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Abstract
Background: Two major identifiable sources of variation in data derived from the Serial Analysis
of Gene Expression (SAGE) are within-library sampling variability and between-library
heterogeneity within a group. Most published methods for identifying differential expression focus
on just the sampling variability. In recent work, the problem of assessing differential expression
between two groups of SAGE libraries has been addressed by introducing a beta-binomial
hierarchical model that explicitly deals with both of the above sources of variation. This model leads
to a test statistic analogous to a weighted two-sample t-test. When the number of groups involved
is more than two, however, a more general approach is needed.

Results: We describe how logistic regression with overdispersion supplies this generalization,
carrying with it the framework for incorporating other covariates into the model as a byproduct.
This approach has the advantage that logistic regression routines are available in several common
statistical packages.

Conclusions: The described method provides an easily implemented tool for analyzing SAGE data
that correctly handles multiple types of variation and allows for more flexible modelling.

Background
The nature of SAGE
The Serial Analysis of Gene Expression (SAGE) methodol-
ogy introduced by Velculescu et al. [1] is a sequencing-
based approach to the measurement of gene expression.

Briefly, mRNA transcripts are converted to cDNA and then
processed so as to isolate a specific subsequence; starting
from the poly-A tail, the subsequence is the 10 (normal
SAGE) or 14 (long SAGE) bp immediately preceding the
first occurrence of a cleavage site for a common restriction
enzyme. Ideally, this subsequence, or "tag" is sufficiently

specific to uniquely identify the mRNA from which it was
derived. Tags are sampled, concatenated and sequenced,
and a table consisting of the tag sequences and their fre-
quency of occurrence is assembled. The complete table
derived from a given biological sample is referred to as a
SAGE "library". As most tags are sparse within the entire
sample, most libraries contain numbers of tags in the tens
of thousands to allow the expression levels to be esti-
mated. Due to the current costs of sequencing, however,
the total number of libraries assembled for a given exper-
iment is typically small: often in the single digits and occa-
sionally in the tens.
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While the type of information, gene expression, being
investigated in a SAGE experiment is the same as that in a
cDNA or oligonucleotide microarray experiment, there
are some qualitative differences in the approaches. First,
SAGE uses sequencing as opposed to competitive hybrid-
ization. Second, while the expression value reported for
an array experiment is a measure of fluourescence and is
loosely continuous, SAGE supplies data on gene expres-
sion in the form of counts, potentially allowing for a dif-
ferent type of "quantitative" comparison. Third, SAGE is
an "open" technology in that it can provide information
about all of the genes in the sample. Microarrays, by con-
trast, are "closed" in that we will only get information
about the genes that have been printed on the array.

Mathematically, the information pertaining to the abun-
dance of a particular tag in a sample is summarized in two
numbers: Y, the number of counts of that tag in the
library, and n, the total number of tags in the library. In
analyzing SAGE data across a series of libraries, interest
typically centers on assessing how the underlying true
level of gene expression is changing as we move from one
library to the next.

Mathematical formulation of the differential expression 
problem
When surveyed across a series of libraries, the sufficient
statistics containing all of the information about the
change in expression for a single tag are the set of counts
{Yi} and the set of library sizes {ni}, where the subscript i
denotes the specific library. Unless otherwise specified, we
will restrict our assessment of differential expression to
the case of a single tag. This approach is common to all of
the procedures described below. In a real analysis the cho-
sen test is applied to all tags individually and a list of those
tags showing differential expression is reported. Different
tests will provide altered assessments of significance for
individual tags, and hence the list provided will depend
on the test employed.

In most problems of interest, there is also covariate infor-
mation Xi describing properties of library i. The most com-

mon case involves comparing two groups of libraries,
such as cancer and control. In this case the information Xi
simply defines which group library i belongs to. If there
are more than two groups, Xi can have more levels or can
even be vector valued, but as before interest centers on
assessing how and whether the expected proportion
changes with X.

Much work has been done on the problem of comparing
expression between two groups. Most of the approaches
[2-9] deal with comparing one library with another. Of
these, [2,6,7] extend their consideration to the case of two
groups of libraries by pooling the libraries within a group,
effectively reducing the sufficient statistics to the summed
counts

This approach, while it captures the count nature of the
data, loses information in that variation of the propor-
tions within a group is ignored. As noted by both Man et
al. [9] and Ruijter et al. [10], most of the above tests give
equivalent results in terms of assessing significant differ-
ences. By contrast, the two-sample t-test used to compare
two groups of samples in [11] reduces the sufficient statis-
tics to the set of proportions {pi} = {Yi/ni}, capturing the
variation between members of a group but losing track of
the inherent count sampling nature and variability of the
data. The two-sample t-test results can be dramatically dif-
ferent from the pooled test results, as they focus on two
different types of variation. The effects of these two
approaches on a single group of four libraries are shown
in Table 1. Pooling reduces the data to the summed
counts at the right, and focusing on proportions reduces
the data to the proportions on the bottom. In both cases,
this reduction results in a loss of information. When pool-
ing is used, we can't tell that one of the group proportions
was large and the other small, indicating instability. When
proportions are used, we can't tell that one library was
much smaller than the other, so that proportion should
be "trusted less" than the other.
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Table 1: Methods of summarizing data. The effects of pooling and reduction to proportions on a single tag measured across four 
libraries. Pooling reduces the data to the summed counts at the right, and focusing on proportions reduces the data to the proportions 
on the bottom. In both cases, information is lost.

Summed Counts

Tag Count Y1 Y2 Y3 Y4

Library Size n1 n2 n3 n4

Proportions Y1/n1 Y2/n2 Y3/n3 Y4/n4

Yii=∑ 1
4

nii=∑ 1
4
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Baggerly et al. [12] proposed a beta-binomial hierarchical
model for SAGE data in an attempt to simultaneously
model both types of variation. This model leads to a test
statistic called a weighted two-sample t-test, tw. Comput-
ing the value of this test statistic requires all 8 of the num-
bers in the main body of Table 1; there is no reduction of
the sufficient statistics. This test statistic exhibits different
behaviors depending on which type of variation is larger
for a given tag. When the within-library sampling varia-
tion is much larger than the between-library variation, tw
gives results close to those supplied by pooling tests,
which focus on within-library variation. Conversely,
when the between-library variation is much larger than
the within-library variation, tw gives results very similar to
those of a two-sample t-test, which focuses on between-
library variation. The tw model also allows the relative
contributions of the two types of variation to be assessed.
Baggerly et al. [12] found that for high-count tags,
between-library heterogeneity is the much larger source of
variation and that pooling methods which do not allow
for heterogeneity are biased towards finding high count
tags to be significantly different. This can potentially lead
to large fractions of false positives, as becomes apparent
when the results for several different tags are plotted.

Extensions to multiple groups
While cases with more than two groups have been
described in the literature [2,13-15], the means of analysis
is currently something of a hybrid. Methods explicitly
attacking the multi-library problem have been proposed
[16,17], but the most common approach at present
[13,15] seems to involve coupling hierarchical clustering
of the data with pairwise tests for differential expression
[2] between one group and another. This hybrid approach
can indirectly capture both types of variability, with the
hierarchical clustering focused on the variation between
proportions within a group, and the pairwise test focusing
on sampling variation. Clustering has other benefits for
clarifying thought apart from assessing differential expres-
sion, and we definitely recommend it for exploring the
structure of the data. However, clustering tends not to pro-
vide a numerical summary, so combining the clustering
results with those of the pairwise comparisons can be
something of an art. An additional drawback is that the
pairwise comparisons may miss useful information about
variability by focusing only on a subset of the libraries
available. For the purposes of assessing differential expres-
sion we believe more efficient tests are available.

Our approach: Overdispersed logistic regression
We seek to construct a method that takes the count nature
of the data into account, deals with multiple groups
simultaneously, and allows for variability in the propor-
tions beyond that due to sampling alone. Fortunately, this
is not the first time such a problem has arisen.

The problem of assessing differential expression for mul-
tiple groups corresponds to the classical statistical prob-
lem of the analysis of variance (ANOVA). When the values
of interest are continuous (e.g., microarray log ratios), the
test statistics become F-tests, higher-dimensional general-
izations of the two-sample t-test. When the data are
counts (SAGE data), and sampling variability needs to be
dealt with, the ANOVA test can be adapted to give logistic
or Poisson ANOVA. The multi-library test for differential
expression proposed by Stekel et al. [17] corresponds to
Poisson ANOVA, but without allowance for overdisper-
sion. ANOVA deals with the extension from two to a larger
number of distinct groups, but this can be viewed as a spe-
cial case of the situation where the covariate information
is continuous. One common way of modelling the
dependence of proportions upon covariates is through
logistic or Poisson regression, both of which are special
cases of generalized linear models [18,19]. Such models
incorporate the form of the sampling variability directly.
For example, the logistic model for proportions,

defines both the function of the data that is to be modeled
in terms of the covariates (the logit of the proportions)
and the precision of each of the measurements. The max-
imum likelihood estimates of the parameters of this
model can be found through iteratively reweighted least
squares (IRLS).

Excess variation within a level, or overdispersion, can be
introduced into a logistic regression framework in a
number of ways. The most common and most widely
implemented approach is to replace the binomial likeli-
hood function being maximized above with a "quasi-like-
lihood" which differs from the initial formulation solely

through the introduction of a scale term, , into the

variance equation, so that

V(Yi) = nipi(1 - pi) .

This approach has the advantage that it inflates the vari-
ance of each of the observations by a like amount, so that

the estimated  values will be the same – just the associ-
ated standard errors will be inflated. Logistic regression
with quasi-likelihood overdispersion is implemented in a
wide variety of statistical packages, including S-PLUS, R,
GLIM, and SAS. Another method of introducing overdis-
persion is to assume a hierarchical model in which the
proportions at a given level of the covariate are drawn
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from a nondegenerate distribution, and the distribution
of the observed counts is binomial conditional on the
value of the drawn proportion. When a beta distribution
is assumed for the proportions, the final unconditional
distribution of the observed counts is beta-binomial. This
is the model suggested by Baggerly et al. [12] for model-
ling overdispersion in SAGE data, and is also the model
used by Crowder [20] in generalizing ANOVA to deal with
proportions subject to overdispersion. It can be shown
(eg, Collett [18] p.201) that the variance of beta-binomial
counts is of the form

V(Yi) = nipi(1 - pi)[1 + (ni - 1)φ],

which is equivalent to the quasi-likelihood formulation
when all of the library sizes ni are the same. While approx-
imate equality may suffice, even this assumption may be
questionable for SAGE data, particularly if some of the
libraries are drawn from experiments conducted at differ-
ent times. Williams [21] shows how IRLS can be adapted
to deal with this type of overdispersion, and notes that
estimation involves φ only and need not assume further
structure from the beta distribution, making the proce-
dure slightly more general. This form of overdispersion is
implemented in R as part of the dispmod package.

In the logistic regression framework, assessing differential
expression reduces to a case of deciding whether a set of
regression coefficients is different from zero. This can lead
to slightly different inferences than models such as t-sta-
tistics applied to the proportions, in that approximate
normality is assumed to hold for the β values rather than
the proportions themselves. When we have worked with a
beta model for the pi's, we have been led to choices of
parameters which yield quite skewed distributions, sug-
gesting that the logit scale may be more appropriate.
Working with the β values has the additional advantage
that confidence intervals are naturally interpreted in terms
of fold changes.

Results
Comparing two groups
We begin by comparing the counts of the tag ATTTGA-
GAAG in 8 colon libraries initially described in Zhang et
al. [2]. These 8 libraries include two normal colon (NC1
and NC2), two primary tumors (TU98 and TU102) and
four cell lines (CACO2, HCT116, RKO, and SW837). For
now, we focus on comparing normal colon with all
tumors, primary or cell line. Counts of the tag and the cor-
responding library sizes are given in Table 2. A χ2 test
applied to the pooled counts from each of the two groups
yields a test statistic of 444.27; the 95% cutoff for the null

 distribution is 3.84, with values above this being
deemed "significant". The two-sample t-test applied to the
two groups of proportions yields 1.60; the 95% cutoffs for
the null t6 distribution are ± 2.45, so this test suggests that
the difference is not significant, showing the possibility of
stark disagreements between tests focusing on different
portions of the variability. The tw statistic proposed by
Baggerly et al. [12], which incorporates both types of var-
iance, yields a test statistic of 1.60. The null distribution of
this test statistic in this case is approximately a t6 distribu-
tion, and the qualitative results are far closer to those of
the t-test than those of the pooled tests, reflecting the rel-
ative dominance of patient heterogeneity in driving the
total variation for this tag. We note in passing that this dis-
agreement between the two types of tests is not an isolated
incident. When we surveyed all of the tags in this group of
libraries we found 10 tags with |t| < 2 and χ2 > 200, and
48 tags with |t| < 2 and χ2 > 50. In Baggerly et al. [12] it
was found that most high-count tags appeared signifi-
cantly different when a pooled test was used and not sig-
nificant when a t-test was tried, and that in this case the t-
test was more likely correct.

The results from three logistic regression model fits to the
data are shown in Table 3. In the first model there is no
allowance for overdispersion, in the second the quasi-like-

χ1
2

Table 2: Tag counts from sample SAGE libraries. Counts and proportions of tags ATTTGAGAAG, TGCTGCCTGT and 
GCGAAACCCT in 8 colon libraries from Zhang et al. [2]; two normal colon (NC), two primary tumors (TU) and four cell lines.

Group Normal Colon Primary Tumor Cell Lines

Library NC1 NC2 TU98 TU102 CACO2 HCT116 RKO SW837

ATTTGAGAAG 320 600 312 549 246 65 41 52
TGCTGCCTGT 0 1 1 15 9 1 12 27
GCGAAACCCT 167 566 64 98 33 47 40 27

Library Size 49610 48479 41371 55700 60682 55641 51294 61148
Propn ATT..(%) 0.65 1.24 0.75 0.99 0.41 0.12 0.08 0.09
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lihood approach to overdispersion is employed, and in
the third the hierarchical approach to overdispersion is
used. Here, the values of the covariate X are 0 or 1 as the
library is in the first or second group, respectively. In mod-

els 1 and 2, the fitted proportions are  = e-4.66/(l + e-

4.66) = 0.94% and  = e-4.66 - 0.89/(l + e-4.66 - 0.89) = 0.39%

for the first and second groups, respectively, and the pro-
portions are only slightly altered in model 3. We note that
the estimated coefficient values are exactly the same for
the first two models, and this is true for these two
approaches in general. Fitting the model with no allow-
ance for overdispersion gives a z-value of β1/s.e. (β1) = -
20.42, which is definitely significant. Note that the square
of this value is of the same order as the value found by the
χ2 test. The Pearson residuals from this model,

, however, show a problem. If the model

fits well, these should be approximately distributed as a
standard normal, with extreme values from a set of 8
observations around 3 or 4 in magnitude. The actual val-
ues, -14.6 and 19.0, are far too extreme. When the model
is fit with allowance made for overdispersion, the point

estimate of the dispersion parameter is  = 187.57; this

value should be close to 1 if there is no overdispersion.
With this allowance made the t-value of -1.49 is no longer
significant. This t-value can be found from the first z-value

(-20.42) by dividing by  = 13.70. Similarly scaling the

residuals yields values far more commensurate with a
standard normal. We note that due to the differences in

the models employed, the presumed distributions of the
test statistics have changed. If we assume that the standard
logistic model with no overdispersion holds, the test sta-
tistic has an approximately normal distribution. This is
because the number of total successes is driving the bino-
mial distributions to approximate normality. When we
shift to a model where we presume the existence of over-
dispersion, the test statistic now has a t distribution. This
is because our estimate of the variance is now strongly
dependent on the precision with which we can estimate
the overdispersion parameter, and this precision depends
on the number of libraries, not the number of successes.
Fitting this model with the hierarchical type of overdisper-
sion, model 3 in Table 3, yields slightly different answers

but the size of  is still not significant. The difference in

 values from those found before is due to the fact that
in this model the amount of overdispersion attributed to
each proportion changes slightly with library size, thus
altering the weights used in the regression model. The
point estimate for the hierarchical dispersion parameter φ

is  = 3.399e - 03, so the multipliers for the binomial var-
iances are

1 + ({ni} - 1)  =

(169.62, 165.78, 141.62, 190.32,

207.26, 190.12, 175.35, 208.84).

Table 3: Logistic regression models for two groups. Logistic regression fits contrasting normal colon with cancer samples for tag 
ATTTGAGAAG from Table 2. The first model makes no allowance for overdispersion, and the latter two introduce it in different ways. 
The introduction of overdispersion is important as it dramatically affects the results, but the choice of overdispersion method is less 
crucial.

Model 1: No overdispersion V(Yi) = nipi(1 - pi)

Coefficients Estimate (s.e) z-value p-value
β0 -4.660 0.033 -140.68 < 2e-16
β1 -0.888 0.043 -20.41 < 2e-16

Model 2: Quasilikelihood V(Yi) = nipi(1 - pi)  = 187.6

Coefficients Estimate (s.e) t-value p-value
β0 -4.660 0.454 -10.261 5e - 05
β1 -0.888 0.595 -1.489 0.187

Model 3: Hierarchical V(Yi) = nipi(1 - pi) [1 + (ni - 1)φ]  = 3.4e - 03

Coefficients Estimate (s.e) t-value p-value
β0 -4.656 0.428 -10.874 3.6e - 05
β1 -0.850 0.570 -1.492 0.186
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averaging these gives 181.11 which is close to the value
found for the quasi-likelihood dispersion parameter. We
note that the differences in coefficient values for models 2
and 3 are largely cosmetic, but the differences in signifi-
cance between model 1 and the others are not. Choosing
to account for overdispersion is more important than the
precise model used to achieve this.

We note that the overdispersed logistic regression
approaches give t-values about -1.49, whereas the two-
sample t-test and the modified version tw suggested by
Baggerly et al. [12] both give t-values of about -1.6 (as
noted earlier, agreement between t and tw suggests that for
this tag, the between-library variation is much larger than
the within-library variation). There are two reasons for
this difference. First, the t statistic works on the propor-
tion scale, and logistic regression works on the β scale,
which is roughly the log proportion scale. Second, the tw
statistic used here,

does not assume that the overdispersion factor is the same
in the two groups being compared; the variance estimate
is not pooled. The latter difference is actually the more
important for this contrast, particularly as the variance
estimate from the first group of size 2 is very unstable. This
effect is not always subtle; if we consider instead the tag
GCGAAACCCT, with counts given in Table 2, the two-
sample t test and the weighted tw test both give -1.57, and
the logistic regression t value is -4.16.

Of the two answers, we tend to prefer the one given by the
logistic regression fit, for two reasons. First, when we have
fit the parameters of the beta distributions for the propor-
tions directly, we have found the distributions to be quite
skewed. As such we find it better to assume rough normal-
ity on the β coefficient scale. Second, when the number of
libraries in a group is quite small, which will often be the
case with SAGE data, we prefer the pooled estimate of the
variance. This preference is due in large part to its greater
stability through the use of more degrees of freedom. It is
possible to explicitly incorporate levels of overdispersion
that change with the covariates in logistic regression, but
we have not pursued this here.

Comparing three or more groups
Above, we treated the colon libraries as if they came from
two groups, but it is more natural to view them as coming
from three: normal samples, primary tumors, and cell
lines. When we have data from multiple groups, there are
two different ways in which this changes the nature of the
problem. First, if we are only interested in comparing two
of the groups, it is often nonetheless worthwhile to incor-

porate the data from the other groups into the model. The
reason for this is that when overdispersion is driving the
variance, the significance of our results depends strongly
on the precision with which we can estimate the overdis-
persion parameter. The libraries in the groups not directly
involved in the comparison of interest can still supply
information about the overdispersion parameter and
increase the degrees of freedom of the associated t-test.
Second, by examining the fitted proportions for all
groups, the relative sizes of the transitions can be assessed.

We begin by looking at the results for a single tag flagged
as interesting in the paper by Zhang et al. [2], namely
TGCTGCCTGT, where we presume that the contrast of
most interest is between normal colon and primary
tumors. The counts for this tag and the corresponding
library sizes are given in Table 2.

We first attempt to compare the levels in normal colon
and primary tumor while ignoring the cell lines (ie, using
just four libraries), and then using a model incorporating
all three groups. The results using logistic regression with
hierarchical overdispersion are shown in Table 4.

In the model with only two groups, we have a single cov-
ariate vector x1 = (0,0,1,1) denoting which of the two
groups the library belongs to. This model produces an
overdispersion estimate of  = 8.938e - 05, for inflation
factors of

1 + ({ni} - 1)  = (5.43, 5.33, 4.70, 5.98).

The fact that these factors are significantly larger than one
suggests that the within-group heterogeneity is the domi-
nant component of the variance not explained by the
model. In the model with three groups, we cannot use a
single covariate vector x1, as this is not suited to indicating
3 or more groups in an unordered fashion (using 0, 1, and
2 for the three groups respectively would force an ordering
by saying that primary tumors are intermediate betwixt
normal samples and cell lines). In general, if we have k
groups, we need to use k - 1 covariate vectors. Here, we use
x1 = (0, 0, 1, 1, 0, 0, 0, 0) and x2 = (0, 0, 0, 0, 1, 1, 1, 1).
The set of all 0s (x1 = 0, x2 = 0) corresponds to the first
group, here normal colon, and the other groups are
defined by which one of the other covariates is nonzero:
Group 2 (primaries), (x1 = 1, x2 = 0), Group 3 (cell lines),
(x1 = 0, x2 = 1) As we are still focused on the difference
between normal colon and primary tumors, for which the
logit values are β0 and β0 + β1 respectively, the main inter-
est remains on whether β1 is significantly different from
zero, and the predicted logit for the cell line group, β0 + β2,
does not enter the problem directly. Fitting this model

ˆ ˆ

ˆ ˆ
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p p

V V
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produces an overdispersion estimate of  = 1.160e - 04,
for inflation factors of

1 + ({ni} - 1)  =

(6.76, 6.62, 5.80, 7.46,

8.04, 7.45, 6.95, 8.09).

In neither case (considering two groups or three) does the
contrast between normal colon and primary tumor, repre-

sented as the magnitude of , appear significant once
allowance is made for overdispersion, but there is an
interesting point to note. Even though the point estimate
of overdispersion increases when the cell lines are

included, and the value of the t-statistic ( /s.e( ))
associated with the difference declines, the associated p-
value indicates an increase in significance. Without using
the cell lines, we have just 4 libraries, and after estimating
the mean proportions in each group just 2 degrees of free-
dom for estimating φ. When we use the cell lines, we have
8 libraries and 5 degrees of freedom for estimating φ.
Thus, the degrees of freedom in the t-tests shift from 2 to
5. The t2 distribution has very wide cutoffs, and the t5 is
much closer to normal. In general, the inclusion of related
groups can improve estimation by increasing the preci-
sion of our estimate of overdispersion.

In fitting the model with three groups, of course, we have
also gained the ability to look at other contrasts. For
example, we can look at normal colon versus cell lines, for
which the logits are β0 and β0 + β2 respectively, by check-

ing the significance of . Likewise, we can look at the
difference between primary tumors and cell lines, for
which the logits are β0 + β1 and β0 + β2 ,by testing the sig-

nificance of the difference . While this signifi-
cance is not listed in the table directly, we can compute
the standard error of this contrast, s.e.

, divide the estimate by

its standard error to get a t-statistic with the degrees of
freedom listed (here 5), and compute a p-value
accordingly.

It is also possible to perform an omnibus test of whether
there exists any significant difference among the groups,
which is logistic ANOVA for proportions. The regular
ANOVA test looks at the amount of variance explained by
the terms of interest in the model and compares this to the
amount of residual variance. Adjusting for the degrees of

Table 4: Expanding contrasts from two to three groups. Logistic regression models testing the significance of a difference between 
normal colon and primary tumor (β1) for tag TGCTGCCTGT from Table 2. In the first model, only data from the four libraries directly 
involved are used. In the second model, data from the four cell line libraries are also included, providing a more stable estimate of the 
overdispersion parameter φ.

Model 1: Two Groups  = 8.938e - 05 df = 2

Coefficients Estimate (s.e) t-value p-value
β0 -11.484 2.309 -4.973 0.038
β1 2.681 2.388 1.123 0.378

Model 2: Three Groups  = 1.160e - 04 df = 5

Coefficients Estimate (s.e) t-value p-value
β0 -11.484 2.574 -4.462 0.007
β1 2.676 2.661 1.005 0.361
β2 3.020 2.604 1.159 0.299

φ̂

φ̂

φ̂

φ̂

β̂1

β̂1 β̂1

Table 5: Analysis of deviance. Deviance table for various 
submodels fit to the data for tag TGCTGCCTGT given in Table 
2. All of these models use the value for overdispersion found for 

the most extensive model,  = 1.160e - 04.

Terms Fitted Deviance d.f.

β0 9.7433 7
β0 + β1 9.7418 6
β0 + β2 7.9826 6
β0 + β1 + β2 5.7866 5

β̂2

ˆ ˆβ β1 2−

( ) . .( ) . .( )β β β β1 2 1
2

2
2− = +s e s e

φ̂
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freedom in each group gives an F-test. When dealing with
generalized linear models, the quantity -2 * log
(likelihood ratio), known as the deviance, plays a role
analogous to the variance in ANOVA and thus we can
speak of the analysis of deviance. The analysis of deviance
is complicated by the inclusion of overdispersion in the
model, requiring a multi-step approach in which several
different models are fit in succession. These models are
listed in Table 5. First, the model is fit using all available
covariates and the overdispersion parameter is estimated.
Here, the available covariates are x1 and x2, and fitting the

full model with both present, β0 + β1 + β2, gives  =
1.160e - 04 as noted above. Second, submodels are fit
with the value for overdispersion fed in as fixed. In this
case, the submodels are β0 + β2, using x2 as the only cov-
ariate, β0 + β1, using x1 as the only covariate, and β0, using
no covariates and simply fitting a single proportion to all
of the data. The results are shown in Table 5, from which
the significance of a given model can be assessed by com-
paring the scaled reduction in deviance with the scaled
residual deviance to the appropriate F distribution. Here,
for example, testing whether the overall model including
β1 and β2 explains things significantly better than just fit-
ting the same proportion throughout (β0) reduces to

indicating that the overall difference between groups is
not significant at the 5% level. It may be noted that the
submodel including just β1 in addition to the constant
appears to explain very little; this is due to the way in
which we have chosen the entries of X, so that including

β1 isolates the effect of the primary tumor group, but
excluding β2 still combines the normal colon group with
the cell line group for the contrast. This latter grouping
blurs the normal colon vs primary tumor distinction
found to be a bit larger earlier.

Incorporating other covariates
It is possible to use the logistic regression approach to par-
tition the variance amongst multiple effects of interest.
For example, in the above section we considered a case
with colon libraries taken from both primary tumors and
cell lines. Such data is also available for other organs, eg
pancreas. If we are interested in identifying consistent dif-
ferences between primary tumors and cell lines, it would
be natural to use libraries from both organ types. How-
ever, if these were then compared as two groups, primary
vs cell lines, the differences would be difficult to isolate
due to the large differences between tissue types within
both the primary and cell line groups. The solution is to
fit a model with two covariates, with x1 being 0 or 1 as the
sample is colon or pancreatic, respectively, and x2 being 0
or 1 as the sample is a primary tumor or a cell line, respec-
tively. Inference reduces to testing the significance of β2,
with the scale of natural variation being assessed only
after the effects of the change in tissue type, β1, have been
factored out.

In the above example, we allowed for the effect of one
other effect, tissue type. In principle, multiple factors can
be allowed for through the inclusion of other covariates.
Likewise, though the two covariates in the above example
were both "factors" having a finite number of unordered
levels, it is possible to include continuous covariates in
the modelling process as well.

φ̂

( . . )/( )

. /
. . ,. , ,

9 74 5 79 7 5

5 79 5
1 71 5 790 95 2 5

− − = < =F

Table 6: Incorporating covariates into the model. Models treating the fitting of counts for tag GCGAAACCCT from Table 2, with the 
cell lines hypothetically allocated to normal tissue B (libraries 5 and 6) and cancer tissue B (libraries 7 and 8). This division is made to 
illustrate how the effects of two differences, normal vs cancer and tissue A vs tissue B (β1 and β2 respectively) can be partitioned 
according to their importance. In Model 2, we have further introduced a continuous covariate (β3) corresponding to the levels of a 
biomarker to show how that can be figured in as well.

Model 1: Hypothetical Cov.  = 1.224e - 03 df = 5

Coefficients Estimate (s.e) t-value p-value
β0 -4.928 0.291 -16.921 1.318e - 05
β1 -1.293 0.593 -2.181 0.0810
β2 -1.956 0.738 -2.650 0.0454

Model 2: Hypothetical Biom.  = 1.254e - 03 df = 4

Coefficients Estimate (s.e) t-value p-value
β0 -4.167 0.608 -6.851 1.012e-03
β1 -1.423 0.611 -2.328 0.0674
β2 -2.031 0.752 -2.700 0.0428
β3 -1.365 1.028 -1.328 0.2417

φ̂

φ̂
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To illustrate this, we give two hypothetical examples using
the counts for the GCGAAACCCT tag from Table 2. In the
first example, we posit that we are trying to assess the dif-
ferences between normal tissue and primary tumors, that
the first 4 libraries come from normal colon and primary
tumors as indicated, and that the remaining 4 libraries
come not from cell lines but rather from normal tissue
(libraries 5 and 6) and primary tumor (libraries 7 and 8)
from some other organ. As noted above, this leads to a sce-
nario where we want to fit a model with two covariates: x1
= (0, 0, 1, 1, 0, 0, 1, 1), indicating whether the library is
normal (0) or primary tumor (1), and x2 = (0, 0, 0, 0, 1, 1,
1, 1), indicating the organ from which the library was
derived. In the second example, we posit that in addition
to the above information, we have access to the levels of a
biomarker potentially predictive of survival. These levels
are supplied as the values of a third covariate vector, x3 =
(0.89, 0.35, 0.66, 0.23, 0.30, 0.54, 0.90, 0.90). The values
for x3 were generated as random draws from a uniform
distribution. In terms of fitting the models, the mechanics
are similar to those presented earlier. The model fits are
presented in Table 6.

When logistic regression breaks
The logistic regression fitting procedure can break down,
or exhibit lack of convergence. Typically this means that
all of the proportions in one of the groups are zero or one;
only the former is realistic in the context of SAGE data.
This is natural, in that the maximum likelihood point esti-
mate for the group proportion is 0, and inference for β
involves the fold change to the proportion in the second
group, leading to division by zero. When the proportions
are this small, the binomial variability dominates the het-
erogeneity and the values are completely noninformative
with respect to the estimation of overdispersion.

We propose a fix that is iterative in nature in that it
requires the logistic fitting routine to be run three times.
To illustrate this procedure, we will use the data from tag
ATTTGAGAAG in Table 2, with the first two tag counts,
those from group 1, set to zero.

The first run of the fitting procedure serves to estimate the
overdispersion parameter. This fit uses just the groups that
have nonzero counts, omitting the problematic group(s).
Here, this involves fitting a single proportion to the six
libraries in group 2. The fitted proportion is 0.40%, and

the overdispersion estimate is  = 3.71e - 03.

The second run of the fitting procedure takes the overdis-
persion parameter as given, and fits the data after replac-
ing the zero proportions in a group with the same small
nonzero proportion, giving us a hopefully conservative
estimate of the fold change. This type of replacement is
commonly used, and is most often justified via the

assumption of a vague prior distribution for the propor-
tions, with the point estimate being derived as the poste-
rior mean or mode. A common assumption for a prior in
dealing with proportions is the uniform distribution. The
posterior mean after 0 successes are observed out of ni tri-
als is 1/(ni + 1); with multiple trials, it is 1/((∑ni) + 1). This
is the value we use. This value is actually quite conserva-
tive here, for two reasons. First, the uniform distribution
places far too much chance on the possibility of propor-
tions greater than a few percent, which will never be
observed with SAGE data. Restricting the distribution to
be uniform over the range [0, 0.02] should be more than
adequate. Second, the presence of overdispersion means
that pooling the samples underemphasizes the evidence
of a small proportion being supplied by the zero variance
of the observed proportions. While we could pursue a
more optimal proportion, we choose in this case to sim-
ply use the simplistic bound noted above. Here, as the
library sizes in the first group are 49610 and 48479, the
proportion is 1/(49610 + 48479) and the faked counts are
0.506 = 49610/(49610 + 48479) and 0.494, respectively.
Some reformatted results from this fit are shown in Table
7 (Model 1).

The results for this fit are ridiculously "insignificant". The
problem lies in the fact that the use of a t-value (a Wald
test) relies on the approximate normality of the likelihood
function in the vicinity of the maximum, and this shape
assumption breaks down severely if the number of counts
in one group is small. Tests based on changes in the scaled
deviance, corresponding to likelihood ratio tests, are
better.

The third run of the fitting procedure fits a simpler sub-
model, in this case a single proportion for all eight librar-
ies, using the same overdispersion estimate so as to
measure the change in deviance. The results of this fit are
shown in Table 7 (Model 2). The analysis of deviance test
for significance gives

φ̂

Table 7: Fitting nested deviance models. Fitting nested models to 
the data in order to get deviance scores. The difference in 
deviance between models is a better indicator of the significance 
of the associated effect (β1) when the logistic regression fits are 
near the boundary of the space, giving proportions close to zero.

Model 1: Full Model Deviance = 5.0742

Coefficients Estimate (s.e) t-value p-value
β0 -11.494 13.518 -0.06 0.9519
β1 5.987 13.524 -0.03 0.9750

Model 2: Null Model Deviance = 8.7541

Coefficients Estimate (s.e) t-value p-value
β0 -5.794 0.392 -14.772 6.05e-06
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Here, we cannot conclude (given the level of overdisper-
sion) that the difference is real. Note that the degrees of
freedom used in the denominator is 5; this follows from
the fact that only 6 libraries were used to estimate the
overdispersion parameter, and one of those 6 degrees of
freedom was needed to estimate the proportion.

In general, when any of the groups has very small counts,
checking the change in deviance is a good idea.

Discussion
Logistic regression with overdispersion addresses three
issues with SAGE data: simultaneously modelling multi-
ple types of variance, dealing with multiple groups at
once, and allowing for the incorporation of covariates.
This procedure is widely implemented in available soft-
ware. Further, and most importantly, viewing SAGE data
in the logistic regression setting supplies the framework
for thinking of models that describe such data.

Dealing with multiple types of variance yields significance
estimates we believe to be superior to those derived from
pooled counts or from t-tests. The regression setting car-
ries with it other benefits, such as a well-developed body
of work regarding model checking, residual analysis, and
detection of outliers. For example, the influence of any
given library tag count on the overall analysis can be
assessed, and methods can be made more robust by
bounding these functions so that no single library drives
the results.

There are some areas in which we can identify difficulties
and see room for improvement.

First, the model that we are using for the error may be
improved. For SAGE data, the proportion associated with
a specific tag is rarely on the order of a percent, so

logit(pi) ≈ log(pi)

and we can speak of working with the log rather than the
logit transform if we prefer. Assuming variance stability
on the log scale then leads to the lognormal distribution
often assumed in dealing with microarray data. Assuming
a lognormal distribution is equivalent to introducing
overdispersion in yet another way, namely as a random
effect acting on the β scale. Here, the true proportion for
library i is of the form

logit(pi) = β0 + β1xi + εi,

where εi is a normal random variable with mean 0 and

variance . The model described here is a special case
of a generalized linear mixed model (GLMM), where
"mixed" refers to the fact that we have both fixed effects of
interest, the changes with the covariates, and random
shocks whose variance needs to be estimated and allowed
for. Williams [21] suggests how this model might be fit
using a Taylor-series type expansion, again invoking IRLS.
However, as noted in Collett [18], p.272, "This approach
is not entirely satisfactory for fitting such models to binary
data, since the estimates can be biased in certain circum-
stances. Moreover, the deviance calculated for such mod-
els is often very approximate and cannot be
recommended for general use in comparing alternative
models." There are maximum-likelihood based
approaches for fitting GLMMs available in SAS and S-
PLUS, but there are known problems with fitting mixed
effects models to binary data with small numbers of clus-
ters or libraries. One way of addressing this issue more
precisely is via simulation (for example via BUGS [22]).
We are exploring these different error models now.

Second, the approach developed above works on one tag
at a time. In doing so, it is not exploiting to the fullest the
unique features of SAGE data. Examples of such exploita-
tion include correcting for sequencing errors by looking at
neighbors where sequence similarity is used to define a
neighborhood network, and borrowing strength across
genes by using common estimation of parameters such as
φ over like groups. Work on these issues is ongoing (eg,
Colinge and Feger [23], N. Blades (2002), unpublished
dissertation, Johns Hopkins) and we think these features
could be usefully combined with the approach presented
here.

Methods
Data
The data used here were initially described in Zhang et al.
[2]. The actual numerical libraries used were downloaded
from the SAGE Genie web resource introduced by Boon et
al. [24,25]. These libraries have had the linker tags
removed.

Overdispersed logistic regression
Only a cursory description of the approach is given here;
more detailed treatments are given in Collett [18] and
McCullagh and Nelder [19], among others.

We want to fit the observed proportions, pi = Yi/ni, as a
function of the covariates Xi. The first step in this process
is to specify what form the relationship will take. If the
relationship is linear, so that pi = β0 + β1Xi + ε, then we can
potentially get fitted proportions outside of the interval
[0,1], so we typically choose to fit a transformed version

( . . )/

. /
. . .. , ,
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5 07 5
3 63 7 710 951 5
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of the pis as being linear in the covariates. A common
choice for proportions is the logistic transformation,
logit(pi) = log(pi/1 - pi) = β0 + β1Xi + ε. This particular choice
is suggested by the form of the likelihood function for
binomial data (see McCullagh and Nelder [19], p.28–32),
and we shall take it as assumed here, save to note that
while the logit can range over all real values, the corre-
sponding proportions are all between 0 and 1. At this
point we are fitting a straight line to a transformed version
of the data; this is akin to standard linear regression which
is fit by minimizing the sum of squared deviations
between the observations and their fitted values: the
method of least squares. Now, the default assumption in
least squares is that all of the observations are known with
equal precision, and hence receive equal weight. This is
not the case here, as the variance of a proportion is V(pi) =
pi(1 - pi)/ni, so that the precision with which an observa-
tion is known depends on both the value of that observa-
tion and on the size of the total ni from which the
proportion was derived. In the case where the observa-
tions are known with differing precisions, then the stand-
ard adjustment is to fit a weighted version of least squares,
minimizing a weighted sum of the squared differences
between the observations and their fitted values, where
the weights are inversely proportional to the variances of
the observations. Thus, at the first step we fit a logistic
curve using weighted least squares where the weights are
inversely proportional to the variances associated with
our initial estimates of the proportions, (Yi + 0.5)/(ni + 1).
After this first fit, we now have predicted values for each of
the observations, and these predicted values in turn sug-
gest new values for the variances and hence the weights.
Thus, the second step is to refit the data using the new
weights. This process is iterated (iteratively reweighted
least squares, IRLS) until the changes in the predicted val-
ues from one fit to the next are small enough that the pro-
cedure is said to have converged.

Even after the process has converged, it is often the case
that the sizes of the squared deviations will be substan-
tially larger than might be expected if the variances were
of exactly the form given above. In this case, the data are
said to exhibit overdispersion relative to the postulated
model, and we seek to estimate the scale of the overdisper-
sion. We deal with the quasi-likelihood case of overdis-
persion here, where the variance is really of the form V(pi)

= nipi(l - pi) , for  > 1. The added mechanics for

computing the hierarchical form are somewhat involved
and we refer the reader to Williams [21] for details. Using
the quasi-likelihood model for overdispersion, the actual
parameters of the best fitting model will not change, as
the weights used in the weighted least squares routine are
all proportional to the inverses of the variances, and scal-
ing all of the variances by the same factor leaves the

relative sizes of the weights unchanged. What does change
is the presumed precision associated with these parame-
ters; the variances of the parameters will likewise be mul-

tiplied by , and significance tests need to be adjusted

accordingly. In order to estimate , we return to the

weighted squared deviations between observations and
predictions noted above. Ideally, the sum of the squared
weighted residuals will have a chi-squared distribution
with k - p degrees of freedom, where k is the total number
of libraries and p is the number of β terms being esti-
mated. As the mean of a chi-squared distribution is equal
to its degrees of freedom, we get our initial estimate of

 by dividing the sum of squared weighted residuals

by the posited degrees of freedom:

Given the estimated value of , the test statistics are

scaled by  and the significances recomputed. In the

cases below, we outline the procedure and couple the
descriptions with scripts for the freeware package R. In
each case, the approach begins by loading the data corre-
sponding to the tag counts Yi and the library sizes ni,
which are used to supply the observed proportions. The
main distinction between the cases resides in how the cov-
ariate X values are defined. All of the models assume the
presence of a constant vector X0 of all ones; this produces
the corresponding estimate for β0. Our discussion will
likewise treat this covariate as present in all modelling
steps.

Annotated R code
# Source code for models used in the paper

# "Overdispersed Logistic Regression for

# SAGE: Modelling Multiple Groups and

# Covariates", by Baggerly et al.

##########################################

# First, we deal with the case of two

# groups, and introduce the methods for

# fitting the logistic regression models.

##########################################
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if(0){

# Load the tag counts for ATTTGAGAAG (y)

# from the 8 libraries in Zhang et al.

# [2], the associated library sizes (n)

# and the covariate vector indicating

# which of two groups the librares

# belong to, normal or cancer (x).

y <- c(320, 600, 312, 549,

246, 65, 41, 52);

n <- c(49610, 48479, 41371, 55700,

60682, 55641, 51294, 61148);

x <- c(0, 0, 1, 1, 1, 1, 1, 1);

# Now fit a standard logistic regression

# model to the data, with no allowance

# for overdispersion. This is done

# through a call to the generalized

# linear model (glm) routine. help(glm)

# provides more information about the

# nature of the arguments here.

fit1 <- glm(cbind(y, n-y) ~x,

family=binomial);

# check the results

summary(fit1);

# Next, we refit the model while

# allowing for overdispersion of the

# quasilikelihood type; all variances

# are inflated by a common factor. This

# call differs from the first only in

# the definition of the glm "family" to

# be used.

fit2 <- glm(cbind(y, n-y) ~x,

family=quasibinomial);

# check the results

summary(fit2);

# Ideally, the sum of the squared

# Pearson residuals should have a chi-

# squared distribution, with mean equal

# to its degrees of freedom. Dividing

# the sum by the degrees of freedom

# gives our initial estimate of the

# overdispersion parameter.

varQL <- sum(residuals(fit2,

"pearson")^2)/fit2$df.residual;

# Finally, we refit the model using the

# overdispersion method suggested by

# Williams [21], where the variances are

# inflated by factors that are slightly

# different depending on the underlying

# library sizes. This routine is

# implemented in the R package "dispmod"

# which is available at

# http://cran.r-project.org

library("dispmod");

fit3 <- glm.binomial.disp(fit1);

# check the results

summary(fit3);
Page 12 of 16
(page number not for citation purposes)

http://cran.r-project.org


BMC Bioinformatics 2004, 5:144 http://www.biomedcentral.com/1471-2105/5/144
phi <- fit3$dispersion;

# Note that the reported p-values from

# this fit are incorrect. This is due to

# the assumption that the test-stats

# have normal distributions, even though

# we have had to estimate the

# overdispersion parameter. When we have

# to perform this estimation, the

# correct test is a t-test, with a

# number of degrees of freedom

# corresponding to the number of

# libraries less the number of estimated

# parameters. As the number of libraries

# is typically not large, this can

# create a large difference.

sumfit3 <- summary(fit3);

t.values <- summary(

fit3)$coefficients [,"z value"];

p.values <- 2 * pt(-abs(t.values),

fit3$df.residual);

}

##########################################

# Next, we deal with three groups

##########################################

if(0){

# We begin by focusing on gains

# available when multiple groups are

# present, even if the other groups are

# not directly part of the contrast of

# interest, due to the additional

# information that the added groups can

# provide about the scale of the

# overdispersion.

# Here, we use the data from the tag

# TGCTGCCTGT, and this time we note that

# there are 3 groups of libraries:

# normals (libraries 1–2), primary

# tumors (libraries 3–4), and cell lines

# (libraries 5–8). If we are interested

# in the contrast between normals and

# primary tumors, we can fit this using

# only the data from those two groups,

# or using the data from all three.

# First, fit the model as if there were

# just two groups present.

y <- c(0, 1, 1, 15);

n <- c(49610, 48479, 41371, 55700);

x <- c(0, 0, 1, 1);

fit1 <- glm(cbind(y, n-y) ~x,

family=binomial);

fit2 <- glm.binomial.disp(fit1);

# get the correct p-values

fit2.t.values <- summary(

fit2)$coefficients [,"z value"];

fit2.p.values <- 2 * pt(-abs(

fit2.t.values), fit2$df.residual);
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# Next, fit the model assuming that

# there are three groups. In this case,

# we cannot use a single covariate

# vector x, as this is not suited to

# indicating 3 or more groups in an

# unordered fashion (using 0, 1, and 2

# for the three groups respectively

# would force an ordering by saying that

# primary tumors are intermediate

# betwixt normal samples and cell lines)

# In general, if we have k groups, we

# need to use k-1 covariate vectors.

# Here, we use

# x1 <- c(0, 0, 1, 1, 0, 0, 0, 0);

# x2 <- c(0, 0, 0, 0, 1, 1, 1, 1);

# The set of all 0s (x1 = 0, x2 = 0)

# corresponds to the first group, here

# the normals, and the other groups are

# defined by which one of the other

# covariates is nonzero:

# Group 2 (primaries), (x1 = 1, x2 = 0),

# Group 3 (cell lines), (x1 = 0, x2 = 1)

y <- c(0, 1, 1, 15, 9, 1, 12, 27);

n <- c(49610, 48479, 41371, 55700,

60682, 55641, 51294, 61148);

x1 <- c(0, 0, 1, 1, 0, 0, 0, 0);

x2 <- c(0, 0, 0, 0, 1, 1, 1, 1);

fit3 <- glm(cbind(y, n-y) ~x1 + x2,

family=binomial);

fit4 <- glm.binomial.disp(fit3);

# get the correct p-values

fit4.t.values <- summary(

fit4)$coefficients [,"z value"];

fit4.p.values <- 2*pt(-abs(

fit4.t.values), fit4$df.residual);

# The above approach has fit the model

# with all of the covariates available,

# but in order to perform an analysis of

# deviance we want to fit various

# submodels using the same estimate of

# overdispersion as found here. In this

# case, there are 3 submodels:

fit5 <- glm(cbind(y, n-y) ~x1,

family=binomial,

weights = fit4$disp.weights);

fit6 <- glm(cbind(y, n-y) ~x2,

family=binomial,

weights = fit4$disp.weights);

fit7 <- glm(cbind(y, n-y) ~1,

family=binomial,

weights = fit4$disp.weights);

# alternatively, the anova function can

# be used, but this only considers the

# submodels obtained by adding terms

# sequentially. Thus, we get the

# deviances for beta_0 (the null model),
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# beta_0 + beta_1 (adding the x1

# covariate only), and beta_0 + beta_1 +

# beta_2 (adding the x2 covariate to

# what we already have.

fit4.anodev <- anova(fit4);

}

##########################################

# Next, we deal with the case of other

# covariates, possibly continuous.

##########################################

if(0){

# Here, we are using the counts from the

# GCGAAACCCT tag, but we are treating

# the 8 libraries as coming from tissue

# type 1 (libraries 1–4) and tissue type

# 2 (libraries 5–8), with normal tissue

# of both types (libraries 1–2, 5–6) and

# primary tumor of both types (libraries

# 3–4, 7–8). In this hypothetical

# example, we are able to partition the

# changes into effects associated with

# normal/primary differences (x1) or

# tissue 1/tissue 2 differences (x2).

y <- c(167, 566, 64, 98, 33, 47, 40, 27);

n <- c(49610, 48479, 41371, 55700,

60682, 55641, 51294, 61148);

x1 <- c(0, 0, 1, 1, 0, 0, 1, 1);

x2 <- c(0, 0, 0, 0, 1, 1, 1, 1);

fit1 <- glm(cbind(y, n-y) ~x1 + x2,

family=binomial);

fit2 <- glm.binomial.disp(fit1);

# get the correct p-values

fit2.t.values <- summary(

fit2)$coefficients [,"z value"];

fit2.p.values <- 2*pt(-abs(

fit2.t.values), fit2$df.residual);

# Next, again using the tag as above, we

# posit that we also have access to the

# levels of a biomarker potentially

# predictive of survival, supplied as

# the levels of another covariate x3.

# The values supplied here were

# generated as random draws from a

# uniform (0,1) distribution

x3 <- c(0.89, 0.35, 0.66, 0.23,

0.30, 0.54, 0.90, 0.90);

fit3 <- glm(cbind(y, n-y) ~x1 + x2 + x3,

family=binomial);

fit4 <- glm.binomial.disp(fit3);

# get the correct p-values

fit4.t.values <- summary(

fit4)$coefficients [,"z value"];

fit4.p.values <- 2*pt(-abs(

fit4.t.values), fit2$df.residual);

}
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