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Abstract

Background: Recent analysis of the yeast gene network shows that most genes have few inputs,
indicating that enumerative gene reconstruction methods are both useful and computationally
feasible. A simple enumerative reconstruction method based on a discrete dynamical system model
is used to study how microarray experiments involving modulated global perturbations can be
designed to obtain reasonably accurate reconstructions. The method is tested on artificial gene
networks with biologically realistic in/out degree characteristics.

Results: It was found that a relatively small number of perturbations significantly improve inference
accuracy, particularly for low-order inputs of one or two genes. The perturbations themselves
should alter the expression level of approximately 50-60% of the genes in the network.

Conclusions: Time-series obtained from perturbations are a common form of expression data.
This study illustrates how gene networks can be significantly reconstructed from such time-series
while requiring only a relatively small number of calibrated perturbations, even for large networks,

thus reducing experimental costs.

Background

Recent technological advances have led to an explosive
growth in high-throughput genomic and proteomic data
such as DNA microarrays. The rapid growth in available
data has led in turn to a need for novel quantitive meth-
ods for analysis. As a consequence of this need, the recon-
struction of gene network architectures from DNA
microarray expression data has become a major goal in
the field of systems biology. An increased understanding
of the network architectures and their respective dynamics
will enable novel approaches to disease treatments by
allowing us, for example, to identify drug targets in silico
which manipulate the functional outputs of these net-

works. This process is expected to lead to novel classes of
drug based on a network approach to cellular dynamics.

Frequently, the gene expression data itself is derived from
perturbation experiments such as stress conditions, tem-
perature shifts, and chemical treatments; for example, the
widely used yeast cell-cycle datasets of Cho [1] and Spell-
man [2]. Although these global perturbations are carried
out in order to reveal causality between genes, it is not
always clear how experiments should be designed so as to
reveal as much causality as possible, while both minimis-
ing costly experimentation and remaining computation-
ally tractable.
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A range of computational and mathematical techniques
have been adopted in the effort to find a successful gene
network reconstruction technique. Reconstruction meth-
ods often have to negotiate a tradeoff between intensive
(often intractable) computations, and having to perform
a large number of costly experiments. Certain progress can
be achieved by making simplifications, such as imposing
a limit on the number of inputs to each gene, or making
steady state assumptions about the system [3,4]. Some
techniques described in the literature offer efficient algo-
rithms, but require a large number of experiments, per-
haps as many as there are genes [5-7]. On the other hand,
theoretical work on Boolean models has shown [8] that
perhaps as few as O(log(n)) experiments (input/output
pairs) might be required for n genes, but that to infer these
relationships requires the use of computationally costly
enumeration methods.

In this paper, we propose to explore the issue of how per-
turbation microarray experiments might be designed, and
to suggest how such experiments might be optimised so as
to maximize inference capability. Logical gene network
models have previously been used to investigate gene net-
work robustness [9], perturbation dynamics [10] and evo-
lutionary potential [11], and form the basis of the
inference method used in this study. This inference
method [11] is similar to others in which networks with a
minimal number of connections are reconstructed
through enumeration [12,13]. Given the significant speed
advantage of integer computation over floating point
computation, and that most genes are expected to have
few inputs (93% have between 1 and 4 [14]), the method
is considered to be adequate for this investigation. In this
study, exhaustive evaluation was performed up to a maxi-
mum of 4 inputs of both positive and negative sign (see
Methods). Enumeration is computationally feasible on an
ordinary desktop computer for medium-sized networks
(n ~100), and still tractable for large networks (n ~ 1000),
though this would require some parallelisation. The glo-
bal perturbations themselves are simulated by changing
the state of each gene at random. A perturbation intensity
measure ¢, defines the probability that each gene will
change state (see Methods).

Results and discussion

A limited number of perturbations significantly improve
accuracy

A discrete dynamical model was used to generate time
series data from random networks (see Methods). To
measure the effect of adding perturbations on inference
ability, inference sensitivity (defined as true positives/true
positives + false negatives, see Methods) was measured
against P, the number of additional perturbations. Figure
1 shows the results for predicted solutions with one and
two inputs, as well as overall sensitivity. The top graph in
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Sensitivity vs. P. (a) Sensitivity vs. number of additional
perturbations used. (b) The corresponding standard devia-
tion is shown here separately for clarity. The curves repre-
sent results for overall (i.e. all solutions) sensitivity, and
specific sensitivity for (predicted) one and two-input solu-
tions. Sensitivity is generally lower for higher order of inputs.
Accuracy increases significantly with the number of additional
perturbations used. The results shown are average values for
250 random networks at each data point. The remaining
parameters are fixed: network size N = 50, perturbation
intensity ¢ = 0.5.

figure 1 shows that overall sensitivity is clearly enhanced
by including more perturbation experiments, with lower
order solutions (one and two inputs) reaching higher lev-
els of sensitivity. The bottom graph shows the correspond-
ing inverse relationship for the standard deviation of the
sensitivity (lower for higher P).

It should be noted that the algorithm tends to underesti-

mate the number of inputs a gene may have. This is to be
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Table I: Solution set sizes Distribution for the inferred solution
set sizes, compared to the distribution of indegree in the actual
network for the simulations. These statistics were produced
from 250 random networks run using the following parameter
values: N =50, P = 12, and q = 0.5. The table illustrates how the
algorithm overestimates the number of solutions with zero
inputs.

v 0 | 2 3 >4
inferred 057 012 007 005 019
actual 037 024 0I5 010 014

Mapping degeneracy measure (M)

0 1 1 1
0 5 10 15 20

Number of additional perturbations (P)

Figure 2

M vs. P. M (the number of distinct "concatenated" vectors §;
divided by N, the number of genes) increases in value, as the
number of perturbations (P) is increased. The graph shows
curves for three values of perturbation intensity q.

expected in genes for which dynamics cannot be informa-
tive: for example, consider a gene i which has one or more
negative inputs, as well as having default value OFF. Since
the discrete dynamics for this gene will be the same as if it
had no inputs at all (i.e. zero gene expression for t > 0), the
presence of the inputs is impossible to infer. This under-
estimation effect is clear in table 1, which compares the
distribution of inferred solution set sizes (|Y;|, see Meth-
ods) with the actual solution sizes (i.e. the indegree distri-
bution), and shows that the method is only able to
produce roughly half the number of one and two input
solution sets that actually exist.

The increase in sensitivity with P can be explained at least
partially, in the following way. Since the time series are
discrete, many of the genes may have identical behaviour
over time despite having different inputs (i.e. 5;(t) = s;(¢)
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for two different genes i and j). If we define a "concate-
nated" time series vector

S; = {(s?(t),s}(t),...,sf)(t)) :t>0} for gene i, and then
map each gene i onto S;, we obtain a many-to-one map-
ping. As we increase the number of perturbations, we
might expect the number of distinct time series also to
increase. We define a simple measure to quantify this
mapping, M = n'/N where n' is the number of distinct vec-
tors S;, and N is the number of genes. The maximum value
of M = 1 indicates that the mapping of genes to time series
is one-to-one, whereas lower values indicate degenerate
mappings. The manner in which M increases with the
number of perturbations is shown in figure 2, and shows
how the increase in M reflects the corresponding increase
in sensitivity (figure 1).

Network size and optimal perturbation intensity

The experiments described above were repeated to con-
sider variations in two other parameters: the network size
N, and the perturbation intensity parameter ¢ (roughly,
the proportion of genes whose initial expression level is
changed in each perturbation experiment - see Methods).

To consider the first case, the minimum number of pertur-
bations P* required to reach a given high accuracy crite-
rion was measured for different values of the network size
N. The high accuracy criterion was defined as average sen-
sitivity = 0.95 for one-input solution sets (average
sensitivity is found using a default value q = 0.5 and aver-
aging for all the sensitivity measurements obtained from
250 random networks). To find P*, we first find the
number of perturbations P+, such that average sensitivity
P+>0.95, and average sensitivity (P*- 1) < 0.95. If average
sensitivity P+> 0.95, we use simple linear interpolation to
find the (real) value of P* between P+ and (P*- 1) for
which average sensitivity = 0.95.

The resulting values for P* are shown in figure 3. Since the
relationship is expected to be logarithmic [8], the plot
shows log(N) against P* (logarithms used are base 10). A
least squares best fit gives P* = 1.75 log(N) + 7.02, which,
for N = 1000, gives P* = 12.26. In order to obtain a meas-
ure of variance for P*, we would need to calculate P*-
equivalent values for many individual networks sepa-
rately, then consolidate these values to obtain the relevant
statistics. However, because it was only feasible to con-
sider medium-sized networks (20 < N < 70), and for any
such network we often find only a small number of one-
input solution sets, such statistics were found to be
unreliable.

The second case (varying perturbation intensity) suggests
an optimal range for ¢. Figure 4a shows the inference sen-
sitivity over a range of values for ¢, and figure 4b shows
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Figure 3

Perturbations required for high accuracy The mini-
mum number of perturbations (P¥) required to reach the
high accuracy criterion (average sensitivity = 0.95) for differ-
ent values of the network size N. Each point represents the
average value for 250 random networks inferred. This is
equivalent to finding the value of P for which sensitivity =
0.95 on the one-input curve of figure |(a) for different values
of N (figure I(a) shows N = 50). A linear fit is also shown.

the corresponding standard deviation. Again, inference
sensitivity for one-input solutions is higher than for two-
input solutions, which in turn is higher than overall sen-
sitivity. For one-input solutions, the results show a clear
peak for sensitivity close to the range 0.5 <q < 0.6.
Together with a corresponding minimisation of the stand-
ard deviation in this interval (though it still remains fairly
high in absolute terms), these results suggest that pertur-
bation intensity should be close to this range to optimise
inference accuracy.

Conclusions

A recent analysis of the yeast genetic network has shown
that 93% of genes are regulated by between 1 and 4 genes
[14]. This suggests that enumerative network reconstruc-
tion methods can be useful within computationally
feasible limits. Experiments involving large-scale pertur-
bations (such as temperature shifts, chemical stress) are a
standard way of obtaining time-series of gene expression
data [1,2]. A key result of [14] is that indegree appears to
follow an exponential distribution, whereas outdegree
follows a scale-free distribution, which has enabled the
generation of realistic artificial gene networks used here. A
logical model [11] was used to simulate the perturbed
expression data. Subsequently, experimental parameters
were considered in relation to inference accuracy, namely:

http://www.biomedcentral.com/1471-2105/6/11

a) number of perturbations required, P, and b) perturba-
tion intensity, 4.

The inference method itself is most useful for low order
inputs, with inference accuracy maximized for predicted
single input genes. More accurate methods have been pro-
posed, though these generally require a much larger
number of experiments [5,15]. Methods such as the one
proposed here, which infer relationships from expression
data may well be more successful when used in conjunc-
tion with other methods such as promoter analysis
[16,17], or when used to drive experimental procedure
[18]. Here, the results show that only a relatively small
number of perturbations are necessary in order to achieve
a substantial inference accuracy, even for large N. These
relatively modest experimental requirements would
presumably imply lower experimental costs. The results
also suggest that the perturbations should be calibrated
(by changing stress intensity, for example), so as to alter
the expression levels of approximately half the genes in
each experiment. Generating perturbations which alter
the expression level of half the genes at random may be
difficult to achieve in practice, though experiments can be
designed to come as close to this goal as possible. Even in
the absence of optimal perturbations, we hope the simu-
lation approach described here will still serve as a useful
tool for planning experiments.

Methods

Discrete dynamical model

For a system of N genes, the state of each genes; (i =1, ..,
N) is represented by the binary values O(OFF) and 1(ON).
Additionally, each gene is assigned a default ON/OFF
state 0. € {0, 1}. The gene interactions are described by an
(N x N) matrix C, composed of elements C; € {-1, 0, +1},
representing the positive(+1), zero(0) or negative(-1)
influence of gene j on gene i. State transitions are calcu-
lated as follows:

si(t+1) = 0(i(1)) "

1 if x>-6;
where u;(t) = ;Cijsj(t), o(x)= {O otherwise
The state of the ith gene at the next timestep, s;(t + 1), is
therefore determined by the balance of positive versus
negative inputs which are ON at the previous timestep t.
If the balance is positive, then u,(t) > 0 and the next state
will be 1(ON). Similarly, if the balance is negative, then
u,(t) < 0 and the next state will be 0(OFF). If u,(t) = 0 (indi-
cating either that there are no active input connections, or
that they balance out), then the default value 6. deter-
mines the next state. This default value needs to be given
a priori, and for the purpose of this study will be random.
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Figure 4

Sensitivity vs. q. (a) Average inference sensitivity vs. perturbation intensity g. (b) The variance (one standard deviation) is
shown here separately for clarity. The results show sensitivity for (predicted) one and two-input solutions being generally
higher than the overall case. The results shown are average values for 250 random networks inferred. The remaining parame-
ters are fixed: network size N =50 and P = |2.
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Network inference method

Assuming we are given the state dynamics s(t) and the
default vector 6, the problem is to find the necessary
model parameters (C) which will reproduce these
dynamics. Specifically, a system initialised at s(0) should
reproduce the given dynamics s(t) for t > 0. Note that mul-
tiple s5(t) expression patterns may be defined, which will
be denoted as s'(t) for r = 0, .., P, corresponding to time
series with different initial states s7(0). Our problem is to
find at least one interaction matrix that will reproduce all
given dynamics s’(t). The problem of finding an appropri-
ate matrix C may be broken up into N sub-problems, since
in this system, each gene i may be solved independently
from the others. More precisely, the inputs to gene i (i.e.
C, the ith row of C), can be found independently of the

2
other genes. This reduces the search space from O(3N )

down to O(N3N). Each input zi to gene i is represented as
an ordered pair (j, §),j € {1, .., N}, g € {+ 1}, indicating
an input from gene j of sign g. A solution y(i) for gene i is

a set of K inputs {zi,zé,...,z}(} (with y(i) = ¢if K = 0). For

N
K inputs there are [ % ]2K solutions to evaluate. Starting

with K = 0 (no inputs), we progress up to a maximum of
K = 4, exhaustively evaluating all possible solutions for
each K. However, making a parsimony assumption, if
solutions are found for some K < 4, the method no longer
evaluates for K >K,. Note that the method does not stop as
soon as a solution is found, but evaluates all possible
solutions for K,. The failure rate (percentage of genes for
which no solution was found for K < 4) never exceeded
3% of the genes in any single network for which recon-
struction was attempted.

Global perturbations and the perturbation intensity
measure

The control time series s9(t) is generated by setting s°(0) =
6. The other time series s7(t), r > 0 are obtained from initial
conditions which are perturbations of §, and correspond
to standard experiments such as stress conditions, or
chemical treatments. Since, experimental perturbations
can usually be modulated in intensity (for example, a tem-
perature shift), this was represented using modulated
artificial perturbations. Perturbed initial states s7(0) were
generated by randomly changing each state s9(0) with
probability ¢g. This means that, on average, there will be
gN random state differences between each perturbed ini-
tial state s7(0), and 6.

Measuring inference accuracy

Assuming one or more solutions y, (i), y,(i), ... are found
for gene i, these are consolidated into a solution set, Y; =
Ui{y(i)}. Note that some information about the solutions

http://www.biomedcentral.com/1471-2105/6/11

has been lost using this approach. For example, a solution

set Yl-(z) obtained from a single two-input (K = 2) solu-
tion: Yi(z) ={y(i)} = {zi,zé}, may be equal to another
solution set Yi(l) resulting from two single-input (K = 1)
solutions: Yl-(l) ={(),y,(1)} with y())={z!} and
ra(i) = {3}

However, this consolidation is convenient in that the
solution set is easily compared with the known network
structures using standard accuracy measures such as sensi-
tivity and specificity. Here, accuracy was measured using
sensitivity, defined as true positives / (true positives + false
negatives). The relatively large number of true negatives,
makes specificity, defined as true negatives / (true negatives
+ false positives), an uninformative statistic. Here, true
positives are members of the solution set Y; which are also
true inputs (since the networks will be generated artifi-
cially, true inputs are known), and false negatives are those
true inputs which are not members of the solution set Y;.

Accuracy statistics were gathered from inferences per-
formed on a large number of medium-sized random net-
works (20 < N < 70). Inferences on R random networks
(each with N genes), will produce approximately RN sen-
sitivity measurements (slightly fewer due to the nonzero
failure rate).

Artificial gene network generation

It appears to be the case in gene networks that indegree
follows an exponential distribution, whereas outdegree
appears to follow a scale-free distribution. More specifi-
cally, for the yeast network, the probability distribution
for indegree k follows p;, ~ C,e/ with 8~ 0.45, whereas
the distribution for outdegree follows p;,~ C,, k7, with 7~
1 (C;,, C,, constants) [14]. Here, artificial gene networks
[19] were created using the algorithm for generating
directed graphs with arbitrary in/out degree distributions
described in [20]. The exponential probability distribu-
tion for indegree k is given by:

pr= (1 - e-ﬁ)e-ﬁk,

where £ =0.45 is a constant. Similarly, the power law dis-
tribution (including an exponential cutoff term which is
both biologically realistic and necessary analytically when
7< 2 [20]) for outdegree k is described by:

pk = Ck’r e’?’k,

where C, 7, and 7 = 1 are constants. Since the algorithm
begins by generating in/out-degree pairs for each node, we
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Figure 5
Example network. Example of an artificial gene network with N = 50. Positive interactions are shown in black, negative
interactions in grey. Note the autoregulatory interaction on the upper right hand side. This diagram was generated using Pajek

http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

require equal means for both indegree (<k;, >) and outde-
gree (<k,,, >). Following [20], we obtain expressions for o B eV
the mean in/out degree: <kjy >= o <Ry >=
fout deg TP T A=) In(l—eT)

Page 7 of 8

(page number not for citation purposes)


http://vlado.fmf.uni-lj.si/pub/networks/pajek/

BMC Bioinformatics 2005, 6:11

Since fis given, we obtain a value <k;, > = 1.76, and fit the
free parameter = 0.436 to obtain <k, > = <k;, > Since the
resulting networks are unweighted, non-zero weights (C;
€ {-1, +1}) are assigned at random with probability 0.5,
as in [19]. It should be noted that autoregulatory interac-
tions can be (and indeed were) generated, and that these
present no particular problem for the inference method.
An example of a network which was used in the analysis
is shown in figure 5.
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