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Abstract
Background: The integration of the rapidly expanding corpus of information about the genome,
transcriptome, and proteome, engendered by powerful technological advances, such as
microarrays, and the availability of genomic sequence from multiple species, challenges the grasp
and comprehension of the scientific community. Despite the existence of text-mining methods that
identify biological relationships based on the textual co-occurrence of gene/protein terms or
similarities in abstract texts, knowledge of the underlying molecular connections on a large scale,
which is prerequisite to understanding novel biological processes, lags far behind the accumulation
of data. While computationally efficient, the co-occurrence-based approaches fail to characterize
(e.g., inhibition or stimulation, directionality) biological interactions. Programs with natural language
processing (NLP) capability have been created to address these limitations, however, they are in
general not readily accessible to the public.

Results: We present a NLP-based text-mining approach, Chilibot, which constructs content-rich
relationship networks among biological concepts, genes, proteins, or drugs. Amongst its features,
suggestions for new hypotheses can be generated. Lastly, we provide evidence that the connectivity
of molecular networks extracted from the biological literature follows the power-law distribution,
indicating scale-free topologies consistent with the results of previous experimental analyses.

Conclusions: Chilibot distills scientific relationships from knowledge available throughout a wide
range of biological domains and presents these in a content-rich graphical format, thus integrating
general biomedical knowledge with the specialized knowledge and interests of the user. Chilibot
http://www.chilibot.net can be accessed free of charge to academic users.

Background
A comprehensive understanding of the rapidly expanding
corpus of information about the genome, transcriptome,
and proteome at large scale requires extensive integration
with existing knowledge that often pertains to a number
of biological disciplines. Despite the existence of special-
ized databases (e.g. [1,2]), most of this knowledge is still

stored in the form of unstructured free-texts. Different
approaches have been developed that automatically
retrieve information on molecular interactions from the
biomedical literature. Some assume that the co-occur-
rence of gene/protein names in texts corresponds to a bio-
logical relationship [3,4]. Others assign relationships
based on similarities in the texts of abstracts [5-7]. While

Published: 08 October 2004

BMC Bioinformatics 2004, 5:147 doi:10.1186/1471-2105-5-147

Received: 27 May 2004
Accepted: 08 October 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/147

© 2004 Chen and Sharp; licensee BioMed Central Ltd. 
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15473905
http://www.biomedcentral.com/1471-2105/5/147
http://creativecommons.org/licenses/by/2.0
http://www.chilibot.net
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2004, 5:147 http://www.biomedcentral.com/1471-2105/5/147
computationally efficient, these methods do not charac-
terize each interaction (e.g., inhibition versus stimulation,
directionality). Furthermore, relationships are supported
by minimal documentation, other than PubMed IDs. Nat-
ural language processing (NLP) has also been used as the
basis of programs designed to retrieve more detailed
information about molecular relationships ([8-11],
reviewed in [12,13]). However, many of these programs
were built for testing purposes and are not available to the
scientific community at large [14].

Herein, we present a text mining approach, Chilibot (chip
literature robot), which constructs content-rich relation-
ship networks between genes, proteins, drugs and biolog-
ical concepts (figure 1) based on linguistic analysis of
relevant records stored in the PubMed literature database.
The nature of each relationship (e.g. inhibitory versus
stimulative) is encoded in the network map. The network
map is also annotated by sentences describing the rela-
tionships (content of the network). For example, there are
an average of 24 sentences describing each relationship
and 11 sentences describing each query term when a max-
imum of 30 abstracts are analyzed for each relationship.
Thus, Chilibot provides a flexible tool for integrating the
rapidly expanding body of biomedical knowledge with
the highly specialized knowledge of the individual user.

Recent analyses of several types of biological networks
(e.g. metabolic [15], proteomic [16], and transcriptomic
[17] networks) have found that their connectivities fol-
lowed the power-law distribution, specifying that the
probability of any node connecting to "k" other nodes is
proportional to 1/kn. These networks are classified as
scale-free networks and are in direct contrast to the bell-
shaped distributions seen in random networks [15]. Since
most nodes in a scale-free network have very few connec-
tions, yet a few nodes (i.e., hubs) have a large number of
connections, scale-free networks are robust, resisting the
random failure of nodes, but vulnerable if hubs fail. To
facilitate comparisons to the structure of other biological
networks, the connectivity of networks constructed by
Chilibot were analyzed and found to follow the power-
law distribution characteristic of scale-free topologies.

Results and discussion
Design and implementation
The overall goal of Chilibot is to generate graphical repre-
sentations of the relationships among user provided terms
(e.g. molecules, concepts, etc). This is achieved by auto-
matically querying the PubMed literature database and
extracting information using natural language processing
(NLP) techniques.

Chilibot is an Internet-based application [18]. The system
has been tested on FreeBSD and Red Hat Linux operating

systems. Users interact with the Chilibot server from web-
browsers (e.g. Mozilla Firefox, Netscape, or Microsoft
Internet Explorer). Batch queries can also be conducted,
but only from the server side.

Terms that can be queried include gene symbols, UniGene
identifications (including human, rat and mouse) and/or
free-form keywords (e.g. "ischemia", "apoptosis", "meth-
ylation"). Chilibot retrieves the synonyms of the queried
terms from an internal database. The synonym table is
compiled from 6 genomic or proteomic databases (see
table 1). A total of 113,503 unique symbols were col-
lected; amongst these, 62,178 (54.8%) contained at least
one alias (figure. 2). The synonyms can be edited by users
if necessary. Pair-wise queries incorporating the syno-
nyms then are sent to PubMed using the Esearch utility,
followed by retrieving relevant records using the Efetch
utility. By default, a maximum of 30 abstracts per query
are retrieved for analysis, however options are available to
retrieve 20–50 abstracts. Both utilities are available from
the National Center for Biotechnology Information
(NCBI).

The texts (including each title and abstract) are then
parsed into units of one sentence, which has been shown
to yield higher performance levels than paragraphs or
phrases in the identification of relationships from
MEDLINE abstracts [19]. Sentences containing both query
terms or their synonyms are subjected to part-of-speech
(POS) tagging using the TnT tagger [20], which is fol-
lowed by shallow parsing using CASS [21]. A set of rules
(see Methods) is followed to classify these sentences into
one of five categories: stimulatory (interactive), inhibitory
(interactive), neutral (interactive), parallel (non-interac-
tive) and abstract co-occurrence only. The overall relation-
ship between each pair of query terms is then specified
based on the relationships found in the sentences (see
Methods).

Retrieved relationships are visualized using AiSee (AbsInt,
Angewandte Informatik GmbH, Germany). Nodes
(boxes) are used to represent query terms and lines for
relationships. Icons with different shapes and colors are
added to the middle of each line to indicate the nature of
the relationship, with arrows indicating directionality.
Color coding of individual nodes can be used to report the
magnitude of change in experimental data, when pro-
vided by the user; different shades of green or red repre-
sent up- or down-regulation, respectively, and more
saturated colors are associated with larger changes. The
weight of an interactive relationship, reflecting the
number of abstracts obtained from PubMed, is displayed
within the icon (figure. 1). The co-ordinates of the graph-
ical elements are used to link the documentation of the
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The network map of a biological network constructed by ChilibotFigure 1
The network map of a biological network constructed by Chilibot. Chilibot queried the entire PubMed abstract database to 
identify a network of relationships amongst a set of genes reported to be regulated by cocaine [44], a biological concept ("plas-
ticity"), and a drug ("cocaine"). Lines connecting rectangular nodes indicate relationships between the genes shown, and each 
icon in the middle of a line represents the character of the relationship. Interactive relationships (circles) are neutral (gray), 
stimulatory (green), inhibitory (red) or both stimulatory/inhibitory (yellow). The number within each icon indicates the quan-
tity of abstracts retrieved for documenting that relationship. Icons containing the plus sign ("+") represent "parallel relation-
ships". Gray rhomboidal icons indicate that only co-occurrence was detected. All arrowheads indicate the direction of the 
interaction, and some are bi-directional. The green or pink colors of rectangular nodes represent up- or down-regulation of 
the genes identified therein, respectively, based on experimental data provided by the user. More saturated colors are associ-
ated with larger changes. Nodes with no expression values (e.g., "cocaine") are in cyan. The terms and icons are linked to doc-
umentation when viewed in a web-browser. See supplementary information for subnetwork maps generated by Chilibot.
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relationships and the query terms to the map. Typically,
querying a list of 10 terms takes 3–4 minutes, allowing 3
seconds between PubMed connections as requested by
NCBI.

Performance evaluation
We used a set of 770 known relationships (see Methods)
specified in the Database of Interacting Proteins (DIP) [2]
to measure the performance of Chilibot in finding rela-
tionships. DIP was chosen for this purpose because it con-
tains a large number of protein interaction relationships
that are manually curated. We defined recall as the frac-
tion of relevant relationships retrieved. The effect of the
number of documents analyzed on recall is first evaluated
by analyzing a maximum of 5, 10, 20, 30, 40, and 50 of
the most recent abstracts for each pair of proteins. Figure
3a shows that analyzing 5 or 50 abstracts achieved recalls
of 90.1% and 91.2%, respectively. Thus, increasing the
number of documents analyzed does not yield an increase
in recall. However, analyzing more abstracts increased the
average number of statements demonstrating the relation-
ships (figure. 3a), resulting in a steady increase in stimu-
latory or inhibitory relationships and a decrease in
"parallel relationships" (figure. 3b). In addition, we also
evaluated the effect of the total number of abstracts avail-
able in PubMed on recall. Of the 770 queries conducted
by Chilibot, 66 had no reference in PubMed and no rela-
tionship was detected. Chilibot also failed to detect a rela-
tionship from two queries where each had 1 reference
available. Relationships were detected among the 702
remaining queries; the number of references in PubMed
ranged from less than 10 (206 queries), between 10 to 99
(299), to more than 100 (197). Thus, the ability of Chili-
bot to detect relationships depends on the existence of
PubMed records, but is not sensitive to the number of ref-
erences. Chilibot's recall proficiency may be attributable
to a large dictionary of synonyms (currently from 6 data-
bases), optimized PubMed query structure and non-
alphanumeric character processing method (see Meth-
ods), and to the use of both sentences and abstracts as

units of analysis. However, we were not able to directly
compare the performance of Chilibot with other NLP-
based PubMed-mining software because none of these are
available to the public [14]. A potential approach to facil-
itate such performance comparisons would entail coding
software according to published algorithms. However,
this is not likely to replicate all details of the original soft-
ware; thus, the comparisons obtained via such an
approach would not be valid.

Amongst the 68 DIP relationships that Chilibot did not
detect (table 2), the largest number represented a failure
to recognize abstracts containing generalized protein
names (e.g. PKA in PubMed abstract vs. type II-alpha form
of PKA in DIP), a limitation also reported for FlyBase [22].
Recall was also limited by synonym coverage and by the
presence of information in the main text, but not in the
abstract. Since many of the DIP relationships were origi-
nally based on the main text of a single reference [2], the
high recall of Chilibot depends on the redundancy of
information in the literature.

To estimate precision, defined as the fraction of retrieved
relationships that are relevant, we randomly selected 100
relationships from the 702 relationships recovered by
Chilibot (86 interactive, 11 parallel, and 3 abstract co-
occurrence). We manually confirmed that the documenta-
tion retrieved by Chilibot contained information about
96 of the targeted relationships, and the remaining four
shared symbols with other genes. In the interactive cate-
gory, directionality was correctly identified in 79.1% and
inhibitory/stimulatory properties in 74.4%. The original
data used to perform these analyses are available [see
additional file 1 and 2].

User interface features
One of the key features of Chilibot is its capacity to link
the relationships represented in the network map directly
to their supporting documentation, usually as sentences
containing both of the query terms. In addition, each

Table 1: Chilibot dictionary of gene/protein synonyms.

Database Number of gene symbols collected

SwissProt 84462
LocusLink 23924
GDB 15770
HUGO 15905
OMIM 8291
SGD 4325

Flat text file versions of the six databases were downloaded from their corresponding ftp sites. Synonym pairs were extracted from the 
corresponding fields and entries with the same symbol from the six databases were then combined in a case insensitive manner. (HUGO: Human 
Genome Organization; OMIM: Online Mendelian Inheritance in Man; SGD: Saccharomyces Genome Database)
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node is linked to its synonym list and to a set of state-
ments demonstrating the use of the term; these statements
are selected from abstract texts by an algorithm favoring
conclusive statements (see Methods). By providing the
literature in a condensed and highlighted form, Chilibot

facilitates the rapid comprehension of the relationships
by the user.

Chilibot provides several options for customizing the
query process and for viewing the identified relationships.

Distribution of the number of synonymsFigure 2
Distribution of the number of synonyms. A synonym dictionary of gene symbols was compiled from 6 databases with a total of 
113,503 unique symbols. Analysis of the number of synonyms for each symbol shows that 62,178 (54.8%) had more than one.
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Context specific searches restrict the analysis of relation-
ships to a specific subject area, as defined by the user.
Internet searches can also be customized (e.g. searching
only documents in PDF format) by using Google WebAPI.
Specific subsets of relationships contained in an overall

relationship map can be reconfigured. For example, the
user can customize the relationship map by requesting
only those relationships with direct linkage to a specific
node, or those that have a requisite number of supporting
publications [see additional file 3 and 4 for examples].

Effects of the number of abstracts obtained on retrieval, recall, and content of relationshipsFigure 3
Effects of the number of abstracts obtained on retrieval, recall, and content of relationships. To measure Chilibot's level of 
recall, a total of 770 known relationships specified in the Database of Interacting Proteins (DIP) was used as a reference set. A. 
Distribution of the number of sentences describing relationships when a maximum of 5–50 abstracts were selected for 
retrieval. For each group, the average number of sentences documenting a relationship is reported. Of the 770 known relation-
ships, the histograms show that an increasing number of relationships are documented by a larger number of sentences when a 
greater number of abstracts are specified for retrieval. B. Increasing the specified number of abstracts for retrieval from 5 to 50 
had no affect on the recall of total relationships, although there were changes within relationship categories (e.g., stimulatory/
inhibitory).

Table 2: Failure to detect known DIP relationships

Reason Undetected relationships (%)

member of protein family (name generalization) 30.8
incomplete synonym list 26.5
no reference at abstract level 22.1
other 20.6

Chilibot was used to retrieve information about 770 pairs of known protein interactions obtained from the Database of Interacting Proteins (DIP). 
A total of 702 relationships were found (recall = 91.2%). Relationships were undetectable (n = 68) for the following reasons: 21 (30.8%) occurred 
when a specific member of the protein family (e.g. cdc25a) was recorded in DIP, yet only the general family name (e.g. cdc25) appeared in abstracts; 
18 (26.5%) were due to synonyms present in abstracts and not in Chilibot's dictionary of nomenclature; 15 (22.1%) were caused by lack of 
documentation of the relationships in PubMed abstracts. Miscellaneous reasons accounted for the remainder (20.6%).
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Chilibot also identifies key index terms common to the
relationship network. To do so, Chilibot uses Medical
Subject Headings (MESH) [23], a controlled vocabulary
that indexes the subjects of the documents developed by
the National Library of Medicine. Chilibot ranks MESH
keywords indexed in the literature that supports the rela-
tionship network. The ranking is determined by the fre-
quencies of the keywords, as well as whether the keyword
is a major or minor topic of the paper (see Methods). The
top ranked keywords, reflecting the subject area(s) shared
by the query terms, can serve as a guide for further reading
and suggest new Chilibot queries.

Chilibot also has the capability of suggesting new hypoth-
eses based on the retrieved network of relationships. Such
hypotheses, originally described by Swanson et al. as
"undiscovered public knowledge" [24], referred to the
inference of an interaction between two items A and C,
based on knowledge that A affects B and B affects C. This
involves software that generates a large list of "B" terms
from titles returned by PubMed queries. The user filters
these terms, aided by the titles and abstracts. Variations of
this method have been designed and tested by others
[25,26]. Taking a similar approach, Chilibot scans the net-
work of retrieved relationships to find pairs of nodes that
have no documented relationship, but have connections
to a common tertiary node(s). These pairs of nodes are
classified as having a "hypothetical relationship". The net-
works that contain these "hypothetical relationships",
including the tertiary node(s), are then provided to the
user in graphical format, with links to their
documentation.

To test the value of these "hypothetical relationships" in
predicting the results of future research, we queried 22
genes known to be involved in long-term potentiation
(LTP), an electrophysiological phenomenon closely asso-
ciated with memory formation. Chilibot identified a
direct relationship between LTP and all 22 genes, along
with 194 inter relationships amongst the 22 genes. We
then performed retrospective studies by limiting the
search to literature published before the years 2000, 1995
and 1990 [additional file 5 contains all the original search
results]. The LTP-related "hypothetical relationships"
identified by Chilibot, using these date-limited reference
sets, are listed in table 3. As an example, by 1990, the
involvement of calcium calmodulin kinase type II (CaM-
KII) in the induction of LTP had been established [27]. It
was also known that CaMKII phosphorylates synapsin I
[28,29]. Based on these and similar relationships (see
table 3) that were documented in the literature available
by 1990, Chilibot predicted the involvement of synapsin
I in LTP, which was subsequently demonstrated empiri-
cally by 1995 [30]. Retrospective analyses like these
depend on the progression of specific knowledge in scien-

tific fields during a particular time period. Thus, if we were
to test a different set of search terms, we would not expect
to obtain the same number of suggested hypotheses, nor
would we expect the same proportion of such hypotheses
to be validated by the current literature.

Based on the literature that is currently available, Chilibot
identified new hypothetical relationships, such as those
between synaptophysin/CREB and synaptotagmin/CREB.
Currently no direct empirical evidence for these relation-
ships is available. However, scanning the 5' untranslated
region of the synaptophysin and synaptotagmin genes did
show multiple CREB binding sites, providing bioinfor-
matics-based evidence supporting the plausibility of these
potential interactions. Although these examples are prom-
ising, they are hypothetical relationships. Further review
of the scientific literature, such as the sentences provided
by Chilibot, is required to clarify the rationale for these
hypotheses.

Network topology of relationships retrieved from the 
literature
Recent large-scale studies of metabolic [15], transcrip-
tomic [17] and proteomic [16,31] networks, based on
analyses of experimental data, have found that their
topologies belong within the class of scale-free networks.

For comparison to the preceding biological networks, we
studied the connectivity of the literature-based networks
obtained by applying Chilibot to three groups of ran-
domly selected genes (300 genes per group). The resulting
networks contain 224, 116, and 138 nodes and 3018,
962, and 1912 relationships, respectively. Visualization of
the network structure of one of the groups is provided [see
additional file 6]. The connectivity of the 3 groups was
averaged and plotted in figure. 4, showing a power-law
distribution. The relatively low value of n = 1.21 (n is
approximately 2 in many of these networks [15,32,33])
may reflect the fact that many relationships are yet to be
documented. In addition, we also found a positive corre-
lation between the number of abstracts available per node
and the number of connections to that node (R2 = 0.76, p
< 0.001). This suggests that the discovery of biological
relationships attributable to specific nodes might be influ-
enced both by the amount of scientific effort deliberately
devoted to understanding that node and the intrinsic con-
nectivity of that node. Although the commitment of
greater resources by the scientific community to certain
nodes may bias the topology of the scientific literature to
some extent, this is likely to be regulated and limited by
the strength of the findings, which would be directly
related to the intrinsic connectivity of a particular node.
Thus, it is reasonable to postulate that the topology of the
biomedical literature on gene/protein interactions may
reflect that of the interactions per se.
Page 7 of 13
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:147 http://www.biomedcentral.com/1471-2105/5/147
The scale-free topology of gene/protein relationships pro-
vides another dimension for comparing and prioritizing
research targets after large-scale experiments. Currently,
genes or proteins with large-fold changes are generally
favored for further study [34]. However, by itself, a large-
fold change may be insufficient to predict whether such
molecules are pivotal in the regulation of important bio-
logical processes. For example, in many biological signal-
ing pathways, a small increase in up-stream events (such
as the binding of a peptide or hormone to its receptor(s))
is usually associated with a hundred to thousand-fold
increase in down-stream events [35,36] (e.g., activation of
mitogen-activated protein kinases or the production of
cAMP). Therefore, knowledge of a network's critical nodes
(i.e. hubs), which may be predicted by network connectiv-
ity [32], is likely to increase the power and efficiency of
identifying potential experimental targets capable of
modifying network function.

Conclusion
Chilibot graphically summarizes the relationships
amongst a large set of user provided terms by analyzing
abstracts retrieved from the PubMed literature database.
We have found in our benchmark tests that these retrieved
relationships are reliable. We believe that the scientific
community will benefit from this literature mining capa-
bility along with the many features that Chilibot provides,
especially in an era of science when insight can be
submerged in an overwhelming sea of data and modular-
ized knowledge.

Methods
Constructing the nomenclature dictionary
Flat text file versions of the six databases (HUGO,
LocusLink, OMIM, GDB, SwissProt, and SGD) were
downloaded from their corresponding ftp sites. Symbol-
name pairs were extracted from the corresponding fields
using Perl scripts. Names were curated to remove words
that are unlikely to be used in texts, such as "partial
cDNA", "fragment", etc. In addition, non-alphanumerical
characters were converted into spaces. Entries with the
same symbol from the six databases were then combined
in a case insensitive manner. The final dictionary is stored
in the Postgresql relational database.

Optimization of PubMed querying method
The NCBI Eutilies, in particular Esearch and Efetch, are
used in conjunction with the Perl LWP module to interact
with the http://eutils.ncbi.nlm.nih.gov/entrez/query/
static/eutils_help.html server. Optimization was neces-
sary because phrase or adjacency searches are not sup-
ported by PubMed. Thus, when searching for names with
multiple words, it is possible to retrieve abstracts that
contain all the relevant words, however the words are
used in different places of the abstract. Further, PubMed
has an automatic term mapping feature that converts user
input according to the MESH translation table. For our
purposes, we considered this an undesirable feature. After
small scale testing, the query structure we selected places
a title and abstract restriction tag ([tiab]) after the name of
the query term. This disables the term translation feature

Table 3: Retrospective study of the predictive capability of the "hypothetical relationships" generated by Chilibot

Term 1 Tertiary nodes Term 2 References Analyzed Relationship Documented

LTP PI-3K PKA CAMKII ACTIN ERK TAU PKC 
AMPA

KV4.2 1960~2000 2001~2004

LTP PKA ACTIN SYNAPTOPHYSIN PKC NMDA 
TAU AMPA PLC

ERK 1960~1995 1996~2000

LTP PKA ACTIN NMDA TAU AMPA PLC ARC 1960~1995 1996~2000
LTP PKA ACTIN CREB PKC PLC PI-3K 1960~1995 1996~2000
LTP PKA ACTIN SYNAPTOPHYSIN PKC TAU ACTININ 1960~1995 1996~2000
LTP PKA CAMKII CREB PKC TAU ATF 1960~1995 1996~2000
LTP ZIF268 PKC NMDA PLC TRKB 1960~1995 1996~2000
LTP PKA CAMKII CREB CAMKIV 1960~1995 1996~2000
LTP ZIF268 PLC TRKA 1960~1995 1996~2000
LTP NMDA TAU PLC ACTIN ARC 1960~1990 1996~2000
LTP PKC TAU CAMKII ACTIN SYNAPSIN I 1960~1990 1991~1995
LTP PKC NMDA TAU ACTIN PKA 1960~1990 1991~1995
LTP TAU ACTIN SYNAPTOPHYSIN 1960~1990 1991~1995
LTP TAU ACTIN ACTININ 1960~1990 1996~2000
LTP ACTIN ZIF268 1960~1990 1991~1995

A "hypothetical relationship" is defined when two terms have no documented relationship, but share connections to the same tertiary node(s). To 
test the value of these relationships in predicting the findings of future research, 22 terms (i.e., term 2; see methods) known to be involved in long-
term potentiation (LTP) (i.e. term 1) were queried by Chilibot, limiting the latest references analyzed to the years 1990, 1995, 2000, and 2004. The 
"hypothetical relationships" (i.e. term 1 is related to term 2) and the time periods when these hypothetical relationships were suggested and 
documented are listed. The original results of these searches including links to the PubMed abstracts are available [see additional file 5].
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Scale-free topology of a relationship network derived from the biological literatureFigure 4
Scale-free topology of a relationship network derived from the biological literature. Chilibot was used to retrieve the relation-
ships within 3 sets of randomly selected genes (300 genes per group). The resulting networks contain 224, 116, and 138 nodes 
and 3018, 962, and 1912 relationships, respectively. The distribution of the average connectivity of the 3 groups follows the 
power-law (P(k) ~k-n, n = 1.21).
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and also treats the term as a phrase when possible, accord-
ing to PubMed documentation. To test the effectiveness of
this strategy, we sampled 510 names with lengths ranging
from 1 to 11 words. A total of 4584 abstracts were
retrieved. We were able to find the query name from 4487
(97.9%) of the abstracts. We thus constructed the pair-
wise PubMed query in the following format:

(Term 1 synonym 1 [tiab] OR Term 1 synonym 2 [tiab]
OR ...) AND (Term 2 synonym 1 [tiab] OR Term 2 syno-
nym 2 [tiab] OR ...)

Acronym disambiguity
Many methods [e.g. [37-40]] have been developed to
translate acronyms unambiguously into their full length
terminology, since acronyms may have multiple mean-
ings and become a source of false positives [3,41]. Chili-
bot provides an option to verify the meaning of acronyms
when they are used as the query term. When a relevant
acronym first appears, Chilibot retains a phrase immedi-
ately preceding the acronym that contains the same
number of words as the number of characters in the acro-
nym. The phrase then is compared to all synonyms of the
acronym, which are retrieved from the nomenclature
database of Chilibot. The abstract is excluded from analy-
sis if less than 30% of the words in the phrase are found
in the synonym list.

Context sensitive search
All the context keywords provided by the user are com-
bined with an "OR" operation. This string is then com-
bined with the pair-wise PubMed queries, using an
"AND" operation. The context keywords are not used in
subsequent analyses.

Synopsis generation
A synopsis is a collection of sentences used to annotate the
query terms. It is generated from the first 100 sentences
that contain the specific query term or its synonyms.
These sentences are sorted by a weighting mechanism that
favors short, conclusive sentences. Words suggesting a
conclusion, such as "suggest", "found", "show", "data" etc
weights as +9 points. Starting the sentence with the query
term and a verb weights as +5 points. The presence of
words suggesting a negative result such as "not", "lack",
"fail", "without" is weighted as -3 points. Having more
than 30 words also reduces the weight by 3 points. Lastly,
having keywords specified by the user adds 5 points to the
weight. The 15 sentences with the highest weights are
displayed.

Natural language processing
Title and abstract texts retrieved via the Efetch utility are
first parsed into individual sentences using a Perl script.
Only sentences containing both of the query terms or

their synonyms are subjected to NLP analysis, which
includes POS tagging by the TnT software [20] and shal-
low parsing by the CASS software [21]. Testing TnT on a
small corpus of 10 PubMed abstracts (2646 words), using
the supplied WSJ language model, showed 537 (20.29%)
unknown words. Manual inspection identified 150 errors
in the assigned POS tags. We then trained the TnT soft-
ware with the GENIA corpus [42] (a collection of 2000
PubMed abstracts annotated with POS and other informa-
tion). Re-analyzing the same 2646 words, using the cus-
tomized language model, resulted in only 289 (10.92%)
unknown words. Manual inspection identified 31 errors.
Thus, the language model based on the GENIA corpus was
used for all subsequent analyses. CASS software was used
without further adjustment.

Classification of relationships
All sentences containing two query terms (or their syno-
nyms) are classified into one of six categories: stimulatory
(interactive), inhibitory (interactive), both stimulatory
and inhibitory (interactive), neutral (interactive), parallel
(non-interactive) and abstract co-occurrence only. Sen-
tences are classified into interactive or non-interactive
relationships based on the presence or absence of a verb
phrase between the two query terms. The following excep-
tions apply: sentences are classified as parallel when the
query terms are present in two separate clauses; sentences
without a verb phrase between the query terms, but with
specific terms indicating interactions such as "interac-
tion", "bind", etc., are classified as interactive; interactive
relationships are converted into parallel relationship
when there is a negation (such as "not") within the same
clause of the verb phrase. The interactive relationship is
further classified into stimulatory, inhibitory, or neutral
subtypes based on the presence or absence of words
describing such relationships, including "activate", "facil-
itate", "increase", "induce", "stimulate", "enhance", "ele-
vate", "inactivate", "abolish", "attenuate", "block",
"decrease", "eliminate", "inhibit", "reduce", "suppress".
For interactive relationships, the direction is defined as
from the left query term to the right term and is reversed
when passive voice is detected. To avoid the influence by
spurious mistakes, the overall relationship between two
terms is defined as interactive only when more than 20%
of the sentences are detected as either stimulatory or
inhibitory. Lastly, the co-occurrence type is assigned when
the two query terms are located in the same abstract but
not the same sentence. We ranked the informativeness of
the relationships in the following order: both stimulatory
and inhibitory, either stimulatory or inhibitory, neutral
interactive, parallel, abstract co-occurrence. The overall
relationship between two query terms is classified as the
most informative type of relationship.
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Visualization of the networks
Network layout is generated using the aiSee software. Each
pair of query terms identified as having relationships is
specified by nodes and represented by square boxes. The
relationships are represented by solid lines. A special node
with unique identification (an icon) is inserted into the
middle of each line. The icon is either circular or rhomboi-
dal depending on the relationship it represents (see leg-
end of Figure 1). The network map as well as the links
from the map to the descriptions of the relationships are
obtained by calling the command line interface of aiSee.

"Hypothetical relationship" generation and testing
After the query session is finished, the user can request
Chilibot to suggest hypothetical relationships for any
node that is within the retrieved network. For each node
requested (NR) by the user, Chilibot scans the retrieved
network to find those nodes that are not directly linked to
NR, but have connections to the same tertiary nodes as
NR. Chilibot then produces a new network map for each
of these "hypothetical relationships", while maintaining
the links to the supporting documentation. To test the
usefulness of these "hypothetical relationships" in pre-
dicting future research, a total of 22 terms (ACTIN,
ACTININ, AMPA, ARC, ATF, CAMKII, CAMKIV, CREB,
ERK, KV4.2, NMDA, PI-3K, PKA, PKC, PLC, SYNAPSIN I,
SYNAPTOPHYSIN, SYNAPTOTAGMIN, TAU, TRKA,
TRKB, AND ZIF268) were queried together with LTP
(long-term potentiation). Retrospective studies were per-
formed by querying these terms again while adding the
PubMed date limiting tag "&mindate=1960&max-
date=$maxdate", where the $maxdate equals to 1990,
1995, 2000, respectively.

MESH themes
The MESH Keywords of the abstracts represented by the
graph are collected and sorted by their weighted percent-
age. When the keyword is the major topic of the publica-
tion, it is weighted as 3. Otherwise, it is weighted as 1. The
weights are then divided by the number of abstracts to
obtain the weighted percentage.

Web search and content filtering
Google WebAPI is accessed through Perl scripts. Due to
the limitation of the WebAPI, the query terms are searched
directly without the expanded synonyms. The URIs of the
top 10 hits were retrieved from Google and then the con-
tent of these pages was obtained from their individual
servers. These pages are then converted into texts, and sen-
tences containing either one of the query terms are pre-
sented to the user. Sentences containing both of the query
terms are highlighted. Links are also provided to restrict
the web search to educational institutions or to files in the
portable document format (PDF). Google is a trademark
of Google Technology, Inc.

Selection of relationships from the Database of Interacting 
Proteins (DIP)
DIP [2] is a curated protein interaction database. The ver-
sion of DIP database released on April 18th, 2003 con-
tains 18494 interactions between 7141 proteins.
Relationships that originated from large scale genomic or
proteomic studies were excluded, reflecting poor reliabil-
ity of the data [43] and the low probability that such inter-
actions would be described in textual forms. Proteins with
no SwissProt annotation or of yeast origin were also
excluded to further reduce the number of relationships to
a manageable subset. This selection procedure resulted in
a total of 770 relationships.
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Note
All none-graphic files are archived with tar and com-
pressed with bzip2 to reduce file size.

Additional material

Additional File 1
A total of 770 known relationships were used to test the recall and preci-
sion of Chilibot. A maximum of 5, 10, 20, 30, 40, or 50 most recent 
PubMed records for each relationship was specified for analysis. The rela-
tionships identified by Chilibot are summarized and provided in Microsoft 
Excel and OpenOffice format.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-147-S1.bz2]

Additional File 2
The original results of the above study (non-essential files are deleted to 
keep the file size under the limit set by BMC bioinformatics).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-147-S2.bz2]

Additional File 3
Sub-network graph obtained by filtering figure 1 using the number of sup-
porting publications as a threshold criterion.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-147-S3.jpeg]

Additional File 4
Sub-network graph obtained by filtering figure 1 to selectively display a 
node of interest (i.e. "cocaine") and other nodes that directly connected to 
it.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-147-S4.png]
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Additional File 5
The original Chilibot query results of the term "long-term potentiation 
(LTP)" and 22 other terms, limiting the latest references analyzed to the 
years 1990, 1995, 2000, and 2004.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-147-S5.bz2]

Additional File 6
A graph demonstrating the scale-free topology of relationship networks 
derived from the biological literature. The network contains 138 nodes 
and 1912 relationships. A small fraction of the nodes (10 nodes colored 
in black) accounted for more than 45% of the relationships (solid lines), 
a characteristic of scale-free topology.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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