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Abstract
Background: Numerous tools have been developed to align genomic sequences. However, their
relative performance in specific applications remains poorly characterized. Alignments of protein-
coding sequences typically have been benchmarked against "correct" alignments inferred from
structural data. For noncoding sequences, where such independent validation is lacking, simulation
provides an effective means to generate "correct" alignments with which to benchmark alignment
tools.

Results: Using rates of noncoding sequence evolution estimated from the genus Drosophila, we
simulated alignments over a range of divergence times under varying models incorporating point
substitution, insertion/deletion events, and short blocks of constrained sequences such as those
found in cis-regulatory regions. We then compared "correct" alignments generated by a modified
version of the ROSE simulation platform to alignments of the simulated derived sequences
produced by eight pairwise alignment tools (Avid, BlastZ, Chaos, ClustalW, DiAlign, Lagan, Needle,
and WABA) to determine the off-the-shelf performance of each tool. As expected, the ability to
align noncoding sequences accurately decreases with increasing divergence for all tools, and
declines faster in the presence of insertion/deletion evolution. Global alignment tools (Avid,
ClustalW, Lagan, and Needle) typically have higher sensitivity over entire noncoding sequences as
well as in constrained sequences. Local tools (BlastZ, Chaos, and WABA) have lower overall
sensitivity as a consequence of incomplete coverage, but have high specificity to detect constrained
sequences as well as high sensitivity within the subset of sequences they align. Tools such as DiAlign,
which generate both local and global outputs, produce alignments of constrained sequences with
both high sensitivity and specificity for divergence distances in the range of 1.25–3.0 substitutions
per site.

Conclusion: For species with genomic properties similar to Drosophila, we conclude that a single
pair of optimally diverged species analyzed with a high performance alignment tool can yield
accurate and specific alignments of functionally constrained noncoding sequences. Further
algorithm development, optimization of alignment parameters, and benchmarking studies will be
necessary to extract the maximal biological information from alignments of functional noncoding
DNA.
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Background
The increasing availability of genome sequences of related
organisms offers myriad opportunities to address ques-
tions in gene function, genome organization and evolu-
tion, but also presents new challenges for sequence
analysis. Many classical tools for sequence analysis are
obsolete, and there has been active effort in recent years to
develop tools that work efficiently with whole genome
data. Aligning long genomic sequences – the first step in
many analyses – is substantially more complex and com-
putational taxing than aligning short sequences, and
many methods have been developed in recent years to
address this challenge (reviewed in [1,2]). Nevertheless,
comparative genomic researchers are still faced with the
task of making decisions such as which alignment tools to
use and which genomes to compare for their particular
application. Benchmarking studies that address both the
selection of alignment methods and the choice of species
can provide the needed framework for informed applica-
tion of genomic alignment tools and biological discovery
in the field of comparative genomics.

Research in alignment benchmarking has focused on the
alignment of protein-coding sequences [3,4], where inde-
pendent evidence (either the three-dimensional structure
of a protein sequence [5,6] or cDNA sequence [7,8]) is
available to use as a "gold standard" to assess the relative
performance of different alignment tools. In contrast, lit-
tle is known about the relative performance of tools to
align noncoding sequences, which comprise the vast
majority of metazoan genomes and contain many func-
tional sequences including cis-regulatory elements that
control gene regulation. For noncoding sequences, little
external evidence is available to evaluate alignment tool
performance. Benchmarking, however, can be achieved by
simulating sequence divergence in silico where it is possi-
ble to generate sequences that are related by a known,
"correct" alignment [9]. Simulation experiments have
been used extensively to assess the performance of differ-
ent methods for phylogenetic reconstruction [10]. Yet
only a few studies to date have exploited simulated data to
benchmark alignment tools [11-18], and currently none
have done so explicitly for the purposes of functional
noncoding sequence alignment.

Here we present results of a simulation-based benchmark-
ing study designed to assess the performance of eight tools
(Avid, BlastZ, Chaos, ClustalW, DiAlign, Lagan, Needle,
and WABA) for the pairwise alignment of noncoding
sequences. We have chosen to address the question of
pairwise alignment since pairwise alignment methods
often are used in the construction of multiple alignments,
since the evaluation of pairwise alignment performance is
more tractable than that of multiple alignment, and since
pairwise alignment performance is an important part of a

general assessment of noncoding alignment strategies. We
have chosen to model noncoding sequence evolution in
the genus Drosophila as a biological system for methodo-
logical evaluation, because of the high quality sequence
and annotations available for D. melanogaster [19,20], and
the recent availability of the genome sequence for the
related species, D. pseudoobscura [21]. In addition, because
of the high rate of deletion as well as the relatively low
density of repetitive DNA as compared with mammalian
genomes [22-24], Drosophila noncoding regions are likely
to be enriched for sequences under functional constraint.
Previous results indicate that Drosophila noncoding
regions contain an abundance of short blocks of highly
conserved sequences, but that the detection of these
sequences is dependent on the alignment method used
[25]. Optimizing strategies for the accurate identification
of functionally constrained noncoding sequences will
play a critical role in the annotation of cis-regulatory ele-
ments and other important noncoding sequences in Dro-
sophila as well as other metazoan genomes.

In this study, we use empirically-derived estimates to
parameterize simulations of noncoding sequence evolu-
tion over a range of divergences that includes those
between species commonly used in comparative genom-
ics such as H. sapiens-M. musculus [26,27], C. elegans-C.
briggsae [28,29] and D. melanogaster-D. pseudoobscura
[30,31]. Alignments of simulated descendent sequences
produced by the tools under consideration were com-
pared to correct alignments and various performance
measures were calculated. In general, we find that global
tools (Avid, ClustalW, DiAlign-G, Lagan, and Needle),
which align the entirety of input sequences, tend to have
the highest accuracy over entire sequences as well as
within interspersed blocks of constrained sequences, but
both measures were decreasing functions of divergence.
Local tools (BlastZ, Chaos, DiAlign-L, and WABA), which
align subsets of input sequences, tend to have the highest
accuracy for the portion of the sequences they align, but
the proportion of sequences included in their alignments
decreased quickly with increasing divergence distance. For
intermediate to high divergences, local tools also showed
a high specificity for only aligning interspersed blocks of
constrained sequences. Despite these general trends, we
find that some tools can systematically out-perform oth-
ers over a wide range of divergence distances. These results
should prove useful for comparative genomics researchers
and algorithm developers alike.

Results
Properties of noncoding DNA in Drosophila
To make our simulation results as biologically meaningful
as possible, we estimated properties of noncoding regions
in D. melanogaster using Release 3 euchromatic genome
sequences and annotations [19,20]. As described in the
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methods, we masked all annotated coding exons and
known transposable elements to derive a data set of
unique sequences representative of noncoding regions in
the D. melanogaster genome. In total, we obtained 55,325
noncoding regions ranging in size from 1 to 156,299 bp
with two modes at approximately 70 and 500 bp (Figure
1). Greater than 95% of noncoding sequences in the D.
melanogaster genome are less than 10 Kb in length, thus 10
Kb was used as the sequence length for our simulations.
Nucleotide frequencies derived from this set of noncoding
regions were used to parameterize both our model of non-
coding DNA as well as our substitution model used in our
simulations.

Estimates of divergence between taxa used in comparative 
genomics
To link our simulations to species commonly used in
comparative genomic analyses of noncoding DNA, we
estimated silent site divergence (Ks) between H. sapiens vs.

M. musculus, C. elegans vs. C. briggsae, and D. melanogaster
vs. D. pseudoobscura (see methods). Since estimates of Ks
are highly dependent on methodology, we sought to gen-
erate estimates between these three species pairs using a
single method. We estimate the mean (and median) of Ks
measured in expected number of substitutions per silent
site, for these species pairs to be: H. sapiens vs. M. musculus
0.64 (0.56); C. elegans vs. C. briggsae, 1.39 (1.26); and D.
melanogaster vs. D. pseudoobscura, 2.40 (2.24). We note
that these divergence estimates do not underlie our simu-
lation, but rather are intended to frame the interpretation
of our simulation results in a biological context.

Simulating noncoding sequence evolution
Using a model of noncoding DNA, parameterized with D.
melanogaster nucleotide frequencies (see Methods for
details), we generated 10 Kb sequences which were used
as "ancestral" inputs to the ROSE sequence evolution sim-
ulation program [9,32] to create pairs of "derived" output

Distribution of noncoding sequence lengths in the D. melanogaster Release 3 genome sequenceFigure 1
Distribution of noncoding sequence lengths in the D. melanogaster Release 3 genome sequence. Sequences 
between coding exons were extracted from the D. melanogaster Release 3 euchromatic genome sequence and annotations, and 
transposable element sequences were subsequently subtracted to produce the "pre-integration" distribution of noncoding 
sequence lengths (see Methods for details).
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sequences. It is important to note that ROSE provides
both pairs of derived sequences and their correct
alignment, and that the modifications to ROSE imple-
mented here allow ancestral constraints to be mapped
onto derived sequences. Sequence evolution in ROSE
occurred under four simulation regimes: A) without inser-
tion/deletion (indel) evolution and without constrained
blocks; B) with indel evolution and without constrained
blocks; C) without indel evolution and with constrained
blocks; and D) with indel evolution and with constrained
blocks. Regime D is the most realistic and relevant for the
interpretation of real biological data. Other regimes were
used to calibrate the outputs of our simulations and
address the effects of different models of evolution on
noncoding sequence alignment. Under each regime,
1,000 replicate pairs of sequences were evolved to each of
eleven divergence distances ranging from 0.25 to 5.0 sub-
stitutions per site. Levels of constraint as well as relative
evolutionary rates of constrained to unconstrained sites
and of indels to point substitution were chosen based on
previously reported estimates from the literature (see
Table 1 and Methods).

Characterization of simulation outputs
To characterize simulation outputs, derived pairs of
sequences in alignments provided by ROSE were analyzed
for the following measures: estimated overall divergence,
estimated divergence in constrained blocks, estimated
divergence in unconstrained blocks, overall identity, iden-
tity in constrained blocks, identity in unconstrained
blocks, fraction of ancestral sequence remaining, fraction
of sequences constrained, and differences in length. These
simulation statistics are summarized in Figure 2 and dem-
onstrate that the expected outputs of our simulations are
observed. In the absence of constrained blocks, estimated
overall divergences correspond well with the input dis-
tance parameters up to 3.0–4.0 substitutions per site (Fig-
ure 2A and 2B, black boxes). In the presence of
constrained blocks, estimated overall divergences (Figure
2C and 2D, black boxes) are less than the input distance
parameters because these sequences are made up of both

unconstrained sites evolving at the rate set by the input
parameter (Figure 2C and 2D, brown triangles) as well as
blocks of constrained sites evolving ten times more slowly
(Figure 2C and 2D, grey circles). The more pronounced
deviation of the estimated overall divergences from the
input distance parameters in the regime with indel evolu-
tion (Figure 2C vs. 2D) is due to preferential deletion of
sequence under no constraint which enriches for con-
strained sites and leads to a decrease in estimated
divergences.

Overall identity between derived pairs in the regimes
without constrained blocks decreases to the random back-
ground of 0.26 (the sum of the squares of the mononucle-
otide frequencies) by 5.0 substitutions per site with and
without indel evolution (Figure 2A and 2B, red crosses).
In the regimes with constrained blocks, unconstrained
sites have the same level of identity as entire sequences in
the regimes without constrained blocks (Figure 2C and
2D, green diamonds), whereas the identity in the con-
strained blocks is much greater (Figure 2C and 2D, yellow
x's). In the regimes with indel evolution, the fraction of
the ancestral sequence remaining diminishes most
quickly in the absence of constrained blocks (Figure 2B,
green triangles). In regime C (with constrained blocks and
without indel evolution), the fraction of constrained sites
in derived sequences matches the input parameter of 0.2
(Figure 2C, blue checked-boxes). However, in regime D
(with constrained blocks and indel evolution), the frac-
tion of constrained sites in derived sequences decreases
below the input parameter of 0.2 at large divergence dis-
tances (Figure 2D, blue checked-boxes). This is because
the derived sequences are on average longer than ancestral
sequences in regime D, differing by 300–400 bp at 1 sub-
stitution per site, 400–500 bp at 2 substitutions per site
and 700–800 bp at 5 substitutions per site. In our simula-
tion there are equal input rates of insertion and deletion,
however deletions are unable to extend into constrained
blocks and are omitted, creating a net excess of insertions
to deletions. This phenomenon was recently proposed as
a possible explanation for differences in observed

Table 1: Summary of parameters used in simulations of noncoding sequence evolution.

Parameter Value Source Refs.

Sequence length 10 Kb D. mel this work (Fig. 1)
AT : GC 60 : 40 Drosophila spp. this work, [31,55]

Transition / Transversion Bias 2 Drosophila spp. [25,56]
Substitution model HKY85 - [54]

Point substitutions : Indels 10 : 1 Drosophila spp. [22,23,25]
Indel spectrum - D. mel [57]

Median constrained block length 18 bp D. mel vs. D. vir [25]
Mean density of constrained blocks 0.2 D. mel vs. D. vir [25]
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Simulation statisticsFigure 2
Simulation statistics. Pairwise alignments were simulated for a range of divergence distances,  using a modified version of 
the ROSE simulation platform under four  different regimes: A) without constrained blocks and without  insertion/deletion 
evolution; B) without constrained blocks and with  insertion/deletion evolution; C) with constrained blocks and without  inser-
tion/deletion evolution; D) with constrained blocks and with  insertion/deletion evolution. For each divergence distance, 1,000 
replicates were used to calculate the mean and standard error for the following statistics: estimated overall divergence (black 
boxes), estimated divergence in constrained blocks of sites (grey circles), estimated divergence in unconstrained blocks of sites 
(brown triangles), identity (red crosses), identity in constrained blocks (yellow x's), identity in unconstrained blocks (green dia-
monds), fraction of ancestral sequence remaining in derived sequences (green triangle), and fraction of constraint (light blue 
checked boxes). Note that the divergence scale in this and following figures is discontinuous.
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insertion:deletion ratios in unconstrained dead-on-arrival
retrotransposon pseudogenes versus noncoding
sequences flanking genes [33].

Comparative analysis of genomic alignment tools
Unaligned pairs of derived sequences generated by ROSE
were used as input to each of the eight genomic alignment
tools (see Methods) and resulting alignments were com-
pared to the simulated alignments produced by ROSE.
Our objective was to test the off-the-shelf performance of
these tools over a wide range of different divergences, so
each tool was run using default parameter settings. In
addition, BlastZ and Chaos were run using author sug-
gested settings (BlastZ-A and Chaos-A), as described in the
Methods. We note that the output of DiAlign can be
treated as both a global alignment as well as a local align-
ment, so we analyzed both (DiAlign-G and DiAlign-L).
Alignments produced by each tool were scored for the
overall coverage and overall sensitivity for all regimes (A–
D), and were also scored for constraint coverage, con-
straint sensitivity, constraint specificity, and local con-
straint sensitivity in the regimes with constrained blocks
(C and D) (see Methods for details).

Coverage
Overall coverage was measured to understand the propor-
tion of ungapped, orthologous pairs of sites in the simu-
lated alignment that were aligned by local tools under
various evolutionary scenarios. The coverage of each tool
under the four simulation regimes is a decreasing function
of divergence for local (but not global) tools (Figure 3). In
the absence of constrained blocks, local tools tend to align
most or all of the sequences for only small divergence dis-
tances (0.25–1.0 substitutions per site), but little or none
of the sequences for intermediate to large divergence dis-
tances (Figure 3A and 3B). [For convenience, for the
remainder of this report we shall refer to 0.25–1.0 substi-
tutions per site as small distances, 1.25–3.0 substitutions
per site as intermediate distances, and 4.0–5.0 substitu-
tions per site as large distances.] One exception is Chaos,
which has negligible coverage past 0.25 substitutions per
site. In the presence of constrained blocks, the coverage of
local tools improves substantially at all but the most
extreme divergence distances. WABA, which was typical of
local tools in the absence of constrained blocks, maintains
high coverage out to more than twice the divergence
distance of the rest of the local tools in the presence of
constrained blocks. WABA also appears to be relatively
unaffected by indel evolution, while the other local tools
show a reduction in coverage of about 0.5 substitutions
per site in regimes with indel evolution (Figure 3A vs. 3B,
3C vs. 3D).

Sensitivity
Overall sensitivity was measured to understand the accu-
racy of each tool to align all orthologous nucleotide sites
under various evolutionary scenarios. The sensitivity of
each tool under the four simulation regimes is a decreas-
ing function of divergence for both local and global tools
(Figure 4). It is important to note that the maximum sen-
sitivity a tool can attain is limited by its coverage. Thus for
most divergence distances, global tools (which by defini-
tion have complete coverage) have greater potential for
high sensitivity relative to local tools, which have incom-
plete coverage (see above, Figure 3). Nevertheless, with
the exception of WABA, the sensitivity of local tools tends
to remain very close to the maximum set by their cover-
age. This implies that although local tools have diminish-
ing coverage with divergence, the portion of the sequence
they do align is aligned quite accurately (see below).
Despite the trend of high sensitivity in aligned regions for
local tools, the sensitivity of the top global tools tends to
be as good as or better than the sensitivity for the top local
tools (Figure 4). This is particularly true for intermediate
to high divergence distances in the absence of indel evolu-
tion. In each of the four regimes, at least one global tool
has a higher sensitivity than the next best local tool for
intermediate to high divergence distances. In the most
biologically relevant regime D, the sensitivity of the high-
est performing tools (such as Lagan and DiAlign) plateaus
over the range of 1.25–3.0 substitutions per site at higher
than 0.35, implying that sites other than those in con-
strained blocks are being accurately aligned (Figure 4D).
In contrast, in the absence of constraint but with indels
(regime B), the sensitivity of all alignment tools is practi-
cally nil for divergences greater than 1 substitution per site
(Figure 4B).

Coverage and sensitivity in constrained sequences
Alignment coverage and sensitivity across all orthologous
sites are informative for understanding the overall per-
formance of a tool, but, for many applications (such as
aligning characterized cis-regulatory elements), research-
ers may only be interested in accurately aligning function-
ally constrained sites. To assess the ability of each tool to
align potentially functional portions of sequences we
measured the coverage and sensitivity only for ortholo-
gous nucleotide sites within constrained blocks (Figure
5). Constraint coverage is better than overall coverage for
local tools but the degree of improvement varies consider-
ably (Figure 5A and 5B). BlastZ, BlastZ-A and WABA all
have very similar overall and constraint coverage, suggest-
ing little discrimination in attempting to align con-
strained versus unconstrained sites. In contrast, DiAlign-L
and Chaos-A have much improved constraint coverage
compared with overall coverage, suggesting a preferential
alignment of constrained sites. For example in the
Page 6 of 17
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Overall alignment coverageFigure 3
Overall alignment coverage For each divergence distance and each tool, 1,000 replicates were used to calculate the mean 
and standard error of overall alignment coverage, which was defined as the fraction of ungapped, orthologous pairs of sites in 
the simulated alignment that were included in an alignment produced by a tool (see Methods for details). A) overall coverage 
without constrained blocks and without insertion/deletion evolution; B) overall coverage without constrained blocks and with 
insertion/deletion evolution; C) overall coverage with constrained blocks and without insertion/deletion evolution; D) overall 
coverage with constrained blocks and with insertion/deletion evolution.
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Overall alignment sensitivityFigure 4
Overall alignment sensitivity For each divergence distance and each tool, 1,000 replicates were used to calculate the mean 
and standard error of overall alignment sensitivity, which was defined as the fraction of ungapped, orthologous pairs of sites in 
the simulated alignment that were aligned correctly in an alignment produced by a tool (see Methods for details). A) overall 
sensitivity without constrained blocks and without insertion/deletion evolution; B) overall sensitivity without constrained 
blocks and with insertion/deletion evolution; C) overall sensitivity with constrained blocks and without insertion/deletion evo-
lution; D) overall sensitivity with constrained blocks and with insertion/deletion evolution.
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Constraint coverage and sensitivityFigure 5
Constraint coverage and sensitivity For each divergence distance and each tool, 1,000 replicates were used to calculate 
the mean and standard error of constraint coverage and constraint sensitivity, which were defined as the coverage and sensitiv-
ity within interspersed constrained blocks (see Methods for details). A) constraint coverage without insertion/deletion evolu-
tion; B) constraint coverage with insertion/deletion evolution; C) constraint sensitivity without insertion/deletion evolution; D) 
constraint sensitivity with insertion/deletion evolution.
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presence of indels, DiAlign-L accurately aligns 86% and
64% of constrained sequences at divergences between
1.25 and 3.0 substitutions per site.

Constraint sensitivity of all tools is much better than over-
all sensitivity but, as with constraint coverage, the degree
of improvement varies considerably across tools (Figure
5C and 5D). Similar to overall sensitivity, global tools
tend to maintain the highest sensitivity out to large diver-
gence distances in the presence of constrained sites. It is of
note that in the presence of indel evolution (Figure 5D),
constraint sensitivity of the best performing global tools
(as well as the local Dialign-L) closely parallels the
decrease in identity of constrained sites (Figure 2D), sug-
gesting that they are attaining near-maximal constraint
sensitivity. Most tools show only moderate decreases in
constraint sensitivity in the presence of indel evolution
but a few, like ClustalW, Chaos-A, and BlastZ have dra-
matic decreases in constraint sensitivity in the presence of
indel evolution.

Specificity to detect constrained sequences
Constraint coverage and constraint sensitivity reveal the
ability of alignment tools to detect and align all ortholo-
gous nucleotides sites within constrained blocks, but for
some purposes (like cis-regulatory element prediction)
researchers may want to align only constrained nucleotide
sites and nothing else, even at the expense of missing
some functionally constrained sites. To evaluate the abil-
ity of each tool to provide high quality alignments of just
potential functionally constrained sites, we measured
their constraint specificity and local constraint sensitivity.
As shown in Figure 6, constraint specificity is an increas-
ing function of divergence for most tools because uncon-
strained sequences accumulate mismatches and indels
more quickly than the constrained blocks and are thus
more likely to be gapped or left out of local alignments.
This is particularly true for local tools where decreasing
coverage can increase constraint specificity, and less so for
global tools for which it is gap parameters that predomi-
nantly affect constraint specificity at different divergence
distances. Most tools have higher constraint specificity in
the presence of indel evolution, although this trend is less
pronounced in the highest specificity tools, Chaos and
DiAlign-L. All local tools except WABA increase quickly
until they reach a constraint specificity of 0.8–0.9 at which
point their constraint specificity plateaus. In the presence
of indel evolution, near-maximal constraint specificity is
achieved between 1.25 and 3.0 substitutions per site.

Local constraint sensitivity (Figure 6) is equivalent to con-
straint sensitivity (Figure 5) for the global tools, but for
the local tools it differs in that it is a measure of their con-
straint sensitivity just within the subsequences they align.
For BlastZ, BlastZ-A, Chaos, and DiAlign-L, local con-

straint sensitivity is nearly maximal (1.0) with and with-
out indel evolution across all divergences studied. For
Chaos-A and WABA, local constraint sensitivity varies
with divergence distance and is less than the other local
tools. Thus local tools can produce nearly perfect align-
ments within constraint blocks while maintaining rela-
tively high constraint specificity, though it is important to
note that this may not be meaningful if the coverage of a
tool is extremely low (e.g. BlastZ, BlastZ-A, Chaos).

Discussion
In this report we investigate the performance of eight pair-
wise genomic alignment tools to align functional noncod-
ing DNA such as that found in metazoan cis-regulatory
regions. To do so, we have used a biologically-informed
simulation approach to determine off-the-shelf perform-
ance over a range of divergence distances. This study
provides important information regarding the ability of
genomic alignment tools to identify and align constrained
sequences in noncoding regions, which would not other-
wise be possible. We argue that a simulation study is nec-
essary to achieve our goal since large datasets of
functionally annotated noncoding sequences are not
available to use as "gold standards" of alignment accu-
racy. Likewise, datasets of large orthologous genomic
regions spanning a range of divergence distances are only
recently becoming available [31,34]. As is common in
alignment benchmarking [4,17,35], we have studied per-
formance of alignment tools using default parameters
since fundamental differences in objective functions, scor-
ing matrices, the type and values of parameters, and algo-
rithmic design prevent a systematic exploration of
parameter space.

We have attempted to construct a realistic simulation of
noncoding sequence evolution and test alignment
performance for species with genomic properties similar
to Drosophila. Noncoding alignment assessment for mam-
malian and other species with large, repeat-rich genomes
would require modifications to our current simulation,
such as the inclusion of ancestral repeats and lineage-spe-
cific transposition events. Moreover, as more becomes
known about the substitution process in noncoding
regions (especially those under weak primary sequence
constraint), it will be important to implement more real-
istic models such as context-dependent substitution [36-
38]. It would be also instructive to assess alignment
performance based on a simulation that decouples sup-
pression of indel rates from substitution rates, given the
possibility that the spacing (but not the primary
sequence) between conserved noncoding segments may
be constrained [31]. In addition, though we have
attempted to be systematic in our evaluation of tools, we
unfortunately cannot have included all available pairwise
alignment tools. As new pairwise alignment tools emerge
Page 10 of 17
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Constraint specificity and local constraint sensitivityFigure 6
Constraint specificity and local constraint sensitivity For each divergence distance and each tool, 1,000 replicates were 
used to calculate a mean and standard error of constraint specificity and local constraint sensitivity. Constraint specificity was 
defined as the fraction of unconstrained sites in the simulated alignment that were unaligned or gapped in an alignment pro-
duced by a tool. Local constraint specificity was defined as the constraint sensitivity for just the sites contained in an alignment 
produced by a tool (see Methods for details). A) constraint specificity without insertion/deletion evolution; B) constraint spe-
cificity with insertion/deletion evolution; C) local constraint sensitivity without insertion/deletion evolution; D) local constraint 
sensitivity with insertion/deletion evolution.
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and old tools are modified or brought to our attention, we
will update our results periodically on the web using the
same set of simulated alignments presented here [39].
Moreover, assessment of tools which take advantage of
the phylogenetic information and higher signal-to-noise
inherent in multiple alignments will be an essential exten-
sion to this work to provide a more general evaluation of
strategies for noncoding alignment.

From the standpoint of the most biologically relevant
simulation regime studied here (D, which includes indel
evolution and interspersed blocks of constrained
sequences), our results indicate that global alignment
tools have the highest sensitivity in general to align
orthologous sites accurately in noncoding sequences, as
well as blocks of constrained sites (Figures 4D, 5D). We
find that constraint sensitivity of the top global tools can
be quite high (>75%) and limited only by sequence iden-
tity in constrained sites at intermediate divergence dis-
tances (1.25–3.0 substitutions per site), whereas overall
sensitivity is relatively low beyond such intermediate
divergence distances. The improved performance of glo-
bal tools over local tools is largely a consequence of
incomplete coverage of both constrained and uncon-
strained sites in alignments produced by local tools (Fig-
ure 3). The subset of sequences aligned by the highest
performing local tools, however, is accurately aligned and
specifically corresponds to constrained sites (Figure 6). In
fact, most local tools can effectively discriminate between
constrained and unconstrained sites to greater than 80%
specificity at intermediate divergence distances while the
constrained portions of their alignments are nearly per-
fectly aligned at large divergence distances. Finally, when
compared with regime C (which excludes indel evolution
but includes interspersed constrained blocks), it is clear
that our model of indel evolution affects alignment cover-
age, sensitivity and specificity, but not enough to overturn
these major trends.

These results have important implications for the analysis
of functional noncoding sequences. First, if a researcher's
goal is to align all constrained sites in a noncoding region,
then a global tool like Lagan will reliably produce the best
results, but will require post-processing to identify con-
strained sequences [40,41]. Conversely, if one's goal is to
align only constrained blocks in a noncoding region, then
a local tool like Chaos will reliably produce the best
results, provided that complete recovery of all constrained
sequences is not required. The distinct virtues of both glo-
bal and local tools are currently incorporated in the out-
put of only one alignment tool, DiAlign. For this reason,
use of the global parse of DiAlign (DiAlign-G) can provide
high coverage and sensitivity across entire noncoding
regions, while use of the local parse of DiAlign (DiAlign-
L) will specifically provide highly accurate alignments of

blocks of constrained sites. In light of these results, we rec-
ommend the further development of global alignment
tools that also output a local parse of high confidence
local alignments contained within, which should be pos-
sible since local anchors are often used in the construction
of the global alignment (e.g. [7,8]).

Our results also indicate that for species with structural
and evolutionary constraints on noncoding sequences
such as those found in Drosophila, DiAlign can produce
alignments with high coverage and sensitivity, as well as
high specificity to detect constrained sites in the range of
1.25–3.0 substitutions per site. Since the divergence
between D. melanogaster vs. D. pseudoobscura and between
C. elegans vs. C. briggsae falls within this range, we suggest
that the use of DiAlign for detecting functionally con-
strained noncoding sequences will prove successful in
these taxa on a genomic scale. In contrast, our results also
indicate that species pairs such as H. sapiens and. M. mus-
culus may not be sufficiently diverged for a single pairwise
comparison to provide the needed resolution to detect
functionally constrained noncoding sequences, though
differences in genome organization and evolution
between flies and mammals require a more thorough
evaluation of this claim. This conclusion, however, sup-
ports results based on Poisson modelling of point substi-
tution that approximately 3 substitutions per site would
be needed to detect functional constrained sites reliably in
mammalian noncoding DNA [42].

Finally, the results presented here also imply that biologi-
cal and technical conditions exist with which to study
with accuracy the evolutionary events underlying the
process of cis-regulatory evolution in flies and worms.
Current evolutionary models of cis-regulatory sequence
divergence posit the gain and loss of transcription factor
binding sites, even under constant functional constraints
[43,44]. However, the absence of alignable binding sites
in comparisons of divergent sequences may result from
inaccuracies in alignment as well as the bona fide loss of
transcription factor binding sites. We suggest that align-
ments of noncoding sequences using tools such as DiA-
lign in the range of 1.25–3.0 substitutions per site are of
sufficient accuracy to measure binding site loss among
divergent species pairs, such as the high levels recently
reported in the genus Drosophila [45,46].

Conclusions
Our study demonstrates that recently developed align-
ment tools have the potential to produce biologically
meaningful alignments of functional noncoding DNA on
a genome scale. Continued development of alignment
algorithms in conjunction with parameter optimization
and continued benchmarking will be necessary to provide
the highest quality genomic alignments under the wide
Page 12 of 17
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/6
diversity of genomic and evolutionary scenarios to be
studied.

Methods
Modelling input sequences for the simulation of 
Drosophila noncoding DNA
To generate biologically relevant input sequences for our
simulation, we estimated properties of noncoding
sequences in the genome sequences of the fruitfly, D. mel-
anogaster. First we extracted all noncoding regions from
the Release 3 D. melanogaster genomic sequences based on
annotations in the Gadfly database [19,20,47]. This was
accomplished by masking all DNA corresponding to cod-
ing exons, producing inter-coding-exon intervals. Subse-
quent to extracting noncoding regions, transposable
elements were masked using annotations in Gadfly to cre-
ate "pre-integration" noncoding sequences. In our analy-
sis, we chose to treat all noncoding sequences (intergenic,
intronic, untranslated region) together since many non-
coding sequences cannot be unambiguously categorized
because of alternative splicing or alternative promoter
usage. Moreover, previous results revealed that similar
evolutionary constraints act on intergenic and intronic
sequences in Drosophila [25]. Summary statistics of non-
coding sequence lengths were calculated using the R sta-
tistical package (Figure 1) [48].

The probabilistic dependence of adjacent bases in D. mel-
anogaster noncoding sequences was assessed by Markov
chain analysis in order to create an accurate model of ran-
dom noncoding sequences [49]. TE-masked noncoding
sequences were concatenated, and n-mers of size 1 to 10
were counted. Counts of reverse complementing n-mers
were averaged, and used to estimate frequencies of each n-
mer [50]. Based on these counts and frequencies, we
determined the likelihood of Markov chains of orders 1
through 9 describing Drosophila noncoding sequences,
and evaluated the likelihood of each Markov chain using
the Bayesian information criterion [49,51]. This analysis
revealed that D. melanogaster noncoding sequences are
best modeled by a 7th-order Markov chain (data not
shown). We therefore created the ancestral input
sequences for our evolution simulations using a 7th-order
Markov chain. We note that because our evolutionary
simulation models bases independently (see below), the
higher order structure of these ancestral input sequences
was not maintained in the more divergent derived output
sequences. Nevertheless, sequences generated by a 0th-
order Markov chain gave qualitatively and quantitatively
similar simulation and alignment results, with correlation
among performance measures for the 0th-order and 7th-
order generated sequences exceeding an r2 of 0.97 (data
not shown).

Divergence estimates in flies, worms and mammals
Estimates of silent site divergence (Ks) between H. sapiens
vs. M. musculus, C. elegans vs. C. briggsae, and D. mela-
nogaster vs. D. pseudoobscura were obtained using the yn00
method in PAML (version 3.13) [52,53]. The mean and
median of Ks were calculated for 29 fly, 193 worm, and
153 mammalian coding sequence alignments taken from
references [31,28] and [26], respectively.

Simulating noncoding sequence divergence
Noncoding sequence evolution was simulated using a
modified version of the sequence simulation program
ROSE [9]. In general, in the absence of large datasets of
noncoding sequences from closely related Drosophila spe-
cies, we have taken estimates of noncoding evolution
from previous results reported in the literature. Beginning
with ancestral sequences, evolution occurred on two
descendent branches of equal length under the HKY
model of point substitution [54], with a transition/trans-
version bias of 2 to reflect the nucleotide and transition
biases observed in Drosophila noncoding sequences
[25,55,56]. The substitution rate was set to 0.01 such that
a branch length unit was on average 0.01 substitutions per
site. Total branch lengths spanned a range of divergence
times from 0.25 to 5.0 substitutions per site. Insertion/
deletion evolution was based on the length distribution of
polymorphic indels estimated in [57], and occurred at a
10-fold lower rate than point substitution, approximating
relative rates estimated in [22,23].

To model the evolution of constrained blocks in noncod-
ing sequences a modification of the ROSE sequence simu-
lation program was developed to map constraints on
ancestral sequences onto derived sequences (available for
download as ROSE version 1.3 from [58]). Constraints on
noncoding sequences were modelled as short blocks of
highly conserved sequences typical of cis-regulatory
sequences, and follow a lognormal distribution with
parameters estimated in [25]. On average, interspersed
blocks of constrained sites accounted for 20% of the sites
in ancestral sequences, a conservative estimate of
constraint in Drosophila noncoding DNA [25]. Parameters
used in our simulations are summarized in Table 1.

Estimation of evolutionary distance for simulated align-
ments was performed using the F84 model of sequence
evolution in the DnaDist program of the PHYLIP package
[59] with a transition:transversion ratio of 1.0 (note that
a transition:transversion ratio of 1.0 in PHYLIP is equiva-
lent to a transition/transversion bias of 2 in ROSE, see dis-
cussion in [53]). Summary statistics for the simulations
were calculated using the R statistical package (Figure 2)
[48].
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Tools for aligning noncoding DNA
The alignment tools tested in this study were chosen
based on the criteria that they are (1) publicly available,
(2) run in batch mode from the command line and are
able to produce (3) strictly co-linear, (4) error-free, pair-
wise genomic alignments of sequences (5) up to 10 Kb in
length. Tools like BBA [60] (5), Bl2seq [61] (3), DBA [62]
(4), MUMmer [63] (3), Owen [64] (2) and SSEARCH [65]
(3) were not evaluated since they do not satisfy one of
these criteria. We now briefly describe the tools that we
tested.

Avid [7] is a pairwise global alignment tool whose general
strategy for aligning two sequences is to anchor and align
iteratively. A set of maximal (but not necessarily unique)
matches between the sequences is constructed using a suf-
fix tree. Dynamic programming is used to order and orient
the longest matches, which are then fixed. For each subse-
quence remaining between the fixed matches, the process
is repeated until every base is aligned. When sequences are
short and the matches make up less than half of the total
sequence, the program defaults to the Needleman-Wun-
sch algorithm [66].

The Chaos/Lagan [8] suite of tools consists of a pairwise
local alignment tool, Chaos, and a global alignment tool,
Lagan. Chaos starts by finding all words between the two
sequences of a specified length and a specified maximum
number of mismatches. These words are then chained
together if they are close together in both sequences.
These maximal chains are then scored and all chains that
are above a specified threshold are returned. Lagan starts
by running Chaos with conservative parameter settings
and then finds the optimal path through the maximal
chains using dynamic programming. Lagan then recur-
sively calls Chaos with increasingly more permissive
parameters on the regions between each maximal chain in
the optimal path. When the recursion has created a dense
map of maximal chains that have been ordered with
dynamic programming, Lagan runs the Needleman-Wun-
sch algorithm on the whole length of both sequences but
puts close bounds around the maximal chains to provide
the final global alignment. Chaos was run on default
parameters as well as using parameters suggested by the
authors: word length = 7, number of degeneracies = 1,
score cut-off = 20 and extension mode on.

BlastZ [67] is a pairwise local alignment tool that is based
on the gapped BLAST algorithm that has been redesigned
for the alignment of long genomic sequences. BlastZ first
removes lineage-specific interspersed repeats from each
sequence, then searches for short near-perfect matches
between the two sequences. Each match is extended first
using gap-free dynamic programming and if it scores
above a specified threshold it will be extended using

dynamic programming with gaps; extended matches that
score above a specified threshold are then kept. Part of the
unique implementation of BlastZ is that it can be forced
to return alignments that are both unique within each
sequence as well as collinear with respect to each other. To
satisfy our strict collinear requirement, we ran BlastZ with
both of these options. Blastz was also run using the
author's suggestion of lowering the score cut-off (k) to
2000 (BlastZ-A).

DiAlign (v. 2.1) [68] is a segment-to-segment alignment
algorithm. Like the BLAST algorithms, DiAlign looks for
short ungapped segments that have a similarity that devi-
ates from what would be expected by random chance,
keeping segments with a score above a certain threshold.
These high scoring segments are then aligned into a col-
linear global alignment using a dynamic programming
algorithm. DiAlign produces a global alignment but dis-
tinguishes high confidence columns of an alignment from
low confidence columns. We used DiAlign as both a glo-
bal (DiAlign-G) and a local (DiAlign-L) alignment tool.

ClustalW (v. 1.8) [71] was used on default settings. Clus-
talW is a progressive multiple alignment tool that reduces
to the Needleman-Wunsch algorithm in the pair-wise case
with default parameters of a match score of 1.9, mismatch
penalty of 0, a gap open penalty of 10 and a gap extension
penalty of 0.1.

The second implementation of the Needleman-Wunsch
algorithm used in this study is the needle program in the
EMBOSS suite of tools [70]. needle was used with default
parameter settings of a match score of 5, a mismatch pen-
alty of 4, a gap open penalty of 10 and a gap extension
penalty of 0.5.

The final tool tested, WABA [71], is a three-tier alignment
algorithm. The first tier partitions the first sequence into
overlapping windows of 2 Kb and then defines a synteny
map of high scoring 2 Kb windows of the first sequence
onto the second sequence. The second tier then carefully
aligns syntenic regions using a seven-state, pair Hidden
Markov Model that includes separate query and database
insertion/deletion states, high and low noncoding conser-
vation states, as well as three coding states (one for each
position in a codon). The final tier then attempts to
assemble individual alignments together into a more glo-
bal alignment.

Alignment performance measures
The performance of alignment tools was assessed using six
basic measures: overall coverage, overall sensitivity, con-
straint coverage, constraint sensitivity, constraint specifi-
city and local constraint sensitivity. Overall coverage and
overall sensitivity were measured for all four evolutionary
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regimes (A-D) while the constraint measures were only
measured in the two regimes that included constrained
blocks (C, D). Alignments produced by each alignment
tool were parsed to generate the statistics, which were then
used to calculate each performance measure.

Each site in an alignment produced by a tool (a site being
a base in one strand of a column of an alignment) can
have two simulated alignment states, two constraint
states, three tool alignment states, and two conditional
tool alignment states. The two simulated alignment states
are "homolog" (h), ungapped sites in the simulated
alignments, and "no homolog" (nh), gapped sites in the
simulated alignments. Simulations without indel evolu-
tion have only homolog sites since there are no gaps in the
simulated alignments. The two constraint states are "con-
strained" (c), sites in constraint blocks, and "uncon-
strained" (u), sites not in constrained blocks. The three
tool alignment states are "aligned" (a), sites aligned in the
tool alignment, "gapped" (g), sites gapped in the tool
alignment, and "not aligned" (na), sites not included in a
local tool alignment. The two conditional tool alignment
states are "aligned correctly" (ac), sites aligned to the same
site in both the tool and simulated alignments, and
"aligned incorrectly" (ai), sites aligned to different sites in
the tool and simulated alignments. There are fourteen
possible combinations of these states (e.g. homolog con-
strained aligned correctly, h_c_ac), giving us fourteen sta-
tistics to calculate for each estimated alignment. Counts
for each statistic were used to calculate the following
measures:

Overall coverage is the fraction of ungapped sites in a sim-
ulated alignment that are included in a tool alignment.
Overall Coverage = (h_c_ac + h_c_ai + h_c_g + h_u_ac +
h_u_ai + h_u_g) / (h_c_ac + h_c_ai + h_c_g + h_c_na +
h_u_ac + h_u_ai + h_u_g + h_u_na)

Overall sensitivity is the fraction of ungapped sites in a
simulated alignment that are aligned to the correct base in
a tool alignment. Overall Sensitivity = (h_c_ac + h_u_ac)
/ (h_c_ac + h_c_ai + h_c_g + h_c_na + h_u_ac + h_u_ai +
h_u_g + h_u_na)

Constraint coverage is the fraction of ungapped con-
strained sites in a simulated alignment that are included
in a tool alignment. Constraint Coverage = (h_c_ac +
h_c_ai + h_c_g) / (h_c_ac + h_c_ai + h_c_g + h_c_na)

Constraint sensitivity is the fraction of ungapped con-
strained sites in a simulated alignment that are aligned to
the correct base in a tool alignment. Constraint Sensitivity
= (h_c_ac) / (h_c_ac + h_c_ai + h_c_g + h_c_na)

Constraint specificity is the fraction of unconstrained sites
in a simulated alignment that are gapped or not included
in a tool alignment. Constraint Specificity = (h_u_g +
h_u_na + nh_u_g + nh_u_na) / (h_u_ac + h_u_ai + h_u_g
+ h_u_na + nh_u_a + nh_u_g + nh_u_na)

Local constraint sensitivity is the fraction of sites that are
both, contained in a tool alignment and are ungapped
constrained sites in a simulated alignment, that are
aligned to the correct base in the tool alignment. Local
Constraint Sensitivity = (h_c_ac) / (h_c_ac + h_c_ai +
h_c_g)

For each of these six measures, a mean and standard error
of the mean were calculated for up to 1000 replicates
(local tools do not always return an alignment and repli-
cates which produced no alignment were not counted
toward the mean) using R.

Authors' contributions
DAP conducted the sequence simulation, alignment accu-
racy experiments and analyses and drafted the manu-
script. CMB conceived of the study, participated in its
design and analyses, and drafted the manuscript. JS devel-
oped the simulation software. SEC and MBE provided
computational infrastructure and participated in the coor-
dination of the study. All authors read and approved the
final manuscript.

Acknowledgements
We thank Mark Yandell and Chris Mungall for providing scripts to extract 
noncoding sequences, Erwin Frise for assistance with cluster computing, 
and Cristian Castillo-Davis and Anton Nekrutenko for kindly providing 
worm and mammalian coding sequence alignments. We thank Venky Nand-
agopal for discussions on alignment specificity, Hunter Fraser, Emily Hare, 
Alan Moses, and Monty Slatkin for critical reading of the manuscript, and 
Alex Kondrashov and one anonymous reviewer for helpful comments on 
the manuscript. This work was supported by NIH grant HG00750 to G. 
Rubin. DAP is supported by NIH training grant T32 HG00047 to D. 
Rokhsar and J. Rine. CMB is supported by NIH training grant T32 HL07279 
to E. Rubin and by a Royal Society USA Research Fellowship. MBE is a Pew 
Scholar in the Biomedical Sciences. Research was conducted at the Law-
rence Berkeley National Laboratory under Department of Energy contract 
DE-AC0376SF00098.

References
1. Miller W: Comparison of genomic DNA sequences: solved

and unsolved problems. Bioinformatics 2001, 17:391-397.
2. Frazer KA, Elnitski L, Church DM, Dubchak I, Hardison RC: Cross-

species sequence comparisons: a review of methods and
available resources. Genome Res 2003, 13:1-12.

3. McClure MA, Vasi TK, Fitch WM: Comparative analysis of mul-
tiple protein-sequence alignment methods. Mol Biol Evol 1994,
11:571-592.

4. Thompson JD, Plewniak F, Poch O: A comprehensive compari-
son of multiple sequence alignment programs. Nucleic Acids Res
1999, 27:2682-2690.

5. Sauder JM, Arthur JW, Dunbrack Jr RL: Large-scale comparison of
protein sequence alignment algorithms with structure
alignments. Proteins 2000, 40:6-22.
Page 15 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.5.391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.5.391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.222003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.222003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.222003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=148477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=148477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10373585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/27.13.2682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813826


BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/6
6. Brenner SE, Chothia C, Hubbard TJ: Assessing sequence compar-
ison methods with reliable structurally identified distant
evolutionary relationships. Proc Natl Acad Sci U S A 1998,
95:6073-6078.

7. Bray N, Dubchak I, Pachter L: AVID: A Global Alignment
Program. Genome Res 2003, 13:97-102.

8. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Program NC,
Green ED, Sidow A, Batzoglou S: LAGAN and Multi-LAGAN:
Efficient Tools for Large-Scale Multiple Alignment of
Genomic DNA. Genome Res 2003.

9. Stoye J, Evers D, Meyer F: Rose: generating sequence families.
Bioinformatics 1998, 14:157-163.

10. Hillis DM, Huelsenbeck JP, Cunningham CW: Application and
accuracy of molecular phylogenies. Science 1994, 264:671-677.

11. Thorne JL, Kishino H, Felsenstein J: An evolutionary model for
maximum likelihood alignment of DNA sequences. J Mol Evol
1991, 33:114-124.

12. Thorne JL, Kishino H, Felsenstein J: Inching toward reality: an
improved likelihood model of sequence evolution. J Mol Evol
1992, 34:3-16.

13. Holmes I, Durbin R: Dynamic programming alignment
accuracy. J Comput Biol 1998, 5:493-504.

14. Stoye J: Multiple sequence alignment with the Divide-and-
Conquer method. Gene 1998, 211:GC45-56.

15. Hein J, Wiuf C, Knudsen B, Moller MB, Wibling G: Statistical align-
ment: computational properties, homology testing and
goodness-of-fit. J Mol Biol 2000, 302:265-279.

16. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Res 2002, 30:3059-3066.

17. Lassmann T, Sonnhammer EL: Quality assessment of multiple
alignment programs. FEBS Lett 2002, 529:126-130.

18. Metzler D: Statistical alignment based on fragment insertion
and deletion models. Bioinformatics 2003, 19:490-499.

19. Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A,
Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George
RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park
S, Pfeiffer BD, Richards S, Svirskas R, Tabor PE, Wan K, Scherer SE,
Stapleton M, Sutton GG, Venter C, Weinstock G, Myers EW, Gibbs
RA, Rubin GM: Finishing a whole genome shotgun sequence
assembly: Release 3 of the Drosophila euchromatic genome
sequence. Genome Biology 2002, 3:research0079.1-research0079.14.

20. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell K, Hradecky
P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy
JL, Whitfield EJ, Bayraktaroglu L, Berman BP, Celniker SE, A.D.N.J. de
Grey., Drysdale RA, Harris NL, Richter J, Russo S, Shu S, Stapleton M,
Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE: Anno-
tation of the Drosophila euchromatic genome: a systematic
review. Genome Biology 2002, 3:research0083.1-research0083.22.

21. Baylor College of Medicine Drosophila Genome Project
[http://www.hgsc.bcm.tmc.edu/projects/drosophila/]

22. Petrov DA, Lozovskaya ER, Hartl DL: High intrinsic rate of DNA
loss in Drosophila. Nature 1996, 384:346-349.

23. Petrov DA, Hartl DL: High rate of DNA loss in the Drosophila
melanogaster and Drosophila virilis species groups. Mol Biol
Evol 1998, 15:293-302.

24. Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel
S, Frise E, Wheeler DA, Lewis S, Rubin GM, Ashburner A, Celniker
SE: The transposable elements of the Drosophila mela-
nogaster euchromatin – a genomics perspective. Genome
Biology 2002, 3:research0084.

25. Bergman CM, Kreitman M: Analysis of conserved noncoding
DNA in Drosophila reveals similar constraints in intergenic
and intronic sequences. Genome Res 2001, 11:1335-1345.

26. Nekrutenko A, Makova KD, Li WH: The K(A)/K(S) ratio test for
assessing the protein-coding potential of genomic regions:
an empirical and simulation study. Genome Res 2002,
12:198-202.

27. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal
P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE,
Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B,
Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown
SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S,
Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins
FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V,
Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitza-

kis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn
DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A,
Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey
TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt
L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M,
Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A,
Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I,
Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK,
Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby
A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T,
Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S,
Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH,
McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD,
Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E,
Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash
WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor
MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin
KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC,
Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM,
Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J,
Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T,
Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith
DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M,
Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C,
Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M,
Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K,
Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson
RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM,
Zody MC, Lander ES: Initial sequencing and comparative anal-
ysis of the mouse genome. Nature 2002, 420:520-562.

28. Castillo-Davis CI, Hartl DL: Genome evolution and develop-
mental constraint in Caenorhabditis elegans. Mol Biol Evol
2002, 19:728-735.

29. Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chin-
walla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachio P, Fitch
DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW,
Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P,
Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Sta-
jich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH: The
Genome Sequence of Caenorhabditis briggsae: A Platform
for Comparative Genomics. PLoS Biol 2003, 1:E45.

30. Zeng LW, Comeron JM, Chen B, Kreitman M: The molecular clock
revisited: the rate of synonymous vs. replacement change in
Drosophila. Genetica 1998, 102-103:369-382.

31. Bergman CM, Pfeiffer BD, Rincón-Limas DE, Hoskins RA, Gnirke A,
Mungall CJ, Wang AM, Kronmiller B, Pacleb J, Park S, Stapleton M,
Wan K, George R, de Jong PJ, Botas J, Rubin GM, Celniker SE:
Assessing the impact of comparative genomic sequences
data on the functional annotation of the Drosophila genome.
Genome Biology 2002, 3:research0086.1-research0086.20.

32. Stoye J, Evers D, Meyer F: Generating benchmarks for multiple
sequence alignments and phylogenetic reconstructions. Proc
Int Conf Intell Syst Mol Biol 1997, 5:303-306.

33. Ptak SE, Petrov DA: How intron splicing affects the deletion
and insertion profile in Drosophila melanogaster. Genetics
2002, 162:1233-1244.

34. Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-
Sternberg SM, Margulies EH, Blanchette M, Siepel AC, Thomas PJ,
McDowell JC, Maskeri B, Hansen NF, Schwartz MS, Weber RJ, Kent
WJ, Karolchik D, Bruen TC, Bevan R, Cutler DJ, Schwartz S, Elnitski
L, Idol JR, Prasad AB, Lee-Lin SQ, Maduro VV, Summers TJ, Portnoy
ME, Dietrich NL, Akhter N, Ayele K, Benjamin B, Cariaga K, Brinkley
CP, Brooks SY, Granite S, Guan X, Gupta J, Haghighi P, Ho SL, Huang
MC, Karlins E, Laric PL, Legaspi R, Lim MJ, Maduro QL, Masiello CA,
Mastrian SD, McCloskey JC, Pearson R, Stantripop S, Tiongson EE,
Tran JT, Tsurgeon C, Vogt JL, Walker MA, Wetherby KD, Wiggins LS,
Young AC, Zhang LH, Osoegawa K, Zhu B, Zhao B, Shu CL, De Jong
PJ, Lawrence CE, Smit AF, Chakravarti A, Haussler D, Green P, Miller
W, Green ED: Comparative analyses of multi-species
sequences from targeted genomic regions. Nature 2003,
424:788-793.

35. Morgenstern B, Frech K, Dress A, Werner T: DIALIGN: finding
local similarities by multiple sequence alignment. Bioinformat-
ics 1998, 14:290-294.
Page 16 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.95.11.6073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.789803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.789803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.2.157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8171318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8171318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1920447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1920447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1556741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1556741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0378-1119(98)00097-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0378-1119(98)00097-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9669886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.2000.4061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.2000.4061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.2000.4061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/gkf436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0014-5793(02)03189-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0014-5793(02)03189-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12354624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0083
http://www.hgsc.bcm.tmc.edu/projects/drosophila/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/384346a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/384346a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=151186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=151186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.178701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.178701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.178701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11483574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=155263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=155263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=155263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.200901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nature01262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nature01262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11961106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11961106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=261899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=261899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=261899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14624247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1371/journal.pbio.0000045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1023/A:1017035109224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1023/A:1017035109224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1023/A:1017035109224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9720289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9322053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9322053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nature01858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nature01858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.3.290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.3.290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9614273


BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/6
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

36. Averof M, Rokas A, Wolfe KH, Sharp PM: Evidence for a high fre-
quency of simultaneous double-nucleotide substitutions. Sci-
ence 2000, 287:1283-1286.

37. Arndt PF, Burge CB, Hwa T: DNA sequence evolution with
neighbor-dependent mutation. J Comput Biol 2003, 10:313-322.

38. Siepel A, Haussler D: Phylogenetic Estimation of Context-
Dependent Substitution Rates by Maximum Likelihood. Mol
Biol Evol 2003.

39. AlignmentBenchmarking  [http://rana.lbl.gov/AlignmentBench
marking]

40. Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I,
Pachter L, Rubin EM: Phylogenetic shadowing of primate
sequences to find functional regions of the human genome.
Science 2003, 299:1391-1394.

41. Elnitski L, Hardison RC, Li J, Yang S, Kolbe D, Eswara P, O'Connor
MJ, Schwartz S, Miller W, Chiaromonte F: Distinguishing regula-
tory DNA from neutral sites. Genome Res 2003, 13:64-72.

42. Cooper GM, Brudno M, Green ED, Batzoglou S, Sidow A: Quantita-
tive estimates of sequence divergence for comparative anal-
yses of mammalian genomes. Genome Res 2003, 13:813-820.

43. Ludwig MZ, Bergman C, Patel N, Kreitman M: Evidence for stabi-
lizing selection in a eukaryotic cis-regulatory element. Nature
2000, 403:564-567.

44. Cuadrado M, Sacristan M, Antequera F: Species-specific organiza-
tion of CpG island promoters at mammalian homologous
genes. EMBO Rep 2001, 2:586-592.

45. Costas J, Casares F, Vieira J: Turnover of binding sites for tran-
scription factors involved in early Drosophila development.
Gene 2003, 310:215-220.

46. Emberly E, Rajewsky N, Siggia ED: Conservation of regulatory
elements between two species of Drosophila. BMC
Bioinformatics 2003, 4:57.

47. Mungall CJ, Misra S, Berman BP, Carlson J, Frise E, Harris N, Marshall
B, Shu S, Kaminker JS, Prochnik SE, Smith CD, Smith E, Tupy JL, Wiel
C, Rubin G, Lewis SE: An integrated computational pipeline
and database to support whole genome sequence
annotation. Genome Biology 2002,
3:research0081.1-research0081.11.

48. Comprehensive R Archive Network  [http://cran.r-project.org/]
49. Weir BS: Genetic Data Analysis II. Sunderland, MA, Sinauer Associ-

ates, Inc.; 1996:445. 
50. Burge C, Campbell AM, Karlin S: Over- and under-representa-

tion of short oligonucleotides in DNA sequences. Proc Natl
Acad Sci U S A 1992, 89:1358-1362.

51. Katz RW: On some criteria for estimating the order of a
Markov chain. Technometrics 1981, 23:243-249.

52. Yang Z, Nielsen R: Estimating synonymous and nonsynony-
mous substitution rates under realistic evolutionary models.
Mol Biol Evol 2000, 17:32-43.

53. PAML (version 3.13)  [http://abacus.gene.ucl.ac.uk/software/
paml.html]

54. Hasegawa M, Kishino H, Yano T: Dating of the human-ape split-
ting by a molecular clock of mitochondrial DNA. J Mol Evol
1985, 22:160-174.

55. Moriyama EN, Hartl DL: Codon usage bias and base composi-
tion of nuclear genes in Drosophila. Genetics 1993, 134:847-858.

56. Moriyama EN, Powell JR: Intraspecific nuclear DNA variation in
Drosophila. Mol Biol Evol 1996, 13:261-277.

57. Comeron JM, Kreitman M: The correlation between intron
length and recombination in Drosophila. Dynamic equilib-
rium between mutational and selective forces. Genetics 2000,
156:1175-1190.

58. ROSE (version 1.3)  [http://bibiserv.techfak.uni-bielefeld.de/rose/]
59. PHYLIP (version 3.5c)  [http://evolution.genetics.washington.edu/

phylip.html]. Seattle
60. Zhu J, Liu JS, Lawrence CE: Bayesian adaptive sequence align-

ment algorithms. Bioinformatics 1998, 14:25-39.
61. Tatusova TA, Madden TL: BLAST 2 Sequences, a new tool for

comparing protein and nucleotide sequences. FEMS Microbiol
Lett 1999, 174:247-250.

62. Jareborg N, Birney E, Durbin R: Comparative analysis of noncod-
ing regions of 77 orthologous mouse and human gene pairs.
Genome Res 1999, 9:815-824.

63. Delcher AL, Phillippy A, Carlton J, Salzberg SL: Fast algorithms for
large-scale genome alignment and comparison. Nucleic Acids
Res 2002, 30:2478-2483.

64. Ogurtsov AY, Roytberg MA, Shabalina SA, Kondrashov AS: OWEN:
aligning long collinear regions of genomes. Bioinformatics 2002,
18:1703-1704.

65. Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci U S A 1988, 85:2444-2448.

66. Needleman SB, Wunsch CD: A general method applicable to
the search for similarities in the amino acid sequence of two
proteins. J Mol Biol 1970, 48:443-453.

67. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC,
Haussler D, Miller W: Human-mouse alignments with
BLASTZ. Genome Res 2003, 13:103-107.

68. Morgenstern B: DIALIGN 2: improvement of the segment-to-
segment approach to multiple sequence alignment. Bioinfor-
matics 1999, 15:211-218.

69. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.

70. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular
Biology Open Software Suite. Trends Genet 2000, 16:276-277.

71. Kent WJ, Zahler AM: Conservation, regulation, synteny, and
introns in a large-scale C. briggsae-C. elegans genomic
alignment. Genome Res 2000, 10:1115-1125.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.287.5456.1283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.287.5456.1283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10678838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1089/10665270360688039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1089/10665270360688039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12935330
http://rana.lbl.gov/AlignmentBenchmarking
http://rana.lbl.gov/AlignmentBenchmarking
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1081331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1081331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.817703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.817703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.1064503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.1064503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.1064503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35000615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35000615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11454739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11454739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11454739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0378-1119(03)00556-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0378-1119(03)00556-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12801649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=302112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=302112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14629780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-4-57
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-12-research0081
http://cran.r-project.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=48449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=48449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1741388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10666704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10666704
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3934395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3934395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8349115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8349115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8583899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8583899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11063693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11063693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11063693
http://bibiserv.techfak.uni-bielefeld.de/rose/
http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.1.25
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.1.25
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0378-1097(99)00149-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0378-1097(99)00149-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10339815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.9.9.815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.9.9.815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=117189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=117189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/30.11.2478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/18.12.1703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/18.12.1703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=280013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=280013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.809403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.809403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.3.211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.3.211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10222408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=308517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=308517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=308517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0168-9525(00)02024-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0168-9525(00)02024-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.10.8.1115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.10.8.1115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.10.8.1115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958630
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Properties of noncoding DNA in Drosophila
	Estimates of divergence between taxa used in comparative genomics
	Table 1

	Simulating noncoding sequence evolution
	Characterization of simulation outputs
	Comparative analysis of genomic alignment tools
	Coverage
	Sensitivity
	Coverage and sensitivity in constrained sequences
	Specificity to detect constrained sequences


	Discussion
	Conclusions
	Methods
	Modelling input sequences for the simulation of Drosophila noncoding DNA
	Divergence estimates in flies, worms and mammals
	Simulating noncoding sequence divergence
	Tools for aligning noncoding DNA
	Alignment performance measures

	Authors' contributions
	Acknowledgements
	Acknowledgements

	References

