes with O.log(p) > 3.0 and S.log(p) > 1.0. In addition
to two different clustering views, we also study the stabil-
ity of our clustering scheme with both datasets in figures
2 and 6 [see Additional file 1]. This helps us to detect ran-
dom and non-random outcomes in similar way as with
single clustering levels explained above.

List of abbreviations
GENERATOR GENElist Research Aimed Theme-discovery
executOR

NMF Non-negative Matrix Factorization

GO Gene Ontology

SGD Saccharomyces Genome Database

MIPS Munich Information center for Protein Sequences

DAG Direct Acyclic Graph

LSE Least Squares Error

log(p) Signed 10 based Logarithmic Transform of p-value

O.log(p) Original log(p)

C.log(p) Complete log(p)

S.log(p) Sample log(p)
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Additional material

Additional File 1
Four replications of non-nested hierarchical cluster tree with itraco-
nanzole dataset. Figure 6 The figure shows four replications for the non-
nested hierarchical clustering graph for itraconanzole dataset. We have 
marked the conserved gene clusters with the same Roman numerals as in 
figure 1. Notice again the conserved clusters observed over several levels in 
each cluster tree.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S1.pdf]

Additional File 2
H2O2 dataset analysed with Amigo DAG View. Figure 7 The figure 
presents the DAG view of all the reported classes shown in table 7 [see 
Additional file 7]. These classes had p-value < 0.01 (O.log(p) > 2.0). Fig-
ure was obtained from AMIGO server. The obtained figure was considered 
too complex for manual analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S2.png]

Additional File 3
H2O2 dataset analysed with SGD DAG View. Figure 8 The figure 
presents the three DAG tree figures obtained from SGD GO term finder 
with the H2O2 data. The reported classes are colour coded according the 
reported p-value. We have marked the classes that were reported by some 
cluster in GENERATOR results by adding the number of corresponding 
cluster. Note that many classes that were not reported by GENERATOR 
are usually close in the hierarchy to already reported classes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S3.pdf]

Additional File 4
Itraconanzole data analysed with SGD DAG View. Figure 9 Figure 
presents the three DAG tree figures obtained from SGD GO term finder 
using itraconanzole data. The reported classes are colour coded according 
the reported p-value. We have marked the classes that were reported by 
some cluster in GENERATOR results by adding the number of correspond-
ing cluster. Note that many classes that were not reported by GENERA-
TOR are usually close in the hierarchy to already reported classes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S4.pdf]
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Additional File 5
GENERATOR detailed class output for H2O2 dataset. Table 5 The table 
presents a detailed view for the results obtained from GENERATOR with 
H2O2 data using five clusters. The table has two components. The first col-
umns present the reported functional classes. The presented functional 
classes are selected with GENERATOR default view so that they highlight 
functional classes over-represented in the original list of genes and also in 
the cluster in question. In addition this part also shows the three reported 
p-values. These are the same as in the table 1. The table also includes 
number of class members in the cluster (inner size), number of class mem-
bers in the original sample list (original inner size) and the number of 
class members in both sample and reference list (total size). These values 
can be used to analyse the proportion of the class that was included to clus-
ter and the proportion of the class from the reported cluster. The reported 
classes can be also viewed as DAG with the included link to AMIGO www 
server. This enables the analysis of the hierarchy structure of the reported 
classes. The second part of table presents the list of genes for each cluster. 
Genes are presented in the sorted order so that the ones at the top of the 
list have always the strongest membership to the analyzed cluster.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S5.xls]

Additional File 6
GENERATOR detailed class output for itraconanzole dataset. Table 6 
The table presents a detailed view for the results obtained from GENER-
ATOR with itraconanzole data using six clusters. One outlier cluster has 
not been taken in our analysis. Table has three main components. These 
are similar to the first three components in the table 5 [see Additional file 
5].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S6.xls]

Additional File 7
Detailed sorted class list for H2O2 dataset. Table 7 The table presents a 
detailed sorted list of over-represented classes obtained with H2O2 dataset. 
Classes with p-value < 0.01 (O.log(p) > 2.0) are shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S7.xls]

Additional File 8
Detailed sorted class list for itraconanzole dataset. Table 8 The table 
presents a detailed sorted list of over-represented classes obtained with 
itraconanzole dataset. Classes with p-value < 0.01 (O.log(p) > 2.0) are 
shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S8.xls]

Additional File 9
Summary of GOToolBox results with H2O2 dataset. Table 9 The table 
shows a summary of H2O2 dataset analysis with GOToolBox. Results are 
shown separately for three sub-ontologies of GO. Columns show GOTool-
Box cluster number (Cluster nb), number of gene products within each 
cluster (Number of genes), and obtained class description (Class names). 
The raw output from GOToolBox is available in table 10 [see Additional 
file 10].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S9.xls]

Additional File 10
GOToolBox outputs from analysis with H2O2 and itraconanzole data-
sets. Table 10 Files include the clustering results for H2O2 and itraconan-
zole datasets from GOToolBox.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-162-S10.zip]
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