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Abstract
Background: Stochastic dependence between gene expression levels in microarray data is of
critical importance for the methods of statistical inference that resort to pooling test-statistics
across genes. It is frequently assumed that dependence between genes (or tests) is suffciently weak
to justify the proposed methods of testing for differentially expressed genes. A potential impact of
between-gene correlations on the performance of such methods has yet to be explored.

Results: The paper presents a systematic study of correlation between the t-statistics associated
with different genes. We report the effects of four different normalization methods using a large
set of microarray data on childhood leukemia in addition to several sets of simulated data. Our
findings help decipher the correlation structure of microarray data before and after the application
of normalization procedures.

Conclusion: A long-range correlation in microarray data manifests itself in thousands of genes that
are heavily correlated with a given gene in terms of the associated t-statistics. By using
normalization methods it is possible to significantly reduce correlation between the t-statistics
computed for different genes. Normalization procedures affect both the true correlation,
stemming from gene interactions, and the spurious correlation induced by random noise. When
analyzing real world biological data sets, normalization procedures are unable to completely
remove correlation between the test statistics. The long-range correlation structure also persists
in normalized data.

Background
There are two major methodological problems that deal
with the issue of stochastic dependence between gene
expression signals in microarray data. The first arises nat-
urally when adjustments for multiplicity of tests are made
by pooling across genes (or tests) in an effort to find differ-
entially expressed genes in two-sample comparisons. The

empirical Bayes methodology in the nonparametric [1-3]
and parametric formulations [4,5], and closely related
methods exploiting a two-component mixture model [6-
8] represent typical examples. The common feature of
such methods is that a test statistic (measure of differen-
tial expression) is first calculated for each gene to account
for biological variability and then all the statistics (or the
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associated p-values) are pooled together and treated as a
sample from which to estimate the sampling distribution
of this statistic, the false discovery rate (FDR), q-values,
etc. The same kind of pooling is typically used in maxi-
mum likelihood inference from microarray data [9,10]
and some other methods of testing for differential expres-
sion of genes.

In all such approaches, the stochastic dependence
between gene expression values or test statistics is a nui-
sance that hinders their application. The independence
assumption is frequently invoked when building a theo-
retical foundation for a particular method of statistical
inference. Some authors (e.g., [11]) allow for dependence
between differentially expressed genes while assuming
stochastic independence of those genes that do not
change their expression between the two conditions
under study. The biological rationale for such a hypothe-
sis is unclear, because the normally functioning genes are
involved in numerous biochemical pathways much like
the altered ones.

The stochastic dependence between expression levels and
thus between the associated test statistics is really a serious
problem. It may cause high variability of statistical estima-
tors and even deteriorate their consistency. To obtain the-
oretical results it is frequently assumed that weak or
almost sure convergence holds for an empirical distribu-
tion function constructed from the data pooled across
genes (see, i.e. [12,13]). However, this assumption is diff-
cult to validate biologically so that the required conver-
gence to the true distribution function is always
questionable; it may or may not be the case depending on
the type and strength of stochastic dependence.

Storey [12] advocates the assumption of weak depend-
ence between test-statistics when discussing some con-
cerns raised in the paper by Ge, Dudoit, and Speed
(hereafter abbreviated by GDS) [14]. It is worth quoting
his line of reasoning at length:

"I hypothesize that the most likely form of dependence
between the genes encountered in DNA microarrays is
weak dependence, and more specifically, "clumpy
dependence"; that is, the measurements on the genes are
dependent in small groups, each group being independ-
ent of the others. There are two reasons that make clumpy
dependence likely. The first is that genes tend to work in
pathways, that is, small groups of genes interact to pro-
duce some overall process. This can involve just a few to
50 or more genes. This would lead to a clumpy depend-
ence in the pathway-specific noise in the data. The second
reason is that there tends to be cross-hybridization in
DNA microarrays. In other words, the signals between two
genes can cross because of molecular similarity at the

sequence level. Cross-hybridization would only occur in
small groups, and each group would be independent of
the others."

This hypothesis does not seem plausible from a biological
standpoint because of the pleiotropic character of gene
function: one gene participates in multiple molecular
pathways. However, the possibility that it may approxi-
mately be true for all practical purposes cannot be ruled
out. There are two key words in the above quotation:
"small groups" and "weak dependence". Whether or not
such groups are small and stochastic dependence is suf-
fciently weak can be deciphered only from real world
data. To the best of our knowledge, no attempt has been
made so far to systematically study dependence structures
in microarray data using large data sets. In this connection
we would like to continue quoting from [12]: "Many
assumptions that have been made for modeling microar-
ray data have yet to be verified. Hopefully evidence either
for or against these assumptions will emerge... GDS have
stressed the dependence between the genes... I leave it as a
challenge to them to provide evidence from real microar-
ray data that the aforementioned assumptions do not
hold. I have not been able to find it myself". In the present
paper, we take the first step in this direction by conducting
an empirical study of the correlations between test statis-
tics associated with different genes.

The second research area where the dependence between
gene expression levels plays a crucial role is the discovery
(reverse engineering) of molecular pathways and net-
works from microarray data [15]. A popular approach to
pathway reconstruction is based on the sample correla-
tion coeffcient or mutual information measures that are
deemed to characterize interactions between genes via
their products. These measures of interaction are com-
puted from gene expression values observed across vari-
ous experimental conditions. The snag here is that strong
correlations in the raw (not normalized but background
corrected) expression data may be induced by an array-
specific technological noise, thereby producing numerous
false-positive edges in the corresponding graph represent-
ing the underlying structure of a given pathway or net-
work. However, if the data are normalized before the
analysis, then the correlation structure of expression sig-
nals may be partially destroyed by the normalization pro-
cedure so that many edges in the resultant graph may be
missing. The same applies to clustering techniques that
utilize information on pairwise dependencies between
the genes. The problem is less pressing where causal infer-
ence is possible from gene perturbation experiments.
Although the present paper does not have a direct bearing
on such settings, our results suggest that associative net-
works built on microarray data alone may have little to do
with biological reality. The problem merits careful
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investigation in order to make the reverse engineering of
this type more credible.

The present paper is focused on the correlations between
test-statistics associated with expression signals produced
by each gene and the effects of normalization procedures
on these correlations. We limit our consideration to the t-
statistic which is the most popular choice in microarray
data analysis. Normalization is intended to mitigate the
effect of technological noise that is inherent in microarray
data. Normalization procedures tend to reduce the varia-
bility of original microarray data (Park et al, [16]), how-
ever no study has been carried out to assess the effect of
such procedures on the correlation structure of microarray
data in general and the correlation of t-statistics in partic-
ular. In a methodological study such as ours, it is a great
advantage to have access to a large data set involving hun-
dreds of arrays. We used the St. Jude Children's Research
Hospital (SJCRH) Database on childhood leukemia
which falls into this category. Computer simulations pro-
vide the necessary, albeit not very realistic, control where
the actual model is known and arbitrarily large samples
can be generated for testing various methodologies.

Results
The design of our study is presented in the Methods sec-
tion. This design allows us to compute the t-statistics
(across arrays) for each gene and each pair of subsamples.
This computation results in 15 values (corresponding to
the 15 pairs of subsamples) of the t-statistic associated
with each gene. Then we compute the sample correlation
coeffcients between the t-statistics thus obtained for every
pair of genes. The resulting coeffcients are summarized in
the form of a histogram. We interpret such histograms as
pertinent summary characteristics and not as estimators of
some population distribution densities. We also look at
pre-selected individual genes to determine the range of
their correlation with all other genes. This range can be
characterized by the number of gene pairs formed by a
given gene with the correlation coeffcient exceeding some
threshold level. We adopt the value of 0.5 as such a
threshold.

Using these tools we attempt to answer the following
questions:

• What is the (pairwise) correlation structure of the t-sta-
tistic in a large population of genes?

• What is the impact of normalization procedures on this
structure?

• What is the impact of normalization procedures on the
number of highly correlated pairs formed by a given gene?

Figure 1A shows the distribution (histogram) of correla-
tion coeffcients for the t-statistics estimated from the
SJCRH leukemia data for all pairs of genes. It is clear that
the distribution is heavily shifted towards high positive
correlation between the genes. In particular, more than
36% of pairs have their sample correlation coeffcients
higher than 0.75 and only 7.6% have the coeffcients
smaller than 0.25. The proportion of gene pairs with cor-
relation coeffcients greater than 0.5 is 76%.

The effects of three normalization procedures (GEO,
RANK, and QUANT, as defined in the Methods section)
are shown in Figures 1B–1D. Figure 1E presents an ideal
case where the t-statistics were obtained from independ-
ent normally distributed data (see the Methods section for
explanations) produced by simulations (SIMU1). In this
case, the proportion of gene pairs with correlation coef-
fcients greater than 0.5 is only 1.5%. While the normaliza-
tion procedure GEO destroys a large proportion of
correlation, the procedures RANK and QUANT outper-
form it as far as the reduction of between-gene depend-
ence is concerned. The effects of the latter two procedures
are largely similar. The procedure RANK reduces the pro-
portion of correlation coeffcients greater than 0.5 to 4.3%,
while the procedure QUANT reduces this proportion to
7.2%. For comparison, this indicator is equal to 14% for
GEO. Thus the procedure RANK has the strongest effect on
the correlation structure. Figure 1 in the Additional Mate-
rial Files [see the file "Additional File 1"] shows essentially
the same effect for randomly selected non-overlapping
pairs of genes.

The effect of normalization on the between-gene correla-
tions observed in the simulated data SIMU2N and SIMU2
is stronger than that in the case of biological data (the
SJCRH leukemia data set). This can be seen in Figures 2, 3,
where only the results for the quantile normalization are
shown. Again, if we look at the proportion of gene pairs
with correlation coeffcients greater than 0.5, this indicator
equals 1.5% for SIMU2N and 1.5% for SIMU2. The effects
of GEO and RANK are displayed in Figures 1, 2 included
in the Additional Material Files [see the file "Additional
File 2"]. The stronger effect of GEO on the correlation
structure of the SIMU2N data as compared to the SJCRH
data comes as no surprise because the noise is simulated
as an array-specific random effect, for which a heuristic
justification of the GEO procedure is possible [20]. The
normalization procedures exert their effect both on the
correlation induced by the noise and on the true correla-
tion that reflects interactions between gene products.

The effect of the quantile normalization for the SIMU3N,
shown in Figure 3 in the Additional Material Files [see
"Additional File 2"], deserves special discussion. Recall
that each gene in the data set SIMU3N correlates only with
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a distinct group of genes termed a clump. Even if the genes
involved in the same clump are heavily correlated, the
average (over all pairs of genes) correlation coeffcient may
still be quite low. When a uniformly distributed multipli-
cative random noise is imposed on each array, the genes
pertaining to different clumps become highly correlated.
The noise strengthens the intra-clump correlation as well.

Recall that the clumpy structure of simulated data serves
as a simplistic model of gene interactions within distinct
pathways. As seen in Figure 3 [see "Additional File 2"], the
normalization procedure QUANT is not nearly as effective
as in the case of the SIMU2N data. This procedure does
not eradicate the overall correlation between genes in the
SIMU3N data. In this sense, the effects of normalization

The histogram of correlation coeffcients for overlapping pairs of t-statistics associated with individual genes in the SJCRH dataFigure 1
The histogram of correlation coeffcients for overlapping pairs of t-statistics associated with individual genes in the SJCRH data. 
A: data before normalization, B: GEO, C: RANK, D: QUANT, E: simulated set of data SIMU1.
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seen in the SIMU3N and in real biological data look
similar.

Another way of studying such effects is to look at the
number of pairs characterized by a relatively high correla-
tion with a pre-selected gene. Tables 1, 2, 3 present the
results for 20 genes that produce large numbers of highly
correlated (with correlation coeffcients greater than 0.5).
These initiator genes were identified through each of the
data sets (simulated and biological) under study. The final
column in every table gives the number of highly corre-
lated pairs formed by a given gene before normalization.
All the selected genes form such pairs with the over-
whelming majority of genes. We term this type of depend-
ence the long-range correlation. The number of highly
correlated gene pairs remaining after a given normaliza-
tion procedure serves as an indicator of its effciency.

Consider first the results obtained with simulated data.
Each of the twenty initiator genes selected from SIMU2N
form exactly 12,558 highly correlated pairs. When applied

The effect of the normalization procedure QUANT as applied to the SIMU2N dataFigure 2
The effect of the normalization procedure QUANT as applied to the SIMU2N data. A: data without noise (SIMU2), B: data with 
noise (SIMU2N), C: SIMU2 after normalization, D: SIMU2N after normalization.

The behavior of the standard deviation of the sample mean as a function of the number of involved genesFigure 3
The behavior of the standard deviation of the sample mean 
as a function of the number of involved genes. 1. Raw biolog-
ical data; 2. Quantile normalization; 3. Independent simula-
tions (SIMU1).
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to the SIMU2N data, the normalization procedures RANK
and QUANT bring this number down to 700 on average
(see Table 1). The variability in the size of this set of genes

is low. For example, the number of highly correlated genes
ranges from 661 to 794 after the application of the
QUANT procedure. Both procedures indiscriminately

Table 1: Long-range correlation analysis for the SIMU2N data.

Gene Label GEO QUANT RANK SIMU2N

1 743 746 741 12558
2 754 750 756 12558
3 723 723 721 12558
4 705 698 718 12558
5 736 734 754 12558
6 751 763 765 12558
7 702 695 709 12558
8 667 665 679 12558
9 747 747 759 12558
10 728 730 736 12558
11 713 717 713 12558
12 696 699 685 12558
13 743 750 762 12558
14 725 721 733 12558
15 691 691 740 12558
16 789 789 799 12558
17 724 725 669 12558
18 716 712 722 12558
19 762 762 720 12558
20 676 673 708 12558

Mean 724.6 724.5 729.5 12558
STD 30.1 31.8 31.9 0

Table 2: Long-range correlation analysis for the SIMU3N data.

Gene Label GEO QUANT RANK SIMU3N

1 483 520 512 12297
2 471 582 591 10656
3 436 523 614 12506
4 644 643 744 11031
5 677 739 765 11320
6 610 543 570 12413
7 612 863 788 12429
8 802 727 711 12077
9 1743 1406 1077 11898
10 975 895 920 12001
11 1352 1330 1543 12453
12 670 707 686 12480
13 1874 1849 1890 6913
14 1858 1765 1808 9371
15 1925 1790 1974 12469
16 1792 1718 1796 12520
17 1764 1526 1679 12499
18 1769 1684 1821 12509
19 1476 1300 1569 12514
20 2223 2307 2148 12507

Mean 1207.8 1170.9 1210.3 11743.2
STD 617.3 557.5 576.5 1402
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reduce the true (intrinsic) correlation and its spurious
(nuisance) counterpart. Although less effective, the proce-
dure GEO does a similar job.

The results for the SIMU3N data are different (see Table
2). While the number of highly correlated gene pairs tends
to decrease significantly for each of the twenty initiator
genes, the size of this effect depends on the group of genes
from which the initiator gene was chosen. This increases
the variability of the number of highly correlated pairs
remaining after normalization. For the QUANT method
the range is from 526 to 2,368 showing that the remaining
correlation extends far beyond the specified clumpy
structure.

We then selected 20 initiator genes in the SJCRH data set
representing real biological data. The number of highly
correlated pairs formed by these genes before normaliza-
tion ranges from 12,384 to 12,501, which is a very narrow
range indeed. As is seen in Table 3, the procedure GEO
does not destroy the correlation effectively; it leaves huge
numbers (up to 8,266) of highly correlated gene pairs.
The rank normalization results in much smaller numbers
of highly correlated genes that range from the lowest of
494 to the highest of 2,513. The average is 1,255, which is
about twice as much as we get from any normalized
SIMU2N data. The variability is also very high, resembling
a clumpy effect seen in the SIMU3N set. We do not con-
sider this similarity as evidence for a clumpy structure of

microarray data, but the results in Table 3 suggest that, if
such a structure exists, an average clump should be
expected to involve at least an order of magnitude more
genes than the clump size postulated by Storey [12].

Another interesting finding in Table 3 is that the quantile
normalization tends to leave more highly correlated genes
in comparison to the rank normalization. This is contrary
to our expectations based on the comparisons of correla-
tion histograms reported above. The effect of the QUANT
is also more variable than that of the RANK, which is
another dissimilarity of practical importance. Leaving
aside the fact that the RANK procedure is applied to gene
expressions, while the QUANT works at the probe feature
level, the difference between the two normalization meth-
ods is that we replace entries in an array by their ranks in

the former case and by  in the latter. Recall that 
is the average of entries having the same rank over all
arrays. Obviously, the QUANT preserves more quantita-
tive information in the data than does the RANK proce-
dure. This explains why the result of the rank
normalization is less variable.

The effect of the normalization QUANT on the distribu-
tion of the t-statistics across the genes for the actual and
simulated data is shown in Figures 1, 2, 3, 4 included in
the Additional Material Files [see the file "Additional File
3"]. From Figures 2 and 3, it is clear that, when applied to
the simulated data SIMU2 and SIMU2N, this procedure

Table 3: Long-range correlation analysis for the SJCRH data.

Gene Label GEO QUANT RANK raw data

1 5644 462 494 12481
2 7330 3175 1431 12486
3 4189 1480 2062 12496
4 5218 2728 1548 12493
5 8169 1888 1064 12451
6 8140 956 1162 12482
7 323 1169 839 12480
8 6774 1479 839 12497
9 7676 1832 2140 12390
10 8234 794 1440 12384
11 7652 930 466 12498
12 8266 1329 708 12476
13 8197 1343 2045 12391
14 7422 2118 2513 12501
15 1588 1467 1011 12494
16 7861 1931 1133 12429
17 1292 1477 1445 12489
18 6389 2949 1456 12481
19 7359 490 514 12469
20 4384 970 787 12488

Mean 6105.4 1548.4 1254.9 12467.8
STD 2545 2512 756 589.5 38.2

X
sort

X
sort
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makes the distribution of t-statistics similar to that in the
ideal case shown in Figure 1 [see "Additional File 3"].
However, the effect appears to be somewhat less satisfac-
tory with real data, especially in the tail regions of the
resultant distribution of t-statistics.

The results shown in this section are obtained with a sin-
gle initial random split of the pooled set of arrays into two
groups. We have conducted several such splits in this
study. All the above-described effects are highly reproduc-
ible, and reporting the results for other splits in the paper
is not warranted.

Discussion
It follows from our observations that normalization pro-
cedures are capable of destroying a significant part of cor-
relations between gene expression signals and associated
test-statistics. In doing so, they affect both the spurious
correlation induced by the noise and the true correlation
that reflects gene interactions. The clumpy structure
(involving relatively large clumps of genes) of the
SIMU3N data set is more resistant to this effect than the
SIMU2N data. This is even more so for real biological
data. The weaker effect of normalization seen in the
SJCRH data indicates that the actual noise structure may
be more complicated than assumed in the simulation
studies (multiplicative array-specific random effect
model). A clumpy structure of gene expression signals
may also play a role in this phenomenon. This observa-
tion explains why it is so diffcult to remove correlations
from the data.

The destructive effect of normalization procedures on
pairwise correlations in microarray data is good news for
the methods of statistical inference that resort to "pooling
across genes". However, it remains unclear whether or not
the remaining correlation may still be substantial enough
to invalidate such methods by affecting important proper-
ties of statistical estimators and tests. The problem invites
further investigation. However, we would like to present
an experiment specially designed to address the consist-
ency question mentioned in the Background section.

To this end, we applied the following algorithm to the
SJRCH data:

1. Select randomly 100 genes and compute the arithmetic
(sample) mean of the t-statistics across these genes for
each pair of subsamples.

2. Compute the standard deviation of the sample mean
across the 15 pairs of subsamples.

3. Select randomly 100 from the remaining genes and
compute the arithmetic mean for the 200 genes for each
pair of subsamples.

4. Compute the standard deviation from the sample
means resulted from the previous step.

5. Continue until the set of all genes is exhausted.

6. Plot the estimated standard deviation of the sample
mean as a function of the number of genes involved in
each step of the algorithm.

7. Repeat the procedure k times to generate k trajectories
of the standard deviation of the sample mean.

The results of one such experiment are given in Figure 3.
It is known that the sample mean is an unbiased and con-
sistent estimator for the true mean value in the case of
independent and identically distributed observations.
This case is represented by Curve 3 generated by simula-
tions. It is clear that the standard deviation decreases very
rapidly and tends to zero with increasing the number of
genes. However, the same is not true for the biological
data. For the raw data, the standard deviation does not
show a distinct tendency to decrease (Curve 1). When the
data are normalized using the quantile normalization
procedure, the standard deviation first drops and then
stabilizes at an approximately constant level, no matter
how many (up to 12,500) genes are involved in its estima-
tion (see Curve 2). This is clearly the effect of (long-range)
correlation between the t-statistics associated with differ-
ent genes. The pattern seen in Figure 3 was highly repro-
ducible across k = 20 experiments with different random
starts. If the standard deviation of an unbiased estimator
tends to zero, this estimator is consistent. This is the case
for Curve 3 but not quite so for Curve 2. While not a rig-
orous disproof of consistency of the sample mean in this
case, the pattern seen in Curve 2 suggests that the estima-
tor is likely to converge to a random variable (with the var-
iance greater than zero) rather than to the true parameter
to be estimated. This is definitely not a good sign for esti-
mation procedures based on pooling across genes such as
those built in the empirical Bayes methodology.

The observed effect of normalization procedures is defi-
nitely bad news for the associative network reconstruction
from gene expression data. Unless further technological
advancements result in a significant reduction of the noise
in microarray data, this kind of analysis will continue pro-
ducing unreliable inferences. To normalize, or not to nor-
malize: that is the question to which no scientifically
sound answer is currently known as far as this kind of
reverse engineering is concerned. Although limited to cell
cultures, the causal inference from gene perturbation (dis-
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ruption and over-expression) experiments seems to be the
only solid alternative. From this standpoint the observa-
tions reported in the present paper add to the concerns
expressed by several investigators regarding how much
confidence to place in the thousands of papers already
published using microarray technology [17].

Conclusion
The present paper provides quantitative insight into corre-
lation between the t-statistics associated with different
genes. This study leads us to conclude that:

• There is a long-range correlation in microarray data
manifesting itself in a huge number of genes that are heav-
ily correlated with a given gene in terms of the associated
t-statistics.

• Using normalization of microarray data it is possible to
significantly reduce correlation between the t-statistics
computed for different genes.

• Normalization procedures affect both the true correla-
tion, stemming from gene interactions, and the spurious
correlation induced by random noise.

• It is likely that some noise effects represent non-mono-
tone transformations of the underlying gene expression
signals because even the rank normalization does not
make the t-statistics independent when applied to the bio-
logical data.

• Even the most effcient normalization procedures are
unable to completely remove correlation between the t-
statistics associated with different genes in biological data.
Furthermore, the long-range correlation structure persists
in normalized data. This remaining correlation may be
strong enough to deteriorate consistency of statistical esti-
mators built from measurements on the genes.

Methods
Study design and biological data
There are 335 arrays (Affymetrix, Santa Clara, CA) in the
SJCRH data set, each array representing N = 12, 558 genes.
Each gene is represented in the data set by the logarithm
of its expression level. The data are publicly available on
the following website: [18]. The SJCRH data include the
information on gene expression in normal blood and var-
ious types of childhood leukemia. The raw (background
corrected but not normalized) expression data were gen-
erated by the output of the Bioconductor RMA (Robust
Multi-Array Average) procedure when choosing the
option: normalization = false. Since our focus was on purely
methodological problems, we pooled all the available
arrays together and shuffed the pooled sample. After ran-
domly choosing and dropping 5 arrays (to make all sub-

samples of the same size), the pooled sample was
randomly split into 30 parts, each containing 11 arrays.

Then 15 pairs of the array samples were arranged and the
corresponding 15 t-statistics were computed for each
gene, thereby mimicking 15 two-sample comparisons
under the null hypothesis of no differential expression. As
a result, each gene was associated with 15 values of the t-
statistic so that the Pearson correlation coeffcient between
the t-statistics thus derived could be computed for any
pair of genes. The output of the above-described series of
procedures is a 12, 558 × 15 matrix of t-statistics and the
associated vector of correlation coeffcients for all pairs of
genes. We proceeded through the same sequence of oper-
ations when analyzing normalized and simulated data
sets.

In a separate experiment, we formed  non-overlapping

pairs of genes to eliminate the spurious correlation
between gene pairs due to multiple entries of the same
gene in different pairs. Since this procedure begins with a
randomly selected pair and proceeds through many steps
of successive elimination of the previously selected pairs,
it was repeated several times with different (random)
starts and each output being analyzed separately. To study
the long-range correlation, we picked 20 genes that pro-
duce large numbers of gene pairs with correlation
coeffcients greater than 0.5. This experiment was designed
to see how a given normalization procedure affects the
number of such pairs associated with each of the twenty
genes. A similar design was used with simulated data.

Simulated data
We simulated several sets of data to gain a better insight
into the effects of normalization. All of them included the
same numbers of arrays and genes as in the biological data
described in the previous section. Specific characteristics
of these data sets are given below.

1. SIMU1: Every element xij, i = 1, ..., 12, 558; j = 1, ..., 335
in SIMU1 represents log-intensity of expression of the ith
gene from the jth array. The independent and identically
distributed random variables xij are generated from the
standard normal distribution. This implies that the origi-
nal expression signals are modeled as log-normally dis-
tributed random variables but we used their logarithms in
our computations. This data set was used to illustrate the
correlation analysis under independence of gene expres-
sion levels.

2. SIMU2 is a 12, 558 × 335 random matrix that models
an exchangeable correlation structure. The entries in this
matrix are normal random variables with mean zero and
unit variance. The entries from different columns are inde-

N

2

Page 9 of 11
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:120 http://www.biomedcentral.com/1471-2105/6/120
pendent, while the correlation coeffcient between any two
elements xij of the same column is equal to 0.8.

3. SIMU2N is a data set based on SIMU2. First we generate
a 335-dimensional random vector A. The elements of A
are independent and identically distributed. The marginal
distri- bution of every element aij of A is uniform over the
interval [5,10]. This random vector is used to model an
array-specific noise. We then define yij to be xij + aj, where
xij is the ij-th entry in the SIMU2 data set. The new matrix
Y = {yij} represents the data SIMU2N

4. SIMU3 is a 12,550 × 335 matrix. The 12,550 rows
(genes) are divided into ten groups of genes, each contain-
ing 1,255 rows. If two genes are both from the k-th group
(gene numbers 100·(k-1)+1 through 100·k), for k = 1, 2,
..., 10, then the correlation coeffcient between them

equals . Any two genes pertaining to different groups

are stochastically independent.

5. SIMU3N is the same as the SIMU3 data set but with an
added noise. An array-specific multiplicative and uni-
formly distributed noise is modeled exactly as in the
SIMU2N data.

Normalization methods
Suppose there are M arrays of length N, and we represent
the corresponding log-intensities as an N × M matrix X
such that each array is represented by a column in X. In
this work, we used the following normalization methods:

1. Geometric mean normalization GEO
If the array-specific random noise is multiplicative then a
reasonable way to remove it from the expression values is
to divide each element of the data matrix by the geometric
mean over all gene expression signals on the array to
which this element belongs. Szabo et al [20] discuss con-
ditions under which this method is a valid one for testing
two-sample hypotheses with microarray data.

2. Rank normalization RANK
This method was proposed by Tsodikov et al [19] and dis-
cussed further in [20]. In accordance with their sugges-
tion, we first obtain a vector Xsort by arranging all gene
expression signals for the same array in increasing order.
Next we replace every entry in this array by its position
(rank) in Xsort counted from the smallest value. The idea
behind this method is that ranks are invariant to any
monotone transformation, implying a much more gen-
eral model for the technological noise than the multipli-
cative array-specific random effect model.

3. Quantile normalization QUANT
As discussed in [21,22], this method is motivated by the
idea that a quantile-quantile plot shows that the distribu-
tion of M data vectors is the same if the plot is a straight

line in the direction of unit vector  but it is

not the same otherwise. So we could make a set of data to
have the same distribution if we projected the points of an
M-dimensional quantile plot onto the diagonal. Much
like as with the RANK method, this approach is applied to
genes rather than arrays. We refer the reader to [21,23] for
more details. When working with the SJCRH data, this
method was applied to probe feature level measurements.
When working with simulated data, the method was
applied to the levels of gene expression directly by
processing them in exactly the same way.
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