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Abstract
Background: To identify differentially expressed genes, it is standard practice to test a two-
sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are
essentially univariate and disregard the multidimensional structure of microarray data. A more
general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of
expression signals.

Results: By building on an earlier proposed multivariate test statistic, we propose a new algorithm
for identifying differentially expressed gene combinations. The algorithm includes an improved
random search procedure designed to generate candidate gene combinations of a given size. Cross-
validation is used to provide replication stability of the search procedure. A permutation two-
sample test is used for significance testing. We design a multiple testing procedure to control the
family-wise error rate (FWER) when selecting significant combinations of genes that result from a
successive selection procedure. A target set of genes is composed of all significant combinations
selected via random search.

Conclusions: A new algorithm has been developed to identify differentially expressed gene
combinations. The performance of the proposed search-and-testing procedure has been evaluated
by computer simulations and analysis of replicated Affymetrix gene array data on age-related
changes in gene expression in the inner ear of CBA mice.

Background
The set of microarray expression data on p distinct genes
is represented by a random vector X = X1,..., Xp with sto-
chastically dependent components. The dimension of X is
typically very high relative to the number of observations
(replicates of experiment). The standard practice is to test
the hypothesis of no differential expression for each gene.

Formulated in terms of the marginal distributions of all
components of X, this hypothesis means that the expres-
sion levels of a particular gene are identically distributed
under two (or more) experimental conditions. It is com-
monly believed that the only challenging problem here is
that of multiple statistical tests, because the correspond-
ing test statistics computed for different genes are
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stochastically dependent. This problem is discussed in [2]
in the context of microarray data analysis. Resampling
techniques [3,4] provide a universal approach to the prob-
lem of multiple dependent tests inherent in the most typ-
ical study designs. However, there is another aspect of the
standard approach that warrants special attention. Any
test constructed solely in terms of marginal distributions
of gene expression levels disregards the multidimensional
(dependence) information hidden in gene interactions,
which is its most obvious deficiency.

In a recent paper, Szabo et al. [5] proposed to build a tar-
get set of interesting genes from non-overlapping subsets
of genes of a given size (≥1) that have been declared dif-
ferentially expressed in accordance with a pertinent statis-
tical test. The size of each sought-for subset is naturally
constrained by the available sample size. This approach
strives to preserve the dependence structure at least within
each of such building blocks, which is already a major
step toward a more general methodology of microarray
gene expression data analysis.

No matter what specific statistical techniques are chosen
to approach the problem of identifying differentially
expressed gene combinations rather than individual
genes, the hypothesis that the expression levels of a given
set of genes are identically distributed across the condi-
tions under study is the most meaningful hypothesis to be
tested. However, this hypothesis is now formulated in
terms of the joint distribution of expression levels. The
issue of multiple testing is dramatically magnified with
multivariate methodology, because the total number of
tests to be carried out at all steps of multivariate selection
may be many orders of magnitude larger than with uni-
variate methods. A constructive idea is to design a random
search procedure for identifying differentially expressed
sets of genes followed by testing significance of a final set.
Szabo et al. [5,6] proposed a search procedure based on
maximization of a new distance between multivariate dis-
tributions of gene expression signals. They used permuta-
tion techniques for hypotheses testing. To adjust for
multiple testing, the null-distribution was estimated from
the test statistics generated by each optimal (in terms of
the adopted distance) set of genes found in each permuta-
tion sample. The authors provided an illustrative example
of clear advantages of multivariate methodology over uni-
variate approaches. In the present paper, we improve the
cross-validation and multiple testing components of the
earlier proposed algorithm. This new combination of the
search-and-testing procedures furnishes a sound statistical
methodology for multivariate analysis of microarray data.

Results
Mathematical framework: measure of differential 
expression
To compare gene expression signals in two different exper-
imental conditions (states) one needs a pertinent distance
between two random vectors. Such a distance is expected
to satisfy the following requirements: (1) it should have a
clear probabilistic meaning; (2) it should accommodate
both continuous and categorical data; (3) its estimate
should be stable to random fluctuations and numerical
errors; (4) its computation should not be too time con-
suming. A distance that meets all the above requirements
was proposed in [6].

Let X = X1,..., Xd and Y = Y1,..., Yd, d ≤ p, be two random
sub-vectors with probability measures µ and ν, respec-
tively, defined on the Euclidean space Rd. Let K(x, y) be a
strictly negative definite kernel, that is

 for any x1,..., xs from Rd and any

real numbers h1,..., hs, , with equality if and

only if all hi = 0. Introduce the following expression

The quantity N(µ, ν) can be shown [7] to be a metric in
the space of all probability measures Rd, so that the null
hypothesis in two-sample comparisons can be formulated
as H0 : N(µ, ν) = 0. A normalized version of N can be

derived as , where

If K(x, y) = Ψ(x - y) and Ψ(·) is homogeneous of any
order, then Nnorm is both location and scale invariant.

Consider two independent samples, consisting of n1and
n2 observations respectively, represented by the d-dimen-

sional vectors  and , and introduce an

empirical counterpart (nonparametric estimate) of N(µ,
ν) as follows

A very important advantage of the empirical counterpart

 of the distance N is that it does not involve numeri-
cally unstable high-dimensional components (such as
covariance matrix or its inverse), thus it is expected to be
numerically stable even for small sample sizes. This was
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corroborated by a computer simulation study [5], in
which this distance demonstrated a much higher stability
than the Mahalanobis distance and the nearest neighbor
classifier.

Another distinct advantage of the approach based on 
is a wide selection of negative definite kernels that are sen-
sitive to various departures from the hypothesis: µ = ν. Let
x and y denote observations in two samples on a particu-

lar set  of variables. We consider either of these obser-
vations to be points in Euclidean space Rd. One natural
choice is the Euclidean distance between points represent-
ing experimental measurements:

When this kernel is applied to logarithms of gene expres-

sion signals the corresponding distance  is scale invari-
ant. Another possible choice is a bounded kernel
exemplified by

Yet another kernel based on the correlation coefficient
tends to pick up sets of genes with separated means and
differences in correlation in the two samples under com-
parison [6]. One can also use a convex combination of the
above mentioned kernels with the weights chosen in such
a way as to make the distance more sensitive to particular
types of the alternative hypothesis.

The search-and-testing algorithm
Once a multivariate distance between expression signals
has been selected, it can be employed in a search for dif-
ferentially expressed genes with the target subset of genes
being defined as a subset for which the distance between
the two groups under comparison attains its maximum.
Unlike univariate testing, an exhaustive multivariate
search is computationally prohibitive because the number
of possible subsets increases as the d-th power of the total
number of genes. The issue of computational complexity
can be resolved by applying random search methodology.
Random search can be designed in a number of various
ways. One simple algorithm was described in [6,8]. We
used this algorithm, hereafter designated as Simple Ran-
dom Search (SRS), with multiple random starts and long
sequences of search steps in the application reported in
the present paper. We also compared its performance with
that of simulated annealing [1].

To reduce the selection bias associated with choosing a
small number of variables from a large set [9], Szabo et al.

[5,6] suggested to use cross-validation techniques with the
search for a target subset of genes running in each cross-
validation cycle. The basic structure of our cross-valida-
tion algorithm is as follows:

Algorithm A1: Cross-validated search for differentially expressed 
genes
1. Randomly draw (without replacement) u1 samples
from one group of arrays and u2 samples from the other
group.

2. Leave out the selected arrays and find the optimal (in
accordance with the chosen criterion) subset of genes
using only the data from the remaining arrays.

3. Repeat steps 1 and 2 in succession v times to obtain v
"optimal" sets of genes.

The main problem here is that the algorithm results in
many overlapping sub-optimal sets, and one needs to
somehow combine them to report a single final set. Szabo
et al. resorted to a somewhat unnatural way of forming a
final set by selecting single genes with the highest frequen-
cies of occurrence in sub-optimal sets. In our new algo-
rithm, this is accomplished through designing a second-
stage cross-validated search limited to the union of the
previously selected sets. In the second-stage search proce-
dure, cross-validation is carried out at each step of random

search with the distance  averaged over all cross-valida-
tion samples. With this approach, the correlation struc-
ture is better preserved when combining the results of
cross-validation. The foregoing description of the second-
stage search may be summarized in the following
algorithm:

Algorithm A2: The second-stage cross-validated random search
1. Form the union of all sets resulted from Algorithm A1
to represent an initial target set. Drop the data on all other
genes from the data set.

2. Initiate a random search algorithm.

3. At each step of the search algorithm, randomly draw
(without replacement) l1 samples from one group of
arrays and l2 samples from the other group. Leave out the
selected arrays and compute the N-statistic using only the
data from the remaining arrays. Perform this computation
r times.

4. Compute the average (arithmetic mean) of the N-statis-

tics resulted from step 3. Denote this average by .
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5. Move to the next step of random search using the statis-

tic  as a pertinent objective function to be maximized.

In the application discussed in the present paper, we used
Algorithm A2 with 200 cross-validated samples in the sec-
ond stage of the search algorithm. The two-stage search
algorithm runs with multiple random starts and returns
the most differentially expressed (in terms of the distance

) gene combination of a given size.

Once an optimal set has been found, all genes pertaining
to this set are discarded and a search for the next set of dif-
ferentially expressed genes is initiated. Szabo et al. [5] pro-
posed a stopping rule based on a permutation significance
test. In the improved version of our algorithm, instead of
testing significance at each step of the successive selection
of subsets of genes, the selection procedure runs (without
testing) for a preset number of steps, thereby forming a
reasonably long sequence of non-overlapping "maximal"
subsets. The same cross-validated random search proce-
dure is applied to each permutation sample, generated to
model the complete null hypothesis for disjoint subsets of
genes, and finally the step-down multiple testing resam-
pling algorithm by Westfall and Young [4] is applied to
the subsets thus selected. If all the null hypotheses happen
to be rejected, the selection procedure goes on eliminating
subsets of genes resulting from the search algorithm, oth-
erwise the procedure stops. The heuristic procedure thus
designed mimics its univariate multiple testing (marginal
hypotheses testing) counterpart with known properties
[4], thereby ensuring an approximate control of the fam-
ily-wise error rate (FWER).

Suppose that all tests are two-tailed and utilize the same

test statistic , then the following resampling algorithm
can be proposed:

Algorithm A3: Successive selection of differentially expressed gene 
combinations
1. Form m permutation samples of sizes n1and n2, respec-
tively, from n1+ n2 replicated observations (arrays). For
each of the m permutation samples, run (without testing)
the successive selection algorithm to find a preset number
I of disjoint sets. At each step of successive selection, an
optimal k-element set is identified by the two-stage cross-
validated search algorithm and the corresponding m

sequences of -values are stored.

2. Returning to the original two-sample setting, find a
sequence of I optimal sets of the same size k and compute

the respective test statistics  for the selected sets.

3. Apply the step-down multiple testing resampling algo-
rithm by Westfall and Young [4] to the N-statistics result-
ing from Steps 1 and 2. If the number of rejected
hypotheses is less than I then stop and declare all the
rejected sets of genes differentially expressed, otherwise
return to Step 1 and continue successively selecting sets of
genes. A faster version of Step 3 uses the single-step resa-
mpling adjustment [4].

The above algorithm can be reformulated in terms of p-
values. The algorithm is computationally more expensive
than its prototype presented in [5]. We used a SunFire
V480 station to implement the algorithm. This "brute
force" approach is needed to extract more information
from multivariate gene expression profiles.

With the above approach, no distributional assumptions

are needed although the test statistic  is not distribu-
tion free. For this statistic, however, it can be proven that
permutations produce samples from a distribution that is,
in some sense, the least favorable for rejecting an underly-
ing composite null hypothesis. In other words, permuta-
tions provide an optimal choice of a null distribution.
More precisely, this theoretical result is valid for the resa-
mpling (with replacement) analog of permutations, but
regular (without replacement) permutations may be a
good approximation to this resampling procedure if both
samples under comparison are not too small. This con-
cept and its mathematical framework is discussed at
length in our previous report [10].

For efficient nonparametric estimation of adjusted p-val-
ues associated with sets of genes resulting from random
search, it is also desirable that the test statistic be scale
invariant for any sample size. A statistic that meets this
requirement is an empirical counterpart of the normal-
ized distance Nnorm with a properly chosen kernel func-
tion, see formula (2) and the succeeding explanation. Yet
another possibility is to use the kernel K1 with log-intensi-
ties of gene expressions. We employed the latter pivoting
structure of the N-statistic in the analysis of simulated and
biological data presented in the subsequent sections.

Simulation studies
We first tested our methodology by computer simula-
tions. To this end, we designed a simulation study as
follows.

Two sets of data on 1,000 genes were simulated. For con-
venience we will label them as "control" and "treatment"
samples, respectively. The size of each sample was equal
to 10. In the treatment group, the first 12 genes were set to
be differentially expressed. To simulate these genes, loga-
rithms of gene expression signals were generated from a
multivariate normal distribution with an exchangeable
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correlation structure. The algorithm designed to simulate
such data is presented in the Appendix. The correlation
coefficient for all pairs of gene log-intensities was set
equal to 0.6, while the standard deviation was chosen to
be either σ = 0.5 or σ = 1 for all individual genes. The
mean log-expression values τ for the genes assigned to the
target set of genes were specified as follows: τ = 5 for the
first 4 genes (Subset 1), τ = 4 for the second group of 4
genes (Subset 2), τ = 3 for the third group of 4 genes (Sub-
set 3). The remainder of the genes (not differentially
expressed) were simulated as log-normally distributed
random variables with τ = 1 and the same standard devi-
ation (either σ = 0.5 or σ = 1) and correlation coefficient.
The 1,000 genes in the control group were simulated just
like those that were not differentially expressed in the
treatment group.

Our search-and-testing procedure was applied to the data
sets thus generated in order to see whether (and how fre-
quently) it can find all subsets, as well as all individual
genes, included in the target set of differentially expressed
genes. In each experiment, the SRS algorithm was run with
multiple random starts. At each step of the successive
selection of genes, the algorithm sought for a subset of 4
genes. The parameter I in Algorithm A3 was set equal to 5.
Since the sole purpose of our simulations was to check
how well a given algorithm finds a maximum of the N-sta-
tistic over gene sets, no recourse to cross-validation was
made in this study. The number of permutations was set
at 200. Because such simulations are very time consuming
the experiment was repeated only 100 times. Two samples
(control and treatment) were generated in each of the 100
experiments.

First we tested the SRS algorithm with 8 random starts and
2,500 search steps. When σ = 0.5 for the treatment group
the algorithm was able to correctly recover Subset 1 in

82%, Subset 2 in 72%, and Subset 3 in 76% of simulation
runs. The proportion of cases where all 12 genes were cor-
rectly recovered (irrespective of the order they entered the
selected subsets) was 61%. The false discovery rate,
defined as the mean proportion of falsely discovered
genes among the true differentially expressed genes, was
equal to 0.02.

When σ = 1 the SRS algorithm recovers Subset 1 in 76%,
Subset 2 in 56%, and Subset 3 in 39% of the simulation
runs. The proportion of cases where all 12 genes were cor-
rectly recovered was 53%. The false discovery rate was
equal to 0.04.

As one would expect, the SRS algorithm performed better
with 16 random starts and 3,600 search steps. For σ = 0.5,
the rate of correct discovery becomes 100% for all three
sets. For σ = 1 the algorithm correctly recovers Subset 1 in
81%, Subset 2 in 65%, and Subset 3 in 48% of simulation
runs. The proportion of cases where all 12 genes are cor-
rectly recovered is 62%. However, the false discovery rate
remains essentially the same as when running the SRS
algorithm with 8 starts and 2,500 search steps. The results
on individual simulated genes are presented in Table 1.

By way of comparison, we ran the Westfall and Young
algorithm with a univariate counterpart of the test statistic
N at the same level of FWER. While the results for σ = 0.5
were identical (100% correct recovery), the univariate
method recovered less genes (45%) in the target set when
we set σ = 1. In the latter case, the univariate algorithm
had a uniformly lower correct discovery rate for genes #9
through #12 (69%, 71%, 70%, 71%, respectively) in com-
parison to the multivariate method (Table 1). One should
not expect much discrepancy between the univariate and
multivariate methods in these simulations because the
alternative hypotheses were modeled in a univariate way.

Table 1: Proportions of correct discoveries for each gene in the target set.

Gene SRS: 8 starts, 2500 steps SRS: 16 starts, 3600 steps

Correct discovery µ = 1, σ = 0.5 Correct discovery µ = 1, σ = 1 Correct discovery µ = 1, σ = 0.5 Correct discovery µ = 1, σ = 1

1 100% 100% 100% 100%
2 100% 100% 100% 100%
3 100% 100% 100% 100%
4 100% 100% 100% 100%
5 100% 97% 100% 99%
6 100% 99% 100% 100%
7 100% 100% 100% 100%
8 100% 100% 100% 100%
9 99% 78% 100% 76%
10 99% 76% 100% 78%
11 96% 72% 100% 74%
12 97% 74% 100% 72%
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In another experiment we studied the simulated anneal-
ing optimization (SAO) with one random start and the
same parameters of the simulation model. Although com-
putationally expensive, the SAO algorithm is easier to
handle when tuning its parameters in simulation experi-
ments. Proceeding from the less favorable case of σ = 1, we
determined parameters of the SAO algorithm that provide
correct selection of all three sets of differentially expressed
genes in all simulation runs.

Another way of testing the two algorithms is to apply
them in a situation where the true global maximum of the
N-distance is known. We randomly selected 2000 genes
from the data set discussed in the next section. All possible
pairs were formed from the 2000 genes and the corre-
sponding N-statistic between the two samples (young ver-
sus old mice) was computed for each pair. The data were
normalized before the analysis (see Section "Results and
Discussion"). Having determined a maximum value of
the N-statistic over all pairs, we ran the SRS and SAO algo-
rithms (with parameters suggested by our simulation
experiments) to see whether they could find the actual
maximum. Both algorithms hit the target.

Results
The biological purpose of our experimental study was to
better understand age-related changes in gene expression
that occur in mouse inner ear (including the organ of
Corti and stria vascularis). Since we do not expect numer-
ous genes to be involved in the process of aging of the
auditory system, this experimental system seems to be
especially promising for the use of multivariate methods.

Hearing loss or deafness affects about 10% of the U.S.
population, or about 30 million people, most of them
over age 60. Presbycusis – age-related hearing loss – is a
primary sensory problem in the elderly population, the
number one communicative disorder, and one of the top
three chronic medical conditions affecting the aged. It is
often described as difficulty in understanding speech,
especially in conditions of high ambient background
noise. Most elderly persons have a reduction in hearing
acuity. For example, cross-sectional and longitudinal
studies have consistently demonstrated gradually decreas-
ing pure tone thresholds by cohort groups of elderly
[13,14]. The composite audiometric pattern is one of bet-
ter hearing for low- and mid-speech frequencies than
higher speech frequencies. The consequence of this pat-
tern is difficulty in hearing and understanding, not only
conversational speech, but in particular, speech that is
softly spoken. In fact, a similar gradual reduction in
speech recognition for words and phonemes in quiet has
been shown to accompany the pure tone threshold
decrease in cohort groups of the elderly [14-16].

Much progress had been made in the field of auditory
aging research regarding sensitivity deficits and metabolic
problems of the cochlea. As humans and animals age,
they lose sensory hair cells, 8th cranial nerve (i.e., vestib-
ulocochlear) fibers, and develop stria vascularis/potas-
sium recycling metabolic problems that degrade
audibility and spectral tuning [17-21].

In addition, the differing roles of the ear and brain in pres-
bycusis, and aging deficits in speech understanding in
background noise, and their respective neural bases are
beginning to be understood. Age effects in these areas are
distinguishable and age-related problems in the brain can
be influenced by the peripheral etiologies of presbycusis
[22-24]. Considering studies completed to date, presbycu-
sis in humans, and corresponding age-related hearing loss
in animal models such as the CBA mouse, have two major
facets: 1) A peripheral hearing loss of cochlear origin,
starting with sensitivity losses in the high pitches (high
frequencies), involving loss of sensory hair cells, spiral
ganglion neurons (8th nerve fibers) and metabolic mal-
functions of the highly vascularized stria vascularis organ
system that produces the potassium rich endolymph of
the inner ear [25,26]; and 2) An inability to comprehend
speech in background noise, that results from deficits in
the inner ear and the central auditory nervous system
[23,24]. For the animal model studies of presbycusis, the
CBA mouse strain has been quite useful to date.

The goal of the present study is to explore the underlying
cochlear gene expression changes that may predispose or
cause presbycusis. Common neurodegenerative diseases
such as presbycusis are likely to be caused by several fun-
damental problems that interact with each other and with
environmental factors, including genetic pre-dispositions
to environmental insults, noise and ototoxic medications
[27]. Although over a hundred genes have been identified
that cause congenital deafness (e.g. [28-30]), no candidate
genes have yet been identified that are involved in human
presbycusis. The present report attempts to gain some ini-
tial insights into gene expression changes related to inner
ear problems that may predispose or cause age-related
neurosensory disorders, such as age-related hearing loss –
presbycusis, utilizing the CBA mouse strain.

The two groups of arrays under comparison included 9
and 12 arrays, respectively (see the next section). The data
were normalized using the quantile normalization
method [11,12] carried out at the probe feature level.
Compared to our simulations, the number of permuta-
tions was increased to 400. Each search cycle in the SRS
algorithm proceeded in 45,000 steps with 100 random
starts. The algorithm was tuned to search for a set of 5
genes at each step of the successive selection procedure.
We also changed parameters that control the efficiency of
Page 6 of 10
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the SAO algorithm to account for an increased dimen-
sionality of the problem. The latter algorithm also sought
for sets consisting of 5 genes. We used the following
parameter values in the combined two-stage cross-vali-
dated search algorithm: I = 5, u1 = 4 (out of 9 arrays), u2 =
6 (out of 12 arrays), v = 10, l1 = 4 (out of 9 arrays), l2 = 6
(out of 12 arrays), r = 200.

Although the lists of genes produced by both algorithms
are quite similar, there are still some discrepancies
between them which may be attributed to the choice of
parameters for each method. Since the SAO algorithm is
less sensitive to the choice of the initial gene combination,
we present only the results obtained with this algorithm.
In the "young" versus "old" comparison, the procedure
selected two sets of 5 genes with an adjusted p-value of less
than 0.05. For comparison, we applied the Wesfall and
Young step-down multiple testing procedure with a uni-

variate counterpart of  as the test statistic. This method
selects only 6 genes at the same FWER; all of them appear
among those genes that have been selected by the multi-
variate search-and-testing procedure. The final list of 10
genes was evaluated further for consistency with the exist-
ing biological knowledge.

Discussion
Of the 10 identified genes (from 2 sets) exhibiting major
expression changes with age, there are 6 differentially
expressed genes having to do with immune system func-
tion. This is important from an aging point of view for two
reasons. First, immunoprecipitations or immunoproducts
can be damaging to nerve cells, and have been implicated
as being responsible for age-related neurodegeneration in
the brain in general, and in Alzheimer's disease specifi-
cally, but this is a new finding for the cochlea and age-
related hearing loss – presbycusis. Second, autoimmune
problems, where the immune system starts attacking its
own nerve cells, is another leading candidate for a causa-
tive factor in neurodegenerative aging conditions. These
immune products are likely to come from the vascular
supply to the cochlea, yet may be a causative component
for age-related hearing loss due to the resultant damage to
the cochlea sensory cells.

There are 3 genes having to do with post-translational pro-
tein changes, including protein binding properties, with
two of these genes involved in carbohydrate metabolism
(sugar/glucose binding in mitochondria for cellular respi-
ration). These genes are related to the production of reac-
tive oxygen species (ROS), which damage nerve cells, and
have been implicated in age-related neurodegenerative
disorders, and in cases of cochlear sensorineural hearing
loss. For example, problems in cellular respiration can
lead to accumulation of toxic intracellular substances,
causing damage to sensory cell structures and abnormal

metabolic processing along with increased levels of ROS
[31-33].

The last gene, involved in mammary gland functioning,
showed a significant increase with age. A closer inspection
of the expression levels for this gene have shown that the
observed effect cannot be attributed to the presence of
outliers in the data. Although not directly involved in sen-
sory functioning, this gene may change its espression as
part of general degenerative processes in inner ear. An
error in this gene annotation cannot be ruled out as well.
This observation is definitely worth another look.

The above-described initial observations are quite provoc-
ative, in that we have several groupings of genes that have
important functional significance for aging and hearing,
including important aspects of cochlear, inner ear func-
tioning. These animal-model gene-array investigations are
quite useful for guiding human genetics experiments
aimed at identifying candidate genes involved in the sus-
ceptibility and progression of human age-related hearing
loss and other age-dependent neurosensory disorders.

Regarding methodological aspects of this paper, we would
like to note that a pertinent multivariate method for selec-
tion of differentially expressed genes should include two
components: finding subsets of candidate genes that
jointly separate the classes (states) under comparison and
testing statistical significance of this separation; the latter
does not necessarily refer to characteristics of a classifica-
tion (allocation) rule such as classification error rates. We
also would like to stress that the problem of significance
testing in the multivariate formulation is not equivalent
to the problem of statistical classification (supervised
learning). While closely related, these problems are fun-
damentally different. For example, the use of the classifi-
cation error rate as a criterion for selection of important
variables is appropriate where the aim is to form a discri-
minant rule for the subsequent outright allocation of
unclassified samples to one of the known classes. A very
good separation between classes can sometimes be pro-
vided by looking at a single feature variable (gene) so that
the classification error rate is difficult to reduce further by
including other (probably quite significant) variables in
the rule. However, one would like to keep the chance of
missing other interesting variables to a minimum. The
problem dealt with in this paper is not that of classifica-
tion or prediction. Our method is designed to find gene
combinations that change in concert (as a set) their
expression due to some biological factors. The problem
thus formulated reduces to that of significance testing.

It must be emphasized that our method is designed not
only to identify sets of genes whose interrelationships dif-
fer but also those genes with marginal effects. More

N̂
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importantly, the method seeks to provide an alternative
way of making a specific FWER-based multiple testing
procedure less conservative and, to some extent, less
dependent on the subset pivotality requirement (see [4]
for definition), by extracting more information from the
data. In addition, this approach can be used for ranking
and clustering those genes that have been declared differ-
entially expressed by univariate methods.

Conclusions
A new algorithm for identifying differentially expressed
gene combinations has been developed. This algorithm is
built on the earlier proposed multivariate test statistic [6]
and successive selection of differentially expressed sets of
genes [5]. The algorithm includes an improved random
search procedure designed to generate candidate gene
combinations of a given size. Cross-validation is used to
provide replication stability of the search procedure. A
permutation two-sample test is used for significance test-
ing. We design a multiple testing procedure to control the
family-wise error rate when selecting significant combina-
tions of genes that result from a successive selection pro-
cedure. A target set of genes is composed of all significant
combinations selected via random search. The perform-
ance of the proposed search-and-testing procedure has
been evaluated by computer simulations and analysis of
replicated Affymetrix gene array data on age-related
changes in gene expression in the inner ear of CBA mice.

Methods
Subjects
CBA mice from the University of Rochester vivarium
served as subjects for this study who had similar environ-
mental, non-ototoxic life histories. Subjects were mice of
the following age groups: Young adult (N = 9, 3–4
months) and old (N = 12, 24–33 months). All animal
procedures were approved the University of Rochester
Committee on Animal Resources.

Cochlear dissections
Subject groups of the present report had extensive behav-
ioral and neurophysiological hearing testing prior to sac-
rifice, verifying that the old mice had age-related hearing
loss. Mice were sacrificed by cervical dislocation. Then
both cochleae for each mouse were immediately dissected
using a Zeiss stereomicroscope. The cochleae were placed
in cold saline for micro dissection of the cochlear parti-
tion (basilar membrane, organ of Corti and spiral liga-
ment), and were then placed in cold Trizol. A detailed
protocol for Trizol can be found at http://
www.fgc.urmc.rochester.edu. All samples were stored at -
80°C for microarray gene expression processing.

Gene expression microarrays
The RNA quality was assessed by electrophoresis using the
Agilent Bioanalyzer 2100. Between 200 ng and 2 ug of
total RNA from each sample was used to generate a high
fidelity cDNA, which was modified at the 3' end to con-
tain an initiation site for T7 RNA polymerase, while 1 ug
of cDNA was used in an in vitro transcription (IVT). 20 ug
of full-length cRNA, from each mouse (age groups as
described above), was fragmented. After fragmentation,
the cDNA, full-length cRNA, and fragmented cRNA were
analyzed by electrophoresis using the Agilent Bioanalyzer
2100 to assess the appropriate size distribution prior to
microarray hybridization. Detailed protocols for sample
preparation using the Ambion MessageAmp protocol can
be found at http://www.ambion.com. Affymetrix M430A
High density oligonucleotide array set (A) which queried
20,000 murine probe sets was used. Each gene on the sub-
array is represented by 11 pairs of 25 mer oligonucleotides
that span the coding region for the 20,000 genes and ESTs
represented (clear overlapping of genes is evident). Each
probe pair consists of a perfect match (PM) sequence that
is complementary to the cDNA target, and a miss-match
(MM) sequence that has a single base pair mutation in a
region critical for target hybridization; this sequence
serves as a control for non-specific hybridization. Staining
and washing of all arrays was performed in the Affymetrix
fluidics module per manufacturer's protocol. Streptavidin
phycroerythrin stain (SAPE, Molecular Probes) was the
fluorescent conjugate used to detect hybridized target
sequences. All arrays in this study were assessed for "array
performance" prior to data analysis.

Methods for data analysis and computer simulations
The methodology of data analysis and design of computer
simulations have been described at length in the preced-
ing sections. The relevant software for data analysis and
simulations is included in the 1 [see the folder "Multivar-
iateSearch"]. Here we supplement this information with a
description of the generator of multivariate exchangeable
normal random vectors which we used in our
simulations.

Suppose we want to generate a normal random vector X
in Rd with mean vector M ∈ Rd and covariance matrix Σ
whose entries are σ2 and ρσ2 on and off diagonal,
respectively. It is well-known that X can be represented in
the form

X = M + CZ,

where Z is the standard normal vector with mean 0 in Rd

and C is a d × d matrix with CCT = Σ. (Here CT denotes the
transpose of C.) The matrix C may be chosen symmetric
and can be computed using well-known algebraic proce-
dures. However, our matrix Σ has a special structure:
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Σ = (1 - ρ)σ2Id + ρσ21d × d,

where Id is a unit matrix of size d and 1d × d is a square
matrix with all the d2 entries being equal to 1. Using this
we look for C of the same form:

C = αId + β1d × d.

From the relations C2 = Σ and  we have α2 =

σ2(1 - ρ), 2αβ = ρσ2, so that
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Additional File 1
The additional folder "MultivariateSearch" includes the following three 
sub-folders: 1. SAO _Simulation 2. SRS_Simulation 3. TSSearch Each 
subfolder contains a Unix executable file. The executable file "SASearch" 
implements the algorithm based on simulated annealing optimization. 
The executable file "SRSearch" implement the version based on simple 
random search. The exectuable file "TSSearch" for the two-stage search is 
is located in the sub-folder "TSSearch". Each sub-folder also contains two 
input files. The file "simulation04_UI.txt" is an input file for data analy-
sis. Suppose the data file is named xxxx.marr, then the input file should 
be named as xxxx_UI.txt. To analyze the data from the file xxxx.marr, 
type: [Executable file] xxxx or [Executable file] 0 xxxx. The input file 
"simulation04_ui.txt" is designed for simulation experiments. To conduct 
simulations, one has to prepare an input file with the name: 
XXX_simu_ui.txt, where XXX is a string that follows the naming conven-
tion of computer files. An input file for data analysis with the name 
XXX_ui.txt is also needed. To run simulations, type: [executable file] 1 
xxxx.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-164-S1.zip]
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