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improved similarity measure for analysing gene expression data
Carsten O Daub*1,4, Ralf Steuer2, Joachim Selbig1 and Sebastian Kloska1,3

Address: 1Max Planck Institute of Molecular Plant Physiology, Potsdam, 14424, Germany, 2Nonlinear Dynamics Group, Institute of Physics, 
University of Potsdam, Potsdam, 14415, Germany, 3Scienion AG, Volmerstrasse 7a, Berlin, 12489, Germany and 4Center for Genomics and 
Bioinformatics, Karolinska Institutet, Stockholm, 17177, Sweden

Email: Carsten O Daub* - carsten.daub@cgb.ki.se; Ralf Steuer - steuer@agnld.uni-potsdam.de; Joachim Selbig - selbig@mpimp-golm.mpg.de; 
Sebastian Kloska - kloska@scienion.de

* Corresponding author    

Abstract
Background: The information theoretic concept of mutual information provides a general
framework to evaluate dependencies between variables. In the context of the clustering of genes
with similar patterns of expression it has been suggested as a general quantity of similarity to extend
commonly used linear measures. Since mutual information is defined in terms of discrete variables,
its application to continuous data requires the use of binning procedures, which can lead to
significant numerical errors for datasets of small or moderate size.

Results: In this work, we propose a method for the numerical estimation of mutual information
from continuous data. We investigate the characteristic properties arising from the application of
our algorithm and show that our approach outperforms commonly used algorithms: The
significance, as a measure of the power of distinction from random correlation, is significantly
increased. This concept is subsequently illustrated on two large-scale gene expression datasets and
the results are compared to those obtained using other similarity measures.

A C++ source code of our algorithm is available for non-commercial use from kloska@scienion.de
upon request.

Conclusion: The utilisation of mutual information as similarity measure enables the detection of
non-linear correlations in gene expression datasets. Frequently applied linear correlation measures,
which are often used on an ad-hoc basis without further justification, are thereby extended.

Background
The evaluation of the complex regulatory networks under-
lying molecular processes poses a major challenge to cur-
rent research. With modern experimental methods in the
field of gene expression, it is possible to monitor mRNA
abundance for whole genomes [1,2]. To elucidate the
functional relationships inherent in this data, a com-
monly used approach is the clustering of co-expressed

genes [3]. In this context, the choice of the similarity
measure used for clustering, as well as the clustering
method itself, is crucial for the results obtained. Often,
linear similarity measures such as the Euclidean distance
or Pearson correlation are used in an ad-hoc manner. By
doing so, it is possible that subsets of non-linear correla-
tions contained in a given dataset are missed.
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Therefore, information theoretic concepts, such as mutual
information, are being used to extend more conventional
methods in various contexts ranging from expression [4-
8] and DNA sequence analysis [9,10], to reverse engineer-
ing [11] and independent component analysis [12,13].
Also aside the bioinformatics field, mutual information is
widely utilised in diverse disciplines, such as physics [14],
image recognition [15], speech recognition [16], and var-
ious others. In extension to other similarity measures,
mutual information provides a general measure of statis-
tical dependence between variables. It is thereby able to
detect any type of functional relationship, extending the
potentialities of linear measures as illustrated in Figure 1.

In this work, we discuss mutual information as a measure
of similarity between variables. In the first section, we give
a short introduction into the basic concepts including a
brief description of the commonly used approaches for
numerical estimation from continuous data. In the fol-
lowing section, we then present an algorithm for estimat-
ing mutual information from finite data.

The properties arising from this approach are compared to
previously existing algorithms. In subsequent sections, we
then apply our concept to large-scale cDNA abundance
datasets and determine if these datasets can be sufficiently
described using linear measurements or if a significant
amount of non-linear correlations are missed.

Mutual information
Mutual information represents a general information the-
oretic approach to determine the statistical dependence
between variables. The concept was initially developed for
discrete data. For a system, A, with a finite set of M possi-

ble states {a1, a2, ... , }, the Shannon entropy H(A) is

defined as [17]

where p(ai) denotes the probability of the state ai. The
Shannon entropy is a measure for how evenly the states of
A are distributed. The entropy of system A becomes zero if
the outcome of a measurement of A is completely deter-
mined to be aj, thus if p(aj) = 1 and p(ai) = 0 for all i ≠ j,
whereas the entropy becomes maximal if all probabilities
are equal. The joint entropy H(A, B) of two systems A and
B is defined analogously

This leads to the relation

H(A, B) ≤ H(A) + H(B)  (3)

which fulfils equality only in the case of statistical inde-
pendence of A and B. Mutual information MI(A, B) can be
defined as [17]

MI(A, B) = H(A) + H(B) - H(A, B) ≥ 0  (4)

It is zero if A and B are statistically independent and
increases the less statistically independent A and B are.

If mutual information is indeed to be used for the analysis
of gene-expression data, the continuous experimental
data need to be partitioned into discrete intervals, or bins.
In the following section, we briefly review the established
procedures; a description of how we have extended the
basic approach will be provided in the subsequent
section.

Estimates from continuous data
In the case of discrete data the estimation of the probabil-
ities p(ai) is straightforward. Many practical applications,
however, supply continuous data for which the probabil-
ity distributions are unknown and have to be estimated.
In a widely used approach [7], the calculation of mutual
information is based on the binning of data into M dis-
crete intervals ai, i = 1... MA. For experimental data consist-
ing of N measurements of a variable xu, u = 1... N, an
indicator function Θi counts the number of data points
within each bin. The probabilities are then estimated
based on the relative frequencies of occurrence

with

For two variables the joint probabilities  are cal-
culated analogously from a multivariate histogram. Addi-
tionally it has been suggested [14] to adaptively choose
the sizes of the bins, so that each bin constructed nearly
has a uniform distribution of points. In a different
approach, kernel methods are used for the estimation of
the probability density of Eq. (5) [18-20]. Entropies are
then calculated by integration of the estimated densities.
Recently, an entropy estimator  was suggested [21]
and showed in an extensive comparison to other com-
monly used estimators to be superior.
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Results
Fuzzy mutual information
In the classical binning approach, described above, each

data point is assigned to one, and only one, bin. For data
points near to the border of a bin, small fluctuations due
to biological or measurement noise might shift these

Two datasets X and Y (100 data points) show a hypothetical dependency f(x) = 4x(1 - x) (top)Figure 1
Two datasets X and Y (100 data points) show a hypothetical dependency f(x) = 4x(1 - x) (top). The Pearson correlation coeffi-
cient is not able to detect a significant correlation as shown in the histogram plot of the dataset compared to 300 realisations 
of shuffled data (left). Mutual information clearly shows that the two datasets are not statistically independent (right).
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points to neighbouring bins. Especially for datasets of
moderate size, the positions of the borders of the bins can
thereby strongly affect the resulting mutual information
[18]. In a manner analogous to kernel density estimators
(KDE), we now present a generalisation to the classical
binning in which we aim to overcome some of the draw-
backs associated with the simple approach. Within our
algorithm, we allow the data points to be assigned to sev-
eral bins simultaneously. For this, we extended the indica-
tor function Θ(x) to the set of polynomial B-spline
functions. Here, we do not provide the mathematical
details for these functions since they have been discussed
extensively in the literature [22-24], but rather focus on
the practical applicability. Within the B-spline approach,
each measurement is assigned to more than one bin, i,
with weights given by the B-spline functions Bi,k. The
spline order k determines the shape of the weight func-
tions and thereby the number of bins each of the data
points is assigned to. A spline order k = 1 corresponds to
the simple binning, as described in the previous section:
Each data point is assigned to exactly one bin (Figure 2,
left). For k = 3, each data point is assigned to three bins,
with the respective weights given by the values of the B-
spline functions at the data point (Figure 2, right).

B-spline functions
The first step in the definition of the B-spline functions is
the definition of a knot vector ti for a number of bins i =
1... M and one given spline order k = 1... M - 1 [22]

where the spline order determines the degree of the poly-
nomial functions. The domain of the B-spline functions
lies in the interval z ∈ [0, M - k + 1]. To cover the range of
the variables, the new indicator function based on the B-
spline functions needs to be linearly transformed to map
their range. The recursive definition of the B-spline func-
tions are as follows [22]

An important property of B-spline functions is the
implicit standardisation of coefficients: All weights
belonging to one data point sum up to unity.

Algorithm
Input
• Variables x and y with values xu and yu, u = 1... N

• Bins ai, i = 1... Mx and bj, j = 1... My

• Spline order k

Output
• Mutual information between variable x and y

Algorithm
1. Calculation of marginal entropy for variable x

(a) Determine  with

(b) Determine Mx weighting coefficients for each xu from

(c) Sum over all xu and determine p(ai) for each bin ai from

The continuous experimental data for the variable x needs to be binned for the calculation of mutual informationFigure 2
The continuous experimental data for the variable x needs to 
be binned for the calculation of mutual information. The indi-
cator function of Eq. (5) counts the number of data points 
within each bin (example with Mx = 5 bins, left). The general-
ised indicator function based on B-spline functions of Eq. (8) 
extends the bins to polynomial functions (example with Mx = 
5 bins and spline order k = 3, right). The bins now overlap 
and the weight of each data point to each of the bins is given 
by the value of the respective B-spline functions at the data 
point. By definition, all weights contributing to one data point 
sum up to unity.
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(d) Determine entropy H(x) according to Eq. (1)

2. Calculation of joint entropy of two variables x and y

(a) Apply steps 1 (a) and (b) to both variables x and y,
independently

(b) Calculate joint probabilities p(ai, bj) for all Mx × My
bins according to

(c) Calculate the joint entropy H(x,y) according to Eq. (2)

3. Calculate the mutual information MI(x,y) according to
Eq. (4)

Example
We show the estimation with the standard binning and
our approach ex-emplarily on two artificial variables x =
0.0,0.2,0.4,0.6,0.8,1.0 and y = 0.8,1.0,0.6,0.4,0.0,0.2 for
M = 3 bins, spline order k = 2, and the logarithm to basis
two.

Simple binning
For both variables, each of the three histogram bins con-

tains two values p(a1) = p(a2) = p(a3) = , analogously for

p(bi) due to the symmetry of data H(x) = H(y) =

 = log2 3 ≈ 1.58. For the calculation of the

joint probability, three of the nine two dimensional bins
contain two values each p(a1, b3) = p(a2, b2) = p(a3, b1) =

 resulting in H(x, y) = log2 3 and MI(x, y) = log2 3.

B-spline approach

The modified indicator function  is determined to

Bi,k(2x) according to Eq. (9) (rule 1(a)). For each value xu

three weighting coefficients are determined (rule 1(c))
and probabilities are calculated (rule 1(d)) (Table 1). The
analogous procedure is applied to variable y and the sin-
gle entropies are calculated to H(x) = H(y) = Iog2(10) -
0.61og2(3) - 0.41og2(4) ≈ 1.57. Both, H(A) and H(B), are
slightly smaller than the entropies calculated from the
simple binning. The joint probabilities are p(a1, b1) = p(a3,

b3) = 0, p(a1, b2) = p(a2, b1) = p(a2, b3) = p(a3, b2) = 0.56/6,
p(a1, b3) = p(a3, b1) = 1.24/6, p(a2, b2) = 1.28/6 (rule 2 (b))
resulting in H(x,y) = 2.7 and MI(x,y) = 0.45.

In the next sections, we discuss some of the properties
arising from the utilisation of B-spline functions for the
estimation of mutual information and compare our
approach to other commonly used estimators. We sup-
port this discussion using examples for which the under-
lying distributions and thereby the true mutual
information is known.

Size of data
It has been discussed elsewhere [25-28,20] that the esti-
mated mutual information is systematically overesti-
mated for a finite size of N data points. For the simple
binning approach, the mean observed mutual informa-
tion can be calculated explicitly as the deviation from the
true mutual information

As can be seen for an example of artificially generated
equidistributed random numbers (Figure 3, left), mutual
information calculated from the simple binning scales lin-
early with 1/N, with the slope depending on the number
of bins M in accordance with Eq. (12). Figure 3 shows that
this scaling is preserved for the extension to B-spline func-
tions, while the slope is significantly decreased for k = 3,
compared to the estimation with the simple binning (k =
1). Mutual information calculated from KDE does not
show a linear behaviour but rather an asymptotic one
with a linear tail for large datasets. The values are slightly
increased compared to the ones from the B-spline

approach. The entropy estimator  gives values com-
parable to the ones obtained from the B-spline approach.

More importantly, a similar result also holds for the
standard deviation of mutual information. As shown in
Figure 3 (right), the standard deviation of the mutual
information estimated with the simple binning (k = 1)
scales with 1/N for statistically independent events
[26,29]. For the B-spline approach (k = 3), this scaling still
holds, but the average values are decreased significantly.
For the KDE approach, an asymptotic run above the val-
ues from the B-spline approach is observed, again with

linear tail for large datasets.  shows a linear scaling
slightly below the simple binning.

The spline order
The interpretation of any results obtained from the appli-
cation of mutual information to experimental data is
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based on testing to see if the calculated results are
consistent with a previously chosen null hypothesis. By
following the intuitive approach that the null hypothesis
assumes the statistical independence of variables, mutual
information is tested against a surrogate dataset, which is
consistent with this null hypothesis. As discussed previ-
ously in more detail [20], one way of generating such a
surrogate dataset is by random permutations of the origi-
nal data. From the mutual information of the original
dataset MI(X,Y)data, the average value obtained from sur-
rogate data <MI(Xsurr, Ysurr) >, and its standard deviation
σsurr, the significance S can be formulated as

For each S the null hypothesis can be rejected to a certain
level α depending on the underlying distribution. With
increasing significance the probability of false positive
associations drops.

In the following, we address the influence of the spline
order and the number of bins on the estimation of mutual
information. Based on 300 data points of an artificially-
generated dataset drawn from the distribution shown in
Figure 1, we calculate the mutual information for M = 6
bins and different spline orders k = 1... 5 (Figure 4, left).

From 300 shuffled realisations of this dataset, the mean
and maximum mutual information are shown with the
standard deviation as error-bars. For all spline orders the
null hypothesis can be rejected, in accordance with the
dataset shown in Figure 1. To estimate the strength of the
rejection, we calculate the significance according to Eq.
(13) (Figure 4, right). It can be observed that the largest
change in the significance of the mutual information
occurs in the transition from k = 1 (simple boxes) to k = 2
with an increase by roughly two-fold. Using more sophis-
ticated functions (k ≥ 3) does not further improve the sig-
nificance. Similar findings have been reported in the
context of kernel density estimators [19]. The major con-
tribution leading to this increase of the significance is
given by the distribution of surrogate data which becomes
more narrow for k > 1 leading to smaller standard devia-
tions σsurr.

The same dataset is used to show the dependency of
mutual information on the number of bins for two spline
orders k = 1 and k = 3 (Figure 5). Mutual information esti-
mated from data as well as from surrogate data shows a
robust run without strong fluctuations within the range of
bins shown. From this we can conclude that the choice of
the number of bins does not affect the resulting mutual
information notably as long as it is chosen to be within a
reasonable range.

Again, the significance is calculated (Figure 6) and com-
pared to the significances obtained from the KDE

Table 1: For the calculation of probabilities p(ai) according to the B-spline approach, Mx weighting coefficients are determined for each 
value xu of variable x.

Bi=1,k=2(xu) Bi=2,k=2(xu) Bi=3,k=2(xu)

x1 1.0 0.0 0.0
x2 0.6 0.4 0.0
x3 0.2 0.8 0.0
x4 0.0 0.8 0.2
x5 0.0 0.4 0.6
x6 0.0 0.0 1.0

p(ai) 1.8/6 2.4/6 1.8/6

Mutual information is estimated for artificially generated equidis-tributed random numbers from the simple binning (k = 1), the B-spline approach (k = 3), and the entropy estima-tor  using M = 6 bins, and additionally from the kernel density estimatorFigure 3
Mutual information is estimated for artificially generated 

equidis-tributed random numbers from the simple binning (k 

= 1), the B-spline approach (k = 3), and the entropy estima-

tor  using M = 6 bins, and additionally from the kernel 

density estimator. The average over an ensemble of 600 tri-

als is shown as a function of the size of the dataset (left) 

together with the standard deviation (right).
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approach and the  estimator. It can be observed that
the significance of the mutual information calculated with
B-spline functions increased roughly by two-fold com-
pared to the simple binning. The significance obtained
from KDE is not depending on M and was determined to
be similar to the significance estimated from the B-spline
approach. The numerically expensive integration of KDE,
however, limits the size of utilisable datasets. The KDE run

time requirements were (104) times higher than the
ones from the B-spline approach. Strategies to simplify
the integration step were proposed [20] but have to be
used with caution since they assume particular properties
of the distribution of experimental data that are in general
not fulfilled. The recently introduced entropy estimator

 produces intermediate significances between the
ones from the binning and the B-spline approach for
higher bin numbers. For low bin numbers, the significan-
ces are relatively poor.

Application on data
We now turn to the analysis of experimentally measured
gene expression data. As shown previously, the applica-
tion of mutual information to large-scale expression data
reveals biologically-relevant clusters of genes [7,30]. In
this section, we will not repeat these analyses, but
determine if the correlations detected using mutual infor-
mation are missed using the established linear measures.

Mutual information calculated for a dataset of 300 data points drawn from the distribution shown in Figure 1 (crosses)Figure 4
Mutual information calculated for a dataset of 300 data points 
drawn from the distribution shown in Figure 1 (crosses). The 
number of bins was fixed to M = 6. The average mutual infor-
mation for 300 shuffled realisations of the dataset is shown 
(circles) together with the standard deviation as error-bars. 
The largest value found within the ensemble of shuffled data 
is drawn as a dotted line (left). The significance was calcu-
lated from Eq. (13) (right).

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

spline order k

m
ut

ua
l i

nf
or

m
at

io
n

1 2 3 4 5

0

20

40

60

80

100

spline order k

si
gn

ifi
ca

nc
e 

(M
I)
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Based on the distribution of Figure 1, the mutual information for 300 data points and two spline orders k = 1 and k = 3 is shown as a function of the number of bins M (crosses) together with mean (circles) and standard deviations (error-bars) of 300 surrogatesFigure 5
Based on the distribution of Figure 1, the mutual information 
for 300 data points and two spline orders k = 1 and k = 3 is 
shown as a function of the number of bins M (crosses) 
together with mean (circles) and standard deviations (error-
bars) of 300 surrogates. The dotted lines indicate the largest 
mutual information found within the ensemble of surrogate 
data.

The significance, S, as a function of the number of bins, M, for the two examples of Figure 5, and for the entropy estimator Figure 6
The significance, S, as a function of the number of bins, M, for 

the two examples of Figure 5, and for the entropy estimator 

. For kernel density estimators (KDE), the signifi-

cance, which is not depending on M, is calculated to S = 92.
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Among the most frequently used measures of similarity
for clustering co-expressed genes are the Euclidean dis-
tance and the Pearson correlation coefficient R [3]. If cor-
relations are well described by the Pearson correlation and
the distribution of data is approximately Gaussian like,
the relationship between the mutual information and the
Pearson correlation given by [32]

is expected to be fulfilled. Therefore, we calculated both,
the mutual information and the Pearson correlation, for
two large-scale gene expression datasets (Figure 7). For
each pair of genes X and Y we plot the tuple (MI(X,Y),
R(X,Y)). In order to address significance, we additionally
calculate all tuples from shuffled data.

The first dataset contains cDNA measurements for S. cere-
visiae for up to E1 = 300 experiments [31]. To avoid
numerical effects arising from different numbers of
defined expression values (missing data points) for each
gene, we exclusively utilised genes that are fully defined
for all experimental conditions resulting in G1 = 5345

genes. Analysis on this dataset using mutual information
has been done before [20,32] on rank-ordered data. The
rank-ordering lead to homogeneously distributed data
and thereby enabled the application of a simplified algo-
rithm for the numerical estimation from kernel density
estimators. The utilisation of our B-spline approach
allows us to extend this analysis to non rank-ordered data
thereby keeping the original distribution of experimental
data. In contrast to the previous studies we find for non
rank-ordered data that the theoretical prediction of Eq. 14
is no longer a lower bound for the comparison. Many
tuples with high Pearson correlation but low mutual
information can be detected arising from outlying expres-
sion values (Figure 8A). However, pairs of genes with high
mutual information and low Pearson correlation, thus
indicating a non-linear correlation, are not observed. The
only remarkable tuple (marked with an arrow in Figure 7
and shown in Figure 8B) also arises from outlying values.

The second dataset contains cDNA measurements for E2 =
102 experiments on G2 = 22608 genes derived from 20
different human tissues [33]. In contrast to the first data-
set, tuples with low Pearson correlation but high mutual
information are indeed detected. For two exemplary cho-
sen tuples (Figure 8C and 8D), clusters of experimental

The Pearson correlation coefficient and the mutual information for all pairwise comparisons of genes for two large-scale gene expression datasets are shown (black points) overlayed by the same measures obtained from shuffled data (blue points)Figure 7
The Pearson correlation coefficient and the mutual information for all pairwise comparisons of genes for two large-scale gene 
expression datasets are shown (black points) overlayed by the same measures obtained from shuffled data (blue points). The 
expected mutual information calculated from Eq. (14) is shown as read curve. For the first dataset (left) genes containing unde-
fined values were omitted resulting in 5345 genes measured under 300 experimental conditions [31]. For the second dataset 
(right) containing 22608 genes measured under 102 experimental conditions [33], a representative fraction is shown.

MI X Y R X Y, log ,( ) = − − ( ) ( )1 142
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conditions can be clearly detected by eye. Such type of cor-
relations are missed by analyses based exclusively on

linear measures, such as the the analysis done in the orig-
inal publication of this dataset.

Examples of gene-gene plots for genes X and Y are shown for characteristic tuples (MI(X,Y), R(X,Y)) detected in Figure (7)Figure 8
Examples of gene-gene plots for genes X and Y are shown for characteristic tuples (MI(X,Y), R(X,Y)) detected in Figure (7). For 
the first gene expression dataset under consideration [31], no non-linear correlations are detected. Moreover, tuples with high 
Pearson correlation and low mutual information, examples A and B, resulting from outlying values are detected. For the sec-
ond dataset [33], however, tuples with low Pearson correlation and high mutual information are observed, see examples C and 
D. Such non-linear correlations are missed by solely using linear correlation measures.
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For both datasets, tuples calculated from shuffled data
(Figure 7, blue data points) result in small values for both
similarity measures. Thereby, they indicate a high signifi-
cance of the original associations. Peaks with high Pear-
son correlation in the first dataset arise from gene-gene

associations with outlying values. Significance values for
the exemplarily chosen pairs of genes of the second data-
set (Figure 8C, and 8D) were explicitly calculated (Figure
9). They show high significance values for the two
examples of observed non-linear correlations on the basis

Significance values for the two gene-gene comparisons shown in Figure 8, C and D (top and bottom, respectively) are calcu-lated from 300 shuffled realisations based on the Pearson correlation coefficient (left) and the mutual information (right) as dis-tance measuresFigure 9
Significance values for the two gene-gene comparisons shown in Figure 8, C and D (top and bottom, respectively) are calcu-
lated from 300 shuffled realisations based on the Pearson correlation coefficient (left) and the mutual information (right) as dis-
tance measures.
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of the mutual information. Compared to this, the signifi-
cances calculated from the Pearson correlation are poor.
In summary, our analysis confirms for the first dataset that
the Pearson correlation does not miss any non-linear cor-
relations. As a side effect we are able to detect gene-gene
pairs containing outlying values. For the second dataset,
however, a substantial amount of non-linear correlations
was detected. Gene-gene pairs exemplarily chosen from
this fraction show a clustering of data points
(experiments) with a high significance. Even though such
patterns can be easily found by eye, computational meth-
ods need to be applied for the inspection of several hun-
dred million comparisons.

Discussion and conclusion
After a brief introduction into the information theoretic
concept of mutual information, we proposed a method
for its estimation from continuous data. Within our
approach, we extend the bins of the classical algorithm to
polynomial B-spline functions: Data points are no longer
assigned to exactly one bin but to several bins simultane-
ously, with weights given by the B-spline functions. By
definition, the weighting coefficients for each data point
automatically sum up to unity. Though our algorithm is
reminiscent of kernel density estimators [18], it keeps the
basic idea to associate data points to discrete bins. In this
way, we are able to avoid time-consuming numerical
integration steps usually intrinsic to estimates of mutual
information using kernel density estimators [20].

To show that our approach improves the simple binning
method and to compare it to KDE and the recently

reported estimator , we provided a systematic com-
parison between all these algorithms for artificially gener-
ated datasets, drawn from a known distribution. We
found that mutual information, as well as its standard
deviation, scales linearly with the inverse size of a dataset
for the standard binning method, for the B-spline

approach, and for . For the KDE approach we find
an asymptotic behaviour with a linear tail for large
datasets. Moreover, the discrimination of correlations
from the hypothesis of statistical independence is signifi-
cantly improved by extending the standard binning
method to B-spline functions, as shown by a two-fold
increase of the significance. Compared to KDE, the B-
spline functions produce similar significances. However,
due to the numerical expenses of the KDE, an application
of this algorithm is limited to datasets of mod-erate size.

The application of  leads to significances in-
between the standard binning and the B-spline approach
for reasonable bin numbers. Linear correlation measures
are among the most applied measures of similarity in the
literature. Often, they are used on an ad-hoc basis and it is

unclear whether a considerable number of non-linear cor-
relations are missed. Here, we asked the question whether
previous analyses, based on linear correlations, suffi-
ciently described the correlations within gene expression
datasets or whether mutual information detects addi-
tional correlations that are not detected by linear meas-
ures, such as the Pearson correlation. For data that is well
described by the Pearson correlation, we can give the rela-
tion of the Pearson correlation to the mutual information
explicitly [32]. Both measures were then applied to pub-
licly available large-scale gene expression datasets [31,33].
We aimed to verify whether non-linear correlations
shown as deviations from this relation can be detected.

Our findings show that the first dataset is fairly well
described by the given relation of the Pearson correlation
to the mutual information. No data points with high
mutual information and low Pearson correlation are
detected. Comparisons of genes containing outlying val-
ues, however, result in deviations with low mutual
information and high Pearson correlation. From this, it
follows that previous analyses on this dataset, based on
Pearson correlation, did not miss any non-linear correla-
tions. This presents an important finding since it is by all
means supposable that the regulations inherent in the
genetic network under consideration might show more
complex behaviour than the observed linear ones. Even
for one of the largest expression datasets at hand, insuffi-
cient data might complicate the detection of such
complex patterns of regulation. Alternatively, the biologi-
cal mechanisms which underlay the regulatory networks
might not lead to non-linear correlations. It also has to be
considered that the experimental methods applied for the
generation of this dataset may make non-linear correla-
tions difficult to detect. The second dataset, in contrast,
reveals highly significant tuples with high mutual infor-
mation and low Pearson correlation. Detailed gene-gene
plots of such tuples show that the expression values of the
contributing genes fall into groups of experimental condi-
tions. Without attempting to draw conclusions about the
biological context of such clusters here, they might reflect
interesting situations worth to be analysed in detail.
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ĤBUB
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