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Abstract
Background: Signal transduction is one of the most important biological processes by which cells
convert an external signal into a response. Novel computational approaches to mapping proteins
onto signaling pathways are needed to fully take advantage of the rapid accumulation of genomic
and proteomics information. However, despite their importance, research on signaling pathways
reconstruction utilizing large-scale genomics and proteomics information has been limited.

Results: We have developed an approach for predicting the order of signaling pathway
components, assuming all the components on the pathways are known. Our method is built on a
score function that integrates protein-protein interaction data and microarray gene expression
data. Compared to the individual datasets, either protein interactions or gene transcript abundance
measurements, the integrated approach leads to better identification of the order of the pathway
components.

Conclusions: As demonstrated in our study on the yeast MAPK signaling pathways, the
integration analysis of high-throughput genomics and proteomics data can be a powerful means to
infer the order of pathway components, enabling the transformation from molecular data into
knowledge of cellular mechanisms.

Background
Signal transduction is the primary means by which
eukaryotic cells respond to external signals from their
environment and coordinate complex cellular changes. It
plays an important role in the control of most fundamen-
tal cellular processes including cell proliferation, metabo-
lism, differentiation, and survival [1]. Extracellular signal
is transduced into the cell through ligand-receptor bind-
ing, followed by the activation of intracellular signaling
pathways that involve a series of protein phosphorylation
and dephosphorylation, protein-protein interaction, and
protein-small molecules interaction.

Recently, with the accumulation of genome sequence
information, large-scale genomic and proteomic tech-
niques have offered insights into the components of sig-
nal transduction pathways and the molecular and cellular
responses to cell signaling. For example, large-scale yeast
two-hybrid screening methods and Co-IP technique have
been used to identify physical interactions between pro-
teins [2-5]. Synthetic lethal screens are used to identify
genetic interactions [6]. The protein chip is an advanced
in vitro technique for analyzing protein functions [7]. In
addition, microarray experiments can simultaneously
measure the transcript abundance of thousands of genes
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in different conditions. These experimental approaches
have generated enormous amounts of data and provide
valuable resources for studying signal transduction path-
ways. However, our understanding of the signal transduc-
tion processes underlying these data lags far behind data
accumulation. Therefore, there is a great need to develop
computational methods to direct biological discovery,
enabling biologists to discover the mechanisms underly-
ing complex signaling pathways and interactions among
them.

Given the fact that signal transduction is achieved by a
cascade of protein interactions and activations, one major
challenge in dissecting signal transduction pathways is to
determine the order in which the signal is transduced. Tra-
ditionally, genetic epistasis analysis is used to address this
question. In such analysis, the order of gene function can
be determined by comparing the phenotype of a double
mutant ab to that of a single mutant a, or a single mutant
b. However, this analysis is time-consuming, expensive
and sometimes the results can be misinterpreted [8].
Computational methods using large-scale genomics and
proteomics information can expand the scope of experi-
mental data and reduce the number of experiments
required to detect the order of pathway components.
Although it is important, little research has been per-
formed in this field, with a major obstacle being the lack
of completeness and accuracy of the data. Here we present
a computational approach that integrates different types
of information to predict the order of the pathway com-
ponents assuming all the pathway components are
known.

Results
Because the yeast MAPK pathways involved in pheromone
response, filamentous growth, maintenance of cell wall
integrity and hypertonic shock response are among the
most thoroughly studied pathways, we use them to
develop and test our method (Fig. 1). As protein-protein
interaction plays an important role in achieving the signal
transduction process, useful prediction of the order of the
pathway components will require knowledge of the inter-
acting partners of these pathway components. Here, we
utilize the Database of Interacting Proteins (DIP) that is
based on curated collection of all functional linkages of
proteins obtained by experimental methods, including
yeast two-hybrid experiments, immunoprecipitation, and
affinity purification [9]. Although important, the useful-
ness of the interaction information is limited, as the pres-
ence of a physical interaction may not indicate the
activation of the interacting proteins. The protein kinases
analysis based on protein chip technique provides direct
information about protein phosphorylation and activa-
tion, but it only presents a very small fraction of the com-
plete picture of protein activation. Compared to the
protein chip data, gene expression data from DNA micro-
array provide an overall picture of whole-cell response
under different conditions. Therefore, we utilize this data
source as the indirect information about protein activa-
tion to complement protein-protein interaction data. Our
goal is to develop a computational method for integrating
these data sources for ordering yeast MAPK pathway
components.

MAPK signaling pathways in Saccharomyces cerevisiaeFigure 1
MAPK signaling pathways in Saccharomyces cerevisiae. Membrane receptors are marked in blue, and transcription fac-
tors are marked in red. The figure is adapted from KEGG pathway database [12], and the scaffold proteins and proteins on the 
pathway branches are omitted for simplicity.

       Pheromone          Ste2/3        Ste4/18        Cdc42         Ste20           Ste11           Ste7        Fus3         Ste12

       Starvation            Sho1           Cdc42         Ste20           Ste11           Ste7           Kss1        Ste12

      Cell Wall Integrity          Mid2           Rho1          Pkc1          Bck1         Mkk1/2          Slt2          Rlm1

      High Osmolarity              Sln1          Ypd1           Ssk1            Ssk2            Pbs2           Hog1       Msn2    
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Two expression datasets are used in our analysis, one is
composed of 56 conditions relevant to the behavior of
MAPK signal transduction and another is the "compen-
dium" set which is composed of 300 diverse mutations
and chemical treatments [10,11]. To incorporate the gene
expression data, we hypothesize that the genes encoding
the proteins on the same signaling pathway, especially the
adjacent pathway components, have similar gene expres-
sion profiles. In order to test the hypothesis, we calculated
the correlations between each pair of genes using the two
expression datasets, and performed a hypergeometric test
on the similarity of gene expression pattern of the adja-
cent pathway components. The hypergeometric distribu-
tion is given by

where N represents the total number of protein pairs, M
represents the number of protein pairs in adjacent posi-
tions on a specific MAPK pathway, n is the total number
of protein pairs that have an absolute value of correlation
coefficient above a given threshold, e.g. 0.7, and k is the
number of adjacent protein pairs having an absolute value
of correlation coefficient above this threshold. The p-
value obtained from the test is 2 × 10-4 when the threshold
is set to 0.7, indicating that protein pairs in adjacent posi-
tion on a pathway tend to have a higher correlation coef-
ficient value than random protein pairs. This fact is
applied in developing our score function that incorpo-
rates the gene expression information.

For each MAPK pathway, we examine all permuted orders
of the pathway components with the starting point (mem-
brane receptor) and the ending point (transcription fac-
tor) of each MPAK pathway fixed and calculate the score
for each permutation according to the score function
defined as in "Method" section. Then, we rank each per-
mutation based on its corresponding score, with the high-
ranking orders being the more likely pathway orders.

For the pheromone response pathway, the scores based
on each individual data set and the scores based on inte-
grating both data sets are shown in Fig. 2. Based on pro-
tein-protein interaction data alone, the "true" pathway is
assigned a score of 0.75, ranking 241 among all the 5040
possible pathways, while based on gene expression data
alone, it is assigned a score of 0.96, ranking 25 among all
the 5040 possible pathways. However, after we integrate
the scores obtained from two different sources together,
the "true" pathway obtain a score of 1.71, with a rank of
2, which is a much higher-ranking than the ranking based
on either data type alone. Similar results are shown for the
other three yeast MAPK pathways (Table 1). Therefore,
our score function that integrates protein-protein interac-

tion data and gene expression data seems to provide more
accurate prediction of the order of the pathway compo-
nents than methods based on either data source alone.
This prediction can be used to guide hypothesis-driven
research and significantly reduce the number of required
experiments.

Discussion
The rapid accumulation of genomics and proteomics
information and the development of large-scale experi-
ment techniques motivate us to develop computational
approaches to dissecting different pathways. Arkin et al.
described a time-lagged correlation analysis to infer the
interactions among the components on the first few steps
of the glycolytic pathway, thus the order of the compo-
nents on the glycolytic pathway could be deduced [13].
Schmitt Jr. et al. applied this method to identify the cause-
effect relationships among genes in the organism Syne-
chocystis in response to different light conditions [14]. The
limitation of this time-lagged correlation analysis is the
requirement of high resolution of time-scales for sam-
pling. That is, if the level of gene expression or the amount
of the pathway components is not measured in a small
sampling interval, the great resolution into the orderings
of pathway components cannot be achieved. Gomez et al.
used known protein-protein interactions of Saccharomyces
cerevisiae as training data and represented the proteins as
collections of domains to predict links within the human
apoptosis pathway [15]. However, not all proteins have a
defined domain composition. In principle, these two
approaches use either gene expression data or protein-
protein interaction data to infer pathways. However, nei-
ther method can be applied to jointly analyze data of dif-
ferent sources. Although protein-protein interaction data
provide key information to reveal the relationships
between components in a singnal transduction pathway,
they are subject to many biases (e.g. high false positive
and false negative rates) and are not able to capture the
dynamic nature of the pathways that are condition
dependent. DNA microarray data offer information about
whole-cell responses in different conditions but only pro-
vide indirect information on the ordering of genes in a
specific pathway. These two different data types offer com-
plementary information, and our approach infers the
order of the pathway components based on the
integration of these two data types and can significantly
increase our ability for pathway inference. We note that,
despite great improvements over the results based on sin-
gle data type, our approach is not able to put the correct
order as the top one among all possible orders. This is
largely due to the imperfectness of current data sources. To
further improve our method, we may require data of
higher quality or incorporate more types of data, such as
protein chip data.
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We note that the utility of integrating yeast protein-pro-
tein interaction map and gene expression profiles to pre-
dict signal transduction network has previously been
described by Steffen and colleagues [16]. In their
approach, the interaction data were used to create "candi-

date" pathways and infer the orders between the pathway
components, and then the "candidate" pathways were
scored according to the number of pathway members that
were clustered together based on the expression profiles.
However, as many interactions are currently not

Distribution of the scores for permuted pheromone response pathwaysFigure 2
Distribution of the scores for permuted pheromone response pathways. (a) Scores based on protein-protein inter-
action data, (b) Scores based on microarray gene expression data, (c) the integrated scores based on both protein-protein 
interaction data and gene expression data.

a 

b

 c
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identified, some links between pathway members may be
missing at the very first step and cannot be recovered in
the following inference. In addition, the prediction results
are highly dependent on the clustering method and the
number of clusters into which the genes were grouped. In
contrast, our starting point is that we assume that all path-
way components are known and use gene expression data
to calculate the correlation coefficients between genes and
incorporate the results into our score function directly.
While our overall objective is somewhat more modest
than that of Steffen and colleagues, the motivation of our
work was to test whether there is any information in the
current data sources to infer the correct order of pathway
components. If the goal could not be achieved when all
pathway components are known, then it is very unlikely
that any method starting from scratch to reconstruct sig-
nal transduction pathway will succeed. Fortunately, our
results indicate that this modest task can be accomplished
and suggest the usefulness of genomics and proteomics
information.

We have shown our method can lead to a good prediction
for well-known yeast MAPK signaling pathways. In addi-
tion, we have tested our approach on the DNA damage
checkpoint pathway that is involved in cell-cycle progres-
sion. The "true" pathway ranks 4 among all the 750 pos-
sible pathways based on our integrated approach, while it
has a rank of 46 and 60 based on protein-protein interac-
tion data alone and gene expression data alone, respec-
tively. Therefore, we conjecture that our approach may be
applicable to many other pathways including less well-
understood ones.

It is worth to note that signaling pathways are not limited
to one-dimensional sequence of genes, as our focus in this
study. Instead, they should be depicted as multidimen-
sional networks. To make further complicated prediction
and modeling of the networks, we need to incorporate

more biological information and apply more elaborate
statistical approaches.

Conclusions
We have demonstrated that our integrated approach can
significantly improve the performance of predicting the
order of signaling pathway components, without detailed
knowledge of all the genes in the pathway or the molecu-
lar nature of the gene products. It may be important to
incorporate other valuable sources of data, including pro-
tein chip data, genomic sequence information and pro-
tein domain information if we want to make the
transition from a linear one dimension pathway to a mul-
tidimensional model of signaling networks, which repre-
sents a great challenge in the field of systems biology.

Methods
For protein-protein interaction data, the score function is
defined as follows:

where n is the total number of proteins on the pathway,
and Xi, i+1 = 1 if there is an observed interaction between
the ith and the (i+1)th proteins on the pathway and Xi, i+1 =
0 otherwise. Here p represents the false negative rate of the
interaction data. In this study, we fixed the false negative
rate as 0.4. It was estimated that the total number of inter-
actions between all yeast proteins or the size of yeast inter-
actome is about 20000~30000 [17,18]. In this study, the
interaction data we obtained from DIP includes 15118
pairwise protein-protein interactions, which covers more
than 50% of the total number of estimated protein inter-
actions assuming all of the interactions in DIP are true
interactions. Indeed, this assumption should be valid as
DIP is manually curated and it provides high quality inter-
action data by minimizing the total number of false posi-

Table 1: A comparison of the prediction results based on using different data types. PPI stands for protein-protein Interaction. The 
percentile rank of the true pathway is defined as the ratio between the number of pathways having a higher score than the "true" 
pathway to the number of all permuted pathways.

MAPK pathway PPI Expression PPI + Expression

The number of 
pathways having a 

higher score

Percentile rank of 
the true pathway

The number of 
pathways having a 

higher score

Percentile rank of 
the true pathway

The number of 
pathways having a 

higher score

Percentile rank of 
the true pathway

Pheromone 
Response

240 0.05 24 0.005 1 10-3.7

Filamentous 
Growth

7 0.06 4 0.006 0 0

Cell Wall Integrity 70 0.10 80 0.11 17 0.02
High Osmolarity 0 0 34 0.28 0 0
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tive interactions. Therefore, the false negative rate of the
interaction data in DIP may well be less than 0.5. As our
method is based on the ranking the of calculated scores,
the ranking of all possible orderings are not affected with
any false negative rates below 0.5. However, the interac-
tion data availability is limited for some species, for exam-
ple, only 1379 interactions among about 900 human
proteins are included in DIP. In such cases, the perform-
ance of our approach may not be as informative as that in
yeast.

For gene expression data, the score function is defined as:

where ri, i+1 represents the correlation coefficient between
the ith and the (i+1)th proteins on the pathway.

The two data sources are considered with equal impor-
tance, so we rescale the score Si of all the possible path-
ways to [0, 1] by

where Smin and Smax are the minimum and the maximum
scores of all the possible pathways respectively for either
protein-protein interaction data or gene expression data.
The rescaling procedure is performed on both data sets.
The integrated score is the sum of the rescaled scores for
each individual data set.

Authors' contributions
YL designed the study, performed the pathway analysis,
and drafted the manuscript. HZ conceived and guided the
study. Both authors read and approved the final
manuscript.

Acknowledgements
HZ acknowledges support by the NSF grant DMS-0241160. YL is sup-
ported by the NIH Institutional Training Grants for Informatics Research. 
The authors thank Nanxin Li, Liang Chen, Ning Sun and Baolin Wu for help-
ful advice and discussion.

References
1. Hunter T: Signaling – 2000 and beyond. Cell 2000, 100:113-127.
2. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-

shon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y,
Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, John-
ston M, Fields S, Rothberg JM: A comprehensive analysis of pro-
tein-protein interactions in Saccharomyces cerevisiae. Nature
2000, 403:623-7.

3. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A compre-
hensive two-hybrid analysis to explore the yeast protein
interactome. Proc Natl Acad Sci U S A 2001, 98:4569-74.

4. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C,
Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M,
Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein

C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V,
Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B,
Neubauer G, Superti-Furga G: Functional organization of the
yeast proteome by systematic analysis of protein complexes.
Nature 2002, 415:141-7.

5. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A,
Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I,
Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B,
Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H,
Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jes-
persen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V,
Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T,
Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M:
Systematic identification of protein complexes in Saccharo-
myces cerevisiae by mass spectrometry. Nature 2002,
415:180-3.

6. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz
GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Gold-
berg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N,
Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O,
Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong
SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt
J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bus-
sey H, Boone C: Global mapping of the yeast genetic interac-
tion network. Science 2004, 303:808-13.

7. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N,
Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA,
Gerstein M, Snyder M: Global analysis of protein activities using
proteome chips. Science 2001, 293:2101-5.

8. Forsburg SL: The art and design of genetic screens: yeast. Nat
Rev Genet 2001, 2:659-68.

9. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D: DIP,
the Database of Interacting Proteins: a research tool for
studying cellular networks of protein interactions. Nucleic
Acids Res 2002, 30:303-5.

10. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett
HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C,
Friend SH: Signaling and circuitry of multiple MAPK pathways
revealed by a matrix of global gene expression profiles. Sci-
ence 2000, 287:873-80.

11. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour
CD, Bennett HA, Coffey E, Dai H, He YD: Functional discovery
via a compendium of expression profiles. Cell 2000, 102:109-26.

12. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG
resource for deciphering the genome. Nucleic Acids Res 2004,
32:D277-80.

13. Arkin A, Shen P, Ross J: A Test Case of Correlation Metric Con-
struction of a Reaction Pathway from Measurements. Science
1997, 277:1275-9.

14. Schmitt WA Jr, Raab RM, Stephanopoulos G: Elucidation of gene
interaction networks through time-lagged correlation analy-
sis of transcriptional data. Genome Res 2004, 14:1654-63.

15. Gomez SM, Lo SH, Rzhetsky A: Probabilistic prediction of
unknown metabolic and signal-transduction networks. Genet-
ics 2001, 159:1291-8.

16. Steffen M, Petti A, Aach J, D'haeseleer P, Church G: Automated
modeling of signal transduction networks. BMC Bioinformatics
2002, 3:34.

17. Bader GD, Hogue CW: Analyzing yeast protein-protein inter-
action data obtained from different sources. Nat Biotechnol
2002, 20:991-997.

18. Bader JS, Chaudhuri A, Rothberg JM, Chant J: Gaining confidence
in high-throughput protein interaction networks. Nat
Biotechnol 2004, 22:78-85.

S rEXP i i
i

n
= +

−
∑ , ,1

1

S
S S

S Si rescale
i

,
min

max min
,=

−
−

Page 6 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10647936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11474067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11474067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11533715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11729170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11729170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12355115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704708

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Table 1

	Discussion
	Conclusions
	Methods
	Authors' contributions
	Acknowledgements
	References

