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Abstract
Background: RNA editing is the process whereby an RNA sequence is modified from the
sequence of the corresponding DNA template. In the mitochondria of land plants, some cytidines
are converted to uridines before translation. Despite substantial study, the molecular biological
mechanism by which C-to-U RNA editing proceeds remains relatively obscure, although several
experimental studies have implicated a role for cis-recognition. A highly non-random distribution
of nucleotides is observed in the immediate vicinity of edited sites (within 20 nucleotides 5' and 3'),
but no precise consensus motif has been identified.

Results: Data for analysis were derived from the the complete mitochondrial genomes of
Arabidopsis thaliana, Brassica napus, and Oryza sativa; additionally, a combined data set of
observations across all three genomes was generated. We selected datasets based on the 20
nucleotides 5' and the 20 nucleotides 3' of edited sites and an equivalently sized and appropriately
constructed null-set of non-edited sites. We used tree-based statistical methods and random
forests to generate models of C-to-U RNA editing based on the nucleotides surrounding the
edited/non-edited sites and on the estimated folding energies of those regions. Tree-based
statistical methods based on primary sequence data surrounding edited/non-edited sites and
estimates of free energy of folding yield models with optimistic re-substitution-based estimates of
~0.71 accuracy, ~0.64 sensitivity, and ~0.88 specificity. Random forest analysis yielded better
models and more exact performance estimates with ~0.74 accuracy, ~0.72 sensitivity, and ~0.81
specificity for the combined observations.

Conclusions: Simple models do moderately well in predicting which cytidines will be edited to
uridines, and provide the first quantitative predictive models for RNA edited sites in plant
mitochondria. Our analysis shows that the identity of the nucleotide -1 to the edited C and the
estimated free energy of folding for a 41 nt region surrounding the edited C are the most important
variables that distinguish most edited from non-edited sites. However, the results suggest that
primary sequence data and simple free energy of folding calculations alone are insufficient to make
highly accurate predictions.

Background
RNA editing is the process whereby an RNA sequence is

modified from the sequence corresponding to the DNA
template. A particular form of RNA editing in plant
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mitochondria, by which some cytidines are converted to
uridines before translation, occurs in many land plant lin-
eages. Although cytidine to uridine conversion is most
common, the reverse conversion is sometimes observed
[1-4]. In plants, the phenomenon is best studied, albeit
still poorly understood, in the mitochondria and plastids
of angiosperms [5-8].

The majority of plant mitochondrial RNA editing occurs
in coding sequences, and editing frequently changes
codons, resulting in changes of amino acids, or, in some
cases, creation of entirely new open reading frames
[1,9,10]. These changes often result in an increase in sim-
ilarity with respect to homologous protein sequences
among different organisms (such as in wheat [11]), and
Gray has postulated that the RNA editing process func-
tions as a repair mechanism to correct otherwise-deleteri-
ous genomic mutations [12]. RNA editing has also been
detected in introns, where it is conjectured to improve
splicing efficiency [13].

The precise biochemical basis for C-to-U editing in plant
mitochondria is unknown, although experimental evi-
dence suggests a deamination reaction [14-18]. Despite
substantial study, the molecular biological mechanism by
which C-to-U RNA editing proceeds remains relatively
obscure, although several experimental studies have
implicated a role for cis-recognition [19-21]. The mecha-
nism by which edited sites are recognized is also still
poorly understood, but the importance of surrounding
nucleotides has been noted [22]. A highly non-random
distribution of nucleotides in the immediate vicinity of
edited sites (within 10–20 nucleotides 5' and 3') is
observed, but no precise consensus motif has been identi-
fied [9,16]. Additionally, previous studies suggest that
inferred secondary structure is not important in site recog-
nition for C-to-U conversion [16,19].

Identifying edited sites thus remains an open problem,
one to which we have applied tree-based statistical mod-
els and an extension of such models. When applied to a
similar problem (predicting peptide binding to major his-
tocompatibility complex (MHC) class I molecules [23]),
tree-based statistical methods generated very accurate
models, identifying specific important residues when no
precise sequence motif had previously been identified.
Therefore, we were motivated to apply tree-based statisti-
cal models and an extension, random forests, to the prob-
lem of C-to-U RNA editing in angiosperm mitochondria
using complete mitochondrial genome data for three spe-
cies: Arabidopsis thaliana, Brassica napus and Oryza sativa.
The objective for the current research was to identify
sequence features that may provide insights into C-to-U
editing of plant mitochondrial RNA. We address the fol-
lowing specific questions. Is there evidence that sufficient

information exists within sequence regions flanking
edited sites to accurately predict editing? Is there an asso-
ciation between estimated free energy of folding for short
sequence regions containing edited sites and C-to-U edit-
ing? We report tree-based statistical analysis of three com-
plete mitochondrial genomes and show that relatively
simple models provide moderately accurate prediction of
C-to-U edited sites.

Results
Tree-based statistical models
Analysis of each of the three species-specific mitochon-
drial genome data sets yielded substantially similar results
(Table 1). Using flanking nucleotides and estimates of
folding energy as predictor variables, the optimistic re-
substitution-based estimates for cross-validated pruned
models had a mean correct classification rate of 0.705
(sensitivity [the proportion of observations correctly iden-
tified as edited]  = 0.640, and specificity [the proportion
of observations correctly identified as non-edited]  =
0.883) across the three species.

As an additional classification tree analysis, we examined
a dataset generated by combining the data from the three
species. These results were generally similar to those
described above for the mean of the individual genome
datasets. The classification tree model is shown in Figure
1; the partition is defined based on the nucleotide imme-
diately 5' (-1 position) of the edited/non-edited site. Of
the 1972 observations with pyrimidine at the -1 position,
1262 (0.64) are edited and 710 (0.36) are non-edited
sites. Of the 722 observations with purine at the -1
position, 85 (0.12) are edited and 637 (0.88) are non-
edited sites.

Random forests
Results from random forests (Table 2) were very similar to
those obtained with classification trees and were some-
what more accurate. In single-species analyses, the mean

accuracy rate was 0.744 (sensitivity  = 0.717, specificity

 = 0.809). Analysis of the larger, combined data set
yielded a model better than any of the single genome
models with an accuracy of 0.848 (Table 2). Analysis of
variable importance showed that the -1 position is over-
whelmingly the most important factor in determining
editing status. Other variables of lesser predictive value
include estimated free energy of folding, and the -2 and +1
positions relative to the edited/non-edited site (Figure 2).

Discussion
Despite their simplicity, the tree-based statistical models
derived here performed moderately well, with mean accu-
racies across species generally ~0.71. Single trees were
improved upon by constructing models based on ensem-
bles of tree-based models (random forests) each of which
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was built using random subsamples of the data. This sub-
sampling has the effect of reducing the variance through
averaging and also reducing the correlation among
models.

One of the advantages that random forests have over sin-
gle classification trees is that they provide quantitative
measures of variable importance, whereas with a simple
classification tree, one is primarily limited to inferring var-
iable importance from the frequency and location of the
occurrence of variables in the model. One measure of var-
iable importance is the decrease in the Gini index (a meas-
ure of impurity of observations at a particular node)

induced by splitting on the variable, averaged over all
trees [24].

In order to infer the relative importance of the predictor
variables, we considered the measure of variable impor-
tance produced during the random forest run on the com-
bined dataset, which is the most broadly representative
dataset considered here. A plot of the variable importance
measure for this dataset is shown in Figure 2; more
important variables are shown as higher bars. The meas-
ure strongly indicates that the residue immediately 5' of
the edited site (-1 position) is very important. These vari-
able importance results are in agreement with previous
work on C-to-U editing in mitochondria of Arabidopsis
thaliana, which noted the -1, and -2 positions had highly
non-random nucleotide distributions [9]. However, the
results here differ from the past study of Arabidopsis in that
we find no indication that the -17 position has much
importance in edited site recognition. Also previously
noted was that for 93.1% of the time [9], the -1 position
contained a pyrimidine, which is the data partition found
by the classification trees.

The free energy results contrast with previous studies indi-
cating that secondary structure was not important in
edited site recognition [16,19]. Our results show free
energy is a relatively important variable in the random
forest analyses. These results therefore indicate that sec-
ondary structure, as measured by free energy of folding for
the 41 nt region centered on an edited/non-edited site,
does help in distinguishing edited from non-edited sites.
Previous studies determined putative secondary structures
for mRNA regions containing edited sites and looked for
conserved structural motifs. In contrast, we used estimates
of free energy of folding, which are much easier to com-
pare quantitatively. It may be that secondary or tertiary
structure is even more important in determining edited
sites than shown here; however, secondary structure may
not be effectively represented by the calculated estimates
of free energy of folding analyzed.

Conclusions
Simple models based on nucleotides surrounding edited/
non-edited sites and on estimated folding energies of
those regions provide moderately accurate prediction of
C-to-U RNA edited sites. More nuanced representation of
secondary or higher-order structure in combination with
variables based on the nucleotide positions found impor-
tant here might improve models. Overall, the results
strongly suggest that the C-to-U editing mechanism in
plant mitochondria does not depend exclusively on the
primary sequence immediately in the vicinity of the
edited site.

Cross-validated pruned classification tree for the combined datasetFigure 1
Cross-validated pruned classification tree for the 
combined dataset. The number of edited and non-edited 
sites are given at each node. The single split is based on the 
nucleotides at position -1 relative to the edited site.

Table 1: Summary statistics for tree-based statistical models.

Accuracy Sensitivity Specificity

Arabidopsis thaliana 0.711 0.645 0.888
Brassica napus 0.693 0.630 0.887
Oryza sativa 0.709 0.645 0.874
combined 0.705 0.640 0.882

Table 2: Summary statistics for random forest models.

Accuracy Sensitivity Specificity

Arabidopsis thaliana 0.744 0.701 0.811
Brassica napus 0.765 0.733 0.808
Oryza sativa 0.722 0.716 0.808
combined 0.848 0.823 0.877

C, TA, G position −1 

1347 edited sites

1347 non−edited sites

1262 edited sites

710 non−edited sites

85 edited sites

637 non−edited sites
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Methods
Data sources
We obtained complete mitochondrial genome sequences
and information regarding edited sites from GenBank
[25] for three species: Arabidopsis thaliana (L.) Heynh.
(mouse-ear cress), 455 edited sites, GenBank accession
number NC_001284 [9]; Brassica napus L. (rapeseed), 425
edited sites, GenBank accession number AP006444 [26];
and Oryza sativa L (rice), 486 edited sites, GenBank acces-
sion numbers AB076665 and AB076666 [27]. None of the
GenBank entries noted U-to-C RNA edited sites.

Variable selection
Incomplete annotations in the GenBank sequences
required us to algorithmically determine on which strand
an edited site fell (the GenBank files sometimes supplied
only a position number, with no strand information). The
algorithm, implemented in a Perl script, scanned the
entire GenBank file and built an in-memory representa-
tion of the layout of all genes and coding sequence regions
in the genome. The strand with which an edited site was
associated could then be determined by consulting the
resultant genome map and checking which strand at the
edited site contained a gene region. In no case were genes
on both strands at an edited site, so strand localization
was always unambiguous. In a few cases, however, a gene
containing an edited site could not be located, or a site
marked as a C-to-U edit did not contain a C in either
strand. In these cases, the supposed edited site was elimi-

nated from further consideration. Final numbers of
included sites were as follows: Arabidopsis, 444; Brassica,
422; Oryza, 481. In total, 19 edited sites in the GenBank
files were not included across all three species.

We also constructed a set of null observations of cytidines
that are not edited to uridines. In constructing a null-set,
it is important to ensure that the observations are as alike
as possible to the edited observations (differing only in
the trait to be measured), or the resulting model may be
fictive. Here, our null-set observations were non-edited
cytidines chosen at random from within gene regions of
the genome. Additionally, we chose cytidines such that
the null set had exactly the same distribution of codon
positions as did the edited set, because the distribution of
edited sites within the three possible positions of a codon
is highly non-random with a bias to the first two positions
[9] (Table 3).

Variable importance measures for the combined datasetFigure 2
Variable importance measures for the combined dataset.  Numbered positions represent nucleotide state variables 
(with position zero representing the edited/non-edited site). The importance of each position is the decrease in the Gini index 
(a measure of impurity) induced by splitting the data on that position averaged over all trees (higher values are more impor-
tant). The three variables based on estimates of free energy of folding are the codon position of the edited site (cp), estimated 
free energy of folding for the entire 41-nucleotide sequence centered on the edited/non-edited site (fe), and the difference in 
estimated free energy of folding between the edited and non-edited versions of the 41-nucleotide sequence (dfe).
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Table 3: Counts of C-to-U edited sites for each codon position.

Codon Position

Species 1 2 3 Not in Codon

Arabidopsis thaliana 149 231 51 13
Brassica napus 142 243 33 4
Oryza sativa 174 230 77 0
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For each observation, we recorded 40 nucleotide state var-
iables: one variable for each of the 20 nucleotides sites 5'
and 3' of the edited C (on the same strand). We chose a
value of 20 for the number of nucleotides 5' and 3' so as
to encompass the entire range of semi-conserved posi-
tions previously suggested, the most extreme of which
occurs 17 bases 5' of the edited site [9]. In some cases
other edited sites occurred within the 20 nucleotides 5'
and 3' of the edited site used as a response variable. In
these cases the edited sites as predictor variables were
recorded as C. The low frequency of these sites at a partic-
ular position with respect to other edited sites results in
non-significant effects, independent of how these sites are
handled. In those cases where a full 20 nucleotides were
not included within an annotated mRNA, the missing
nucleotides were treated as unknown. Additionally, we
included two variables based on free energy expressed in
units of kcal/mole at 20°C: the estimated free energy of
folding for each 41-nucleotide sequence (20 bases 5', the
edited/non-edited base, 20 bases 3') and the change in
free energy of folding between the non-edited and edited
versions of the 41-nucleotide sequence. Free energies of
folding were calculated using mfold [28,29] version 3.1
with program parameters except temperature at default
values. Finally, we included codon position as a variable,
even though the null set had been chosen so non-edited
sites had the same distribution of codon position as the
edited sites, as shown in Table 3. Including codon posi-
tion as a predictor variable allows for possible interactions
with other variables.

Finally, we created a combined data set to use alongside
the species-specific datasets. The combined dataset is the
result of combining all edited sites from all three species
(there were no observations identical in all predictor vari-
ables), and then randomly selecting negative examples
from the set of those already chosen for the three individ-
ual datasets. Negative examples were chosen to exactly
match the positive examples in distribution over both spe-
cies and codon position. The combined dataset comprises
2,694 observations.

Data analysis
Tree-based statistical models
We used the R language for statistical computing [30], ver-
sion 1.7.1 to conduct our analyses. Analyses included tree-
based statistical models using rpart [31] and random for-
ests using the FORTRAN implementation of random for-
est version 3.1 [24,32].

Tree-based statistical models [33], also known as classifi-
cation and regression trees (CART) [34], are generated by
recursively creating binary partitions of a dataset. Each
partition is based on the value of a single predictor varia-
ble chosen to best produce homogeneous collections of a

nominal or ordinal response variable (classification) or to
best separate low and high values of a continuous
response variable (regression). More precisely, the parti-
tions may be considered as questions of the following
form: Is the observation xi ∈ A? Where A is a region of the
variable space defined by some criterion of a single predic-
tor variable. Answering such a question for all observa-
tions produces two groups: those observations for which
the answer is yes (those in region A) and those for which

the answer is no (xi ∉ A, those in ). Subsequent binary
partitioning continues until stopping criteria (variously
defined) are met [34]. The result is a classification or a
regression tree: a hierarchical series of data bifurcations
that depicts the partition definitions and describes the
resulting data subsets defined by each partition. To
address concerns about possible over-fitting models to the
data we used 10-fold cross-validation and pruned trees to
the shortest within 1-SE of the best tree.

We assessed the significance of our tree-based statistical
models through permutation where the predictor varia-
bles are randomized with respect to the response variable
[35]. The frequency of observing a result value equal to or
better than the observed value in 1 × 104 permutations is
the estimate of the probability associated with the
observed result.

Random forests
If one tree-based statistical model is good, then an ensem-
ble (forest) of appropriately constructed tree models
should be even better, which is the principal idea of ran-
dom forests. A random forest attempts to improve upon a
simple tree-based statistical model by generating a collec-
tion of such models and using them in aggregate [24,32].
Each model in a random forest is generated from a boot-
strap sample of the original dataset, and at each node in
each model a search for the best possible split is through
a subset of variables selected at random from the boot-
strap sample of predictor variables. These randomization
steps decrease prediction error through variance reduction
resulting from averaging and by decreasing the correlation
between individual models in the ensemble [36,37]. Each
of our random forest analyses comprised 1 × 104 individ-
ual models constructed by sub-sampling seven predictor
variables at each node.

Several model summary statistics were calculated, includ-
ing sensitivity, which is the proportion of observations
correctly identified as edited, specificity, which is the pro-
portion of observations correctly identified as non-edited,
and accuracy, which is the total proportion of observa-
tions correctly identified. More formally, these definitions
are:

sensitivity = true positives/(true positives + false negatives);

A
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specificity = true negatives/(true negatives + false positives);
and

accuracy = (true positives + true negatives)/total.
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Additional File 1
Arabidopsis thaliana data file File is plain text, space delimited. First 
row is column headings with variable names: edit; + site is edited, - site is 
not edited; -20 through 20, nucleotide position relative to edited site; cp, 
codon position; fe, estimated folding energy; dfe, difference in estimated 
folding energy between pre-edited and edited sequences; and loc, location 
of focus site (position 0) in GenBank file. Each subsequent line represents 
a observation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-132-S1.txt]

Additional File 2
Brassica napus data file File is plain text, space delimited. First row is 
column headings with variable names: edit; + site is edited, - site is not 
edited; -20 through 20, nucleotide position relative to edited site; cp, 
codon position; fe, estimated folding energy; dfe, difference in estimated 
folding energy between pre-edited and edited sequences; and loc, location 
of focus site (position 0) in GenBank file. Each subsequent line represents 
a observation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-132-S2.txt]

Additional File 3
Oryza sativa data file File is plain text, space delimited. First row is col-
umn headings with variable names: edit; + site is edited, - site is not 
edited; -20 through 20, nucleotide position relative to edited site; cp, 
codon position; fe, estimated folding energy; dfe, difference in estimated 
folding energy between pre-edited and edited sequences; and loc, location 
of focus site (position 0) in GenBank file. Each subsequent line represents 
a observation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-132-S3.txt]

Additional File 4
Combined data file File is plain text, space delimited. First row is column 
headings with variable names: edit; + site is edited, - site is not edited; -
20 through 20, nucleotide position relative to edited site; cp, codon posi-
tion; fe, estimated folding energy; dfe, difference in estimated folding 
energy between pre-edited and edited sequences; and loc, location of focus 
site (position 0) in GenBank file. Each subsequent line represents a 
observation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-132-S4.txt]
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