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Abstract
Background: In population-based studies, it is generally recognized that single nucleotide
polymorphism (SNP) markers are not independent. Rather, they are carried by haplotypes, groups
of SNPs that tend to be coinherited. It is thus possible to choose a much smaller number of SNPs
to use as indices for identifying haplotypes or haplotype blocks in genetic association studies. We
refer to these characteristic SNPs as index SNPs. In order to reduce costs and work, a minimum
number of index SNPs that can distinguish all SNP and haplotype patterns should be chosen.
Unfortunately, this is an NP-complete problem, requiring brute force algorithms that are not
feasible for large data sets.

Results: We have developed a double classification tree search algorithm to generate index SNPs
that can distinguish all SNP and haplotype patterns. This algorithm runs very rapidly and generates
very good, though not necessarily minimum, sets of index SNPs, as is to be expected for such NP-
complete problems.

Conclusions: A new algorithm for index SNP selection has been developed. A webserver for
index SNP selection is available at

http://cognia.cu-genome.org/cgi-bin/genome/snpIndex.cgi/

Background
Because SNPs are often coinherited as components of a
haplotype, they can be highly correlated. Because of this,
it is theoretically possible to choose a much smaller
number of SNPs to be used as an index set in identifying
haplotype or SNP patterns. Johnson and his collaborators
[1] have referred to such characteristic SNPs as haplotype
tagging SNPs (htSNPs). Bafna et al. [2] refer to them as
informative SNPs, using the language of probability the-
ory. We prefer the use of the more general "index SNPs" to
indicate not only haplotype but any SNP patterns. The use
of index SNPs can reduce the work in SNP-based genotyp-

ing research. Clayton [3] provides computer software for
htSNP selection. In his program, he uses five as the default
maximum htSNP number and implements a brute force
search algorithm to browse over subsets of SNP numbers
up to a given maximum, choosing the subset according to
predetermined criteria. However, if a large number of
index SNPs is required, this algorithm fails. Similarly,
Sebastiani and his collaborators [4] have developed a pro-
gram called BEST (Best Enumeration of SNP Tags); again,
use of this program is not feasible with very large sets of
SNPs. In the HapScope project, Zhang et al. [5] have
developed two programs for selection of index SNPs: BFA,
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a brute force algorithm and GPA, a greedy partition algo-
rithm. We have re-formulated the index SNP selection
problem and developed a new greedy algorithm for index
SNP selection based on a double classification tree search
algorithm similar to the double search algorithm we pre-
viously developed for physical mapping [6]. This is not an
enumeration algorithm. It runs rapidly and generates very
reasonable results, though not guaranteeing generation of
a minimum set, as is expected by the NP-complete nature
of problem. The NP-complete property has been proved
by Bafna et al [2]. For the reader's convenience, we have
attached a brief proof as an appendix.

Algorithm
Classification tree search algorithm for SNP generation
We use a classification tree for partitioning SNP patterns.
We choose SNPs as classifiers in constructing classifica-
tion trees. For example, assume we have a set of SNP pat-
terns or haplotype patterns (henceforth, we will use the
terms "SNP patterns" and "haplotype patterns" inter-
changeably) as shown in Table 1. Note that these are not
stretches of contiguous sequence; only the SNP positions
are indicated.

We can generate a classification tree as shown in Figure 1.

Three SNPs (the first, the third, and the fifth) have been
chosen as classifiers. The three SNPs can be used to iden-
tify the haplotypes. In other words, the three SNPs can be
used as index SNPs for the whole set of SNP patterns. In
this example, a group of three SNPs is the minimum set of
SNPs to distinguish the haplotypes, i.e., the tree has a min-
imum height of three. It is easy to appreciate that there is
no classification tree for the above haplotype set with a
height less then three. We propose here a greedy algo-
rithm to generate a classification tree with a "good"
height, but no guarantee that it is the minimum height.
Our algorithm can be divided into two phases: a greedy
phase to choose the classifiers and a tree-building phase to
divide the haplotype patterns into the subtrees. A classifi-
cation tree will be built by recurrently switching from
greedy phase to tree building phase until all leaves of the
tree have only one haplotype pattern. It is the purpose of
our greedy method to choose a classifier from among the
SNPs based on its possessing the smallest maximum sized
subtree compared to those of the SNPs that have not yet
been used as classifiers. If more than one SNP generates
smallest maximum subtrees of the same height, we then
examine the second maximum subtrees. If they are also
the same size, we check the third, and so on. If all classifi-
ers have smallest maximum subtrees of the same size, we
can choose any one of them. In the above example, the
first SNP has 4 as the maximum size of its subtrees. In con-
trast, the second SNP has 6 as the maximum size of its
subtrees, so it would be rejected. The algorithm is
described in Figure 2.

This algorithm runs very fast. Let the number of SNPs be
N and the number of haplotype patterns be M. The major
calculation is on the loop of step 2 and step 3. Since the
loop can run no more than the number of SNPs: N, step 2
needs less than O(NM) operations. Step 3 needs less than
O(NM) operations also. The total complexity of this algo-
rithm is below the order of O(N2M).

Properties of classifiers
We outline some fundamental properties for a set of clas-
sifiers. We denote a set of classifiers as a complete set if
and only if the set of classifiers can distinguish haplo-
types. If no proper subset of a complete set is a complete
set, we will call it minimal complete set. The smallest
minimal complete set will be called the minimum com-
plete set.

(1) The whole SNP set for the group of haplotypes is a
complete set.

(2) For SNPs with only two variations (the major and the
minor), the size of a complete set of classifiers cannot be
less than log2 N where N is the number of haplotypes.

(3) Any complete set of classifiers can be used to build up
a classification tree. If the complete set is a minimal set,
the height of the tree is equal to the number of classifiers
in the set.

(4) The classification tree algorithm generates a complete
set.

A double classification tree search algorithm
Our goal is to generate a minimum index SNP set. But one
run of the above greedy classification tree search algo-
rithm is insufficient to attain this objective. This can be
demonstrated by examining the set of SNP data presented
in Table 2.

Using the previously described classification tree search
algorithm:

SNP 1 splits the 12 patterns into groups of 6 and 6;

Table 1: A data sample to show the algorithm.

Haplotype1 ACAGATG
Haplotype2 ACGAATG
Haplotype3 ATGGGTG
Haplotype4 GTAAGTG
Haplotype5 GTGGGCA
Haplotype6 GTAGACA
Haplotype7 ATAAGCA
Haplotype8 GTGGACA
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SNP 2 splits the 12 patterns into groups of 8 and 4;

SNP 3 splits the 12 patterns into groups of 7 and 5;

SNP 4 splits the 12 patterns into groups of 7 and 5;

SNP 5 splits the 12 patterns into groups of 7 and 5.

Based on the algorithm, we choose SNP 1 first as classifier.
But no set of four SNPs containing SNP 1 suffice to distin-
guish all 12 patterns:

SNPs 1, 2, 3, 4 cannot distinguish A from B;

SNPs 1, 2, 3, 5 cannot distinguish A from C;

SNPs 1, 2, 4, 5 cannot distinguish A from E;

SNPs 1, 3, 4, 5 cannot distinguish A from I.

Hence, the algorithm will have to choose all five SNPs to
distinguish all the patterns. But SNPs 2, 3, 4, 5 will distin-
guish these patterns, and clearly that is a minimal set. We
have been trapped by SNP 1. In order to avoid such a trap,
a second round tree search is needed. For the second
round search, we force the last classifier of the first round

to be used as the first classifier in the second round. The
same rule is followed for choosing the second classifier,
and so on. By the double search algorithm, in the first
search we may generate classifiers in the order: SNP1,
SNP5, SNP3, SNP4, and SNP2; in the second search we
will generate in order: SNP2, SNP3, SNP4, and SNP5.

Classification tree search algorithm for the data in Table 1Figure 1
Classification tree search algorithm for the data in Table 1.

Table 2: A data sample to show the second round search is 
needed.

1 2 3 4 5

A 1 1 1 1 1
B 1 1 1 1 0
C 1 1 1 0 1
D 0 1 1 0 0
E 1 1 0 1 1
F 1 1 0 1 0
G 0 1 0 0 1
H 0 1 0 0 0
I 1 0 1 1 1
J 0 0 1 1 0
K 0 0 1 0 1
L 0 0 0 1 1
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Index SNP selection with constraints
Sometimes it is necessary to select some important and
interesting SNPs as the index SNPs. In that case, we can
use those SNPs as classifiers first in building up the trees.
Then the greedy algorithm is used to choose additional
classifiers. On our webserver, the user can provide a list for
those SNPs that definitely should be included.

Discussion
The index SNP selection problem is a very important and
practical problem. Since it is an NP-complete problem,
there is no polynomial algorithm so far for an exact solu-
tion. Brute force algorithms have been developed that are
useful for small sets of data. In contrast, the double search

algorithm is good for both small and large data sets. This
algorithm gives a quite reasonable solution but is not
guaranteed to generate the minimum index set. Given the
NP-complete nature of the problem, it may be possible to
develop different approximation algorithms in the future.

We have compared our algorithm with other methods for
a set of real data downloaded from UW-FHCRC Variation
Discovery Resource (SeattleSNPs) [8]. There are 40 SNPs
in this data set (see Figure 3). By our program, 10 index
SNPs were selected from left to right numbered 1, 10, 13,
14, 15, 20, 21, 27, 29, and 36. This is a minimum index
SNP set. We tried to run Best [4]. After one night, we can-
celled the process without any results.

Flow chart of the algorithmFigure 2
Flow chart of the algorithm.

Step 2: Dividing phase: Calculate the size of all  the 

new leaves by using SNP as classifier for all unmarked 

Step 3: Greedy phase: to mark a new SNP with the 

smallest sub trees as a new classifier to refine the 

classification tree, to keep the dividing results from the 

dividing phase and  to add one more layer on the tree 

Step 4: Does any leaf of the classification tree have more 

than one haplotype pattern?

Step 1: Initialize classification tree to set a root that 

includes all haplotype patterns and initialize all SNPs as 

unmarked

END 

NO

YES 
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A test data set was downloaded from UW-FHCRC Variation Discovery Resource (SeattleSNPs)Figure 3
A test data set was downloaded from UW-FHCRC Variation Discovery Resource (SeattleSNPs). On the top of 
this table are the locations of the SNPs. For example, the first SNP is located on the 31st base. The last figure on every haplo-
type is the frequency. For example haplotype one (hap1) has frequency 1087. By our program, 10 index SNPs were selected 
from left to right numbered 1, 10, 13, 14, 15, 20, 21, 27, 29, and 36. The locations are in bold type. This is a minimum index 
SNP set. We tried to run the Best program. After one night, we cancelled the process without any results.

        3612222334567799111111111111112222222222 

        1861277199804837001222346669990223456777 

         037345674841251062789320790675246357334 

          26599278293164816507255482639745306222 

                        746164803910943697800231 

hap1    0000001000000010001000010001000001000000 1087 

hap3    0000001000000010000100010000000000000000 652 

hap16   1101100000000010001000011101000001000000 217 

hap111  0000001000001010000100010000011000000000 217 

hap15   1101100000000010001000011101000001010000 217 

hap157  0000001000001110000000010000010100000110 217 

hap100  0000001000001000100100000000001000000000 217 

hap12   0000001000001010100100011100010000010000 217 

hap2    1101100000000000000000000000000000000000 870 

hap19   0000001000000000000011100000000000001100 652 

hap7    1101100011001010001000011101000001010000 217 

hap5    1101000000001010101100011101011001000000 217 

hap11   1101100011001110001000011101000001010000 217 

hap587  0000001001101010100100100000101000000000 217 

hap9    0010010011010000100000000000010000000000 217 

hap14   1101100001000000000000001100000000000000 217 

hap4    0010010011010010010000000000000010000001 435 

hap10   0010010011011010011000011101000011010001 217 

hap979  0010000011000001010101010000010010000000 217 

hap6    0010010011010100000000000000000010000001 217 

hap43   1101100000000000000010000000000100000110 217 

hap17   1101100011000111011001110001100001100001 217 

hap2006 0010000011000001010000100010100100000000 217 

hap13   1101100101100000001010000000000100000110 217 

hap27   0010000011100111011001111101100001110001 217 

hap31   0010010011010001010000100000100000100001 217 

hap175  1101100101001001110100000000000000000000 217 

hap85   1101100100000001010000000010100000100011 217 

hap18   1101100011010000010001100000100010000000 217 

hap39   0010000100001001010000000010110110100011 217 

hap2717 0010010011110100000011000000000010001110 217 

hap60   1101100101100000000010000010000100001110 217 

hap8    0010000011101001110001100000111010000000 217 

hap68   1101100000001001011000000010110110100011 217 
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This program is designed for haplotype data. It can be
extended for genotype data. It is our strategy to select a
minimum set of index SNPs after a small set of data has
been genotyped and haplotypes have been generated.
Then the selected minimum index SNPs will be used to
genotype the whole sample set.

This program is limited to deal with biallelic SNP. The
non-biallelic case and the missing data case can be devel-
oped using a SNP pattern extension.

Authors' contributions
PZ developed the new double search algorithms. HS
implemented the web-server. RU provided a brief proof
for the NP-completeness. All authors read and approved
the final manuscript.

Appendix: A brief proof of the N-P completeness
We reduce the following NP-complete problem known as
the minimum test set problem [7] to the minimum index
SNP set problem:

Input
Collection C of subsets of a finite set S, positive integer k
≤ C.

Question
Is there a subcollection C' ⊆ C with C' ≤ k such that for
each pair of distinct elements u, v ∈ S, there is some set c
∈ C' that contains exactly one of u and v?

Let C = {c1, ..., cn} and S = {s1, ..., sm}. We then construct
a set of SNPs as follows;

(1) the number of SNPs is n (the number of the size of C),

(2) the number of SNP patterns is m (the number of the
size of S),

(3) the ith letter of the jth SNP pattern is '1' if sj ∈ ci, oth-
erwise '0'.

Intuitively, the jth SNP pattern describes if the element sj
∈ S is in each subset ci or not.

The reduction can be done in linear time, and the solution
of the minimum index SNP set problem directly gives the
solution of the minimum test set problem.
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