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Abstract
Background: One of the most time-consuming tasks after performing a gene expression
experiment is the biological interpretation of the results by identifying physiologically important
associations between the differentially expressed genes. A large part of the relevant functional
evidence can be represented in the form of graphs, e.g. metabolic and signaling pathways, protein
interaction maps, shared GeneOntology annotations, or literature co-citation relations. Such
graphs are easily constructed from available genome annotation data. The problem of biological
interpretation can then be described as identifying the subgraphs showing the most significant
patterns of gene expression. We applied a graph-based extension of our iterative Group Analysis
(iGA) approach to obtain a statistically rigorous identification of the subgraphs of interest in any
evidence graph.

Results: We validated the Graph-based iterative Group Analysis (GiGA) by applying it to the
classic yeast diauxic shift experiment of DeRisi et al., using GeneOntology and metabolic network
information. GiGA reliably identified and summarized all the biological processes discussed in the
original publication. Visualization of the detected subgraphs allowed the convenient exploration of
the results. The method also identified several processes that were not presented in the original
paper but are of obvious relevance to the yeast starvation response.

Conclusions: GiGA provides a fast and flexible delimitation of the most interesting areas in a
microarray experiment, and leads to a considerable speed-up and improvement of the
interpretation process.

Background
Microarray experiments can provide a comprehensive pic-
ture of gene expression levels in biological samples. In a
typical application they compare expression of several
thousand genes under two different conditions (e.g.
healthy vs. diseased tissue, wild type vs. mutant animals,
drug-treated vs. control cells), using a small number of

replicate experiments. Various techniques have been
developed to rank genes according to their expression
changes, e.g. based on the t-statistic [1] or the strong non-
parametric RankProducts [2]. The resulting list of genes
can then be restricted to those genes that fulfill a certain
statistical criterion, usually an arbitrarily chosen maxi-
mum accepted false discovery rate.
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The main challenge to the biologist is contained in the
next step of the analysis. It consists in identifying the bio-
logically relevant expression changes, the "big picture" of
the experiment. As microarray experiments tend to gener-
ate unexpected observations in areas outside the special-
ized expertise of the experimentalist, this can be quite
difficult and time-consuming. A principled mechanism to
identify the significant higher-level features of the experi-
mental results would therefore be very useful.

The biological interpretation process consists to a large
extent of finding evidence connecting certain genes that
are differentially expressed. This evidence can consist, e.g.,
of joint participation in some physiological process, phys-
ical interaction at the protein level, reported co-expression
in earlier microarray experiments, a shared functional
annotation, etc. This kind of evidence can intuitively be
represented as a graph, and this feature is regularly used to
visualize biological data, in the form of metabolic or sig-
naling pathways or protein interaction maps. The task can
then be described as the identification of subgraphs that
as a whole show a statistically significant expression
change. This would allow the biologist to focus her analy-
sis on the most promising areas, without prior bias, while
at the same time presenting the relevant evidence under-
lying each association for critical evaluation.

Results and Discussion
The Algorithm
We have recently developed an approach, iterative Group
Analysis (iGA) that identifies significantly changed func-
tional classes of genes in a microarray experiment [3]. In
contrast to similar approaches such as [4-8], the iGA
method does not require a previous delimitation of a set
of "differentially expressed genes", but uses an iterative
calculation of p-values to determine the subset of class
members that is most likely to be changed. Due to this fea-
ture, the iGA method is more sensitive in identifying func-
tional classes that are slightly but consistently regulated,
and works well on noisy data with small numbers of rep-
licates, where the delimitation of gene lists can be overly
restrictive.

Here we extend this approach to the analysis of "evidence
graphs", which offers much larger flexibility of the anno-
tations that can be used and allows substantially
improved visualization. Evidence graphs can be repre-
sented as bigraphs with two types of nodes, one for genes
and one for the associated "evidence" (Fig. 1A). For eval-
uation purposes we focused on two types of networks, one
where the evidence consists of GeneOntology annota-
tions (GO network) and one where the evidence com-
prises enzyme substrates (metabolic network). The
construction of these networks from gene annotation files
is fast and simple, but more unconventional networks are

also straightforward (e.g. regulatory networks inferred
from previous gene expression experiments, or "literature
networks" based on co-occurrence of genes in publica-
tions). Before the calculation the bigraph is converted to a
simple graph, eliminating the evidence nodes and intro-
ducing pairwise edges between all nodes that were con-
nected to a common evidence node (Fig. 1B).

In addition to the graph, a complete list of genes sorted by
differential expression is provided. All nodes without cor-
responding expression data are eliminated from the net-
work. In the first step of the analysis, each gene node is
assigned its rank in the list of genes, such that the node for
the most strongly changed gene is labeled "1" (Fig. 1C),
the second most changed gene is labeled "2", etc. Then,
local minima are identified in the graph, i.e. those nodes
that have a lower rank than all their direct neighbors in
the graph (Fig. 1D). In the next step, subgraphs are itera-
tively extended from each of those local minima by
including the neighboring node with the next highest
rank (m) and, if present, all adjacent nodes of ranks equal
or smaller than m. Hence, at each step of the extension
process the newly extended subgraph is not adjacent to
any outside node with a rank lower than m (Fig.
1E,1F,1G,1H). At each extension step we thus obtain a
subgraph with n members with a maximum rank m and
can calculate the p-value for observing all n of n genes at
rank m or better in a list of N total genes in the graph,

, which follows easily from inserting these

values in the cumulative hypergeometric equation, which
is also used for iGA [3].

The extension process is continued until all nodes reacha-
ble from the local minimum are included or the subgraph
reaches an arbitrary maximum size. After extending the
subgraphs, for each local minimum the subgraph yielding
the smallest p-value is selected as its "regulated neighbor-
hood" and all local minima are sorted by increasing p-
value of these regulated neighborhoods. The subgraphs at
the top positions of the resulting list should contain the
most relevant regions of the total evidence network.

Comparison with Previous Approaches
The method devised by Ideker et al. [9] for the determina-
tion of signaling and regulation circuits from a combina-
tion of protein interaction information and expression
data could easily be extended to cover the more general
case of microarray interpretation addressed by GiGA. This
would only require the extension of "interaction" to
include, e.g., participation in a shared cellular process or
shared functional annotation. Their approach uses aggre-
gate z-scores to evaluate the quality of each subgraph. This
requires a relatively complex parameter estimation
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Principle of Graph-based Iterative Group AnalysisFigure 1
Principle of Graph-based Iterative Group Analysis. A Evidence network. Genes are associated with their annotation in the 
form of a bigraph (two types of nodes). B The same evidence represented as a simple network. Genes that share an annotation 
are connected. C-H Example of a GiGA analysis using fictitious microarray results. C Genes are assigned their ranks based on 
observed expression changes. D Local minima are found, i.e. genes that have no connection to genes with a better rank. E-H 
Iterative expansion of subgraphs from one of the local minima, gene 2 (rank 1). E The neighboring node with the smallest rank 
is included (gene 4, rank 4), which leads to the additional inclusion of genes 5 (rank 3) and 6 (rank 2). F Gene 3 (rank 5) is 
included). G Gene 7 (rank 7) is included, leading to the inclusion of gene 8 (rank 6). H The last gene reachable from this local 
minimum, gene 1 (rank 8), is included and the process terminates. For each of the subgraphs a p-value can be calculated (see 
text) and the subgraph with the smallest p-value is declared the "regulated neighborhood" of the local minimum. In the exam-
ple, genes 2, 4, 5, and 6 form a regulated neighborhood (p = 0.014). The graph expansion process would then be repeated for 
the remaining two local minima.
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procedure followed by simulated annealing. In contrast,
the rank-transform of the data that is the basis of GiGA
allows non-parametric p-value calculations and is thus
much faster (and computationally less demanding) than
the method described by Ideker et al. A disadvantage of
both methods is that they both do not guarantee to find
the optimally scoring subgraph.

The recently released commercial Pathway Analysis soft-
ware from Ingenuity Systems http://www.ingenuity.com
seems to be based on a similar concept as GiGA, i.e. the
determination of regulated subgraphs in annotation net-
works. However, it just classifies genes as changed ("focus
genes") or unchanged based on an arbitrary selected sig-
nificance cut-off and thus discards most of the relative-
change information (gene ranks) used by GiGA http://
www.ingenuity.com/products/
Circadian_Application_Note0104.pdf. Therefore, this
method is difficult to apply to very noisy or unreplicated
experiments where a reliable delimitation of the
"changed" genes becomes impossible.

Experimental Case Study
To validate the GiGA approach, we used the yeast diauxic
shift experiment by DeRisi et al. [10]. In this classical
study the authors examined the response of yeast cells to
glucose depletion in the growth medium. As the biology
of this process is extremely well understood and the func-
tional annotation of the yeast genome is very comprehen-
sive, we could use this dataset to test the ability (and
reliability) of GiGA to identify the relevant subgraphs of
interest.

In their original publication, DeRisi et al. highlight the
following changes during starvation: Rechanneling of
metabolites into the tricarboxylic acid (TCA) and glyoxy-
late cycle, increase in aerobic respiration (cytochrome c
oxidase and reductase), gluconeogenesis, and carbohy-
drate storage (glycogen and trehalose biosynthesis). In
contrast, 95% of ribosomal proteins, as well as tRNA syn-
thetases and translation elongation/initiation factors were
strongly down-regulated. Twenty hours after the initial
inoculation of the sample about 20% of all genes showed
at least a two-fold change in expression.

Table 1 and 2 show the result of an iterative Group Anal-
ysis of these expression data. Seven time points after inoc-
ulation were examined. Significant expression changes
become apparent at 13.5 hours. It can be seen that all the
processes identified manually by DeRisi et al. are already
apparent at this level of analysis. In addition, iGA high-
lights the up-regulation of sugar transporters at the early
stages of starvation, obviously a desperate attempt by the
cells to take up the last remaining sugars from the
medium. It also highlights the induction of heat shock

proteins and the repression of ribosome biosynthesis
processes in the nucleolus, which were not discussed in
the original paper. What is missing in these lists, however,
is the automatic identification of the interrelationships
between the identified processes, which would be particu-
larly informative in more realistic applications with a less
well understood biology.

This connectivity between genes and functional classes is
provided by GiGA. Table 3 summarizes the results for the
20.5 hour time point, using two different networks, one
for GeneOntology classes, and one for enzyme substrates,
extracted from the SwissProt catalytic activity descriptors
of yeast proteins. For both up- and down-regulated genes,
the most significant subgraph is widely separated from the
next best one, contains the largest number of genes, and
comprises almost all the processes detected by iGA and
the original authors. (We here restricted the size of sub-
graphs to a maximum of 40 genes to keep navigation of
the results simple.) Figures 2 and 3 show the automati-
cally generated visualization of the corresponding most
significant subgraphs and the associated annotation. It is
obvious how GiGA highlights the functional connections
between different enzymes. In Fig. 2, the association
between small and large ribosomal subunits, nucleolar
rRNA processing and translational elongation is faithfully
reconstructed. In Fig. 3, which uses the enzyme substrate
network (which we considered to be more challenging for
the algorithm), the interplay between the TCA cycle, the
overlapping glyoxylate cycle, and all the relevant protein
complexes of the respiratory chain are readily apparent.
The agreement with the manual interpretation by DeRisi
et al. extends down to the single gene level, while at the
same time adding additional, obviously relevant connec-
tions, e.g. from the TCA cycle to the ATP synthase com-
plex. Fig. 3 also shows the second best subgraph, which
contains the cytochrome c oxidase subunits together with
two catalase genes that may be involved in the detoxifica-
tion of the hydrogen peroxide generated by the respiratory
burst induced by starvation.

The performance of GiGA (as well as iGA) is best appreci-
ated when compared to the results of an extensive expert
interpretation of the same data. Table 1 to 3, and Fig. 2
and 3 show how both techniques succeed in detecting and
condensing exactly the genes and processes that were con-
sidered relevant by the expert biologists when first inter-
preting the same data [10]. GiGA effectively summarizes
the original publication in three subgraph pictures (Fig. 2
and 3). This is even more astonishing when considering
that these results are achieved for each single time-point
separately (see, e.g., Tab. 1 and 2). This reveals the stabil-
ity of the approach towards the measurement variance
inherent in any unreplicated microarray experiment.
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Visualization of the most significant "down-regulated neighborhood" identified by GiGA using a GeneOntology-based networkFigure 2
Visualization of the most significant "down-regulated neighborhood" identified by GiGA using a GeneOntology-based network. 
The expression data are taken from the 20.5 h timepoint of the yeast diauxic shift (DeRisi et al., 1997). The layout was gener-
ated from the output of GiGA by the free software aiSee http://www.aisee.com using a force-directed algorithm with default 
parameters. The same software can also be used for the versatile real-time navigation of the network. Colored boxes show the 
regulated genes (darker shading indicates stronger regulation), white boxes show the evidence linking the genes (in this case 
GeneOntology numbers and terms). Several important components of this regulatory neighborhood are indicated (small and 
large ribosomal subunit proteins, rRNA processing/snRNP, nucleolar proteins, translation elongation factors). These compo-
nents were also identified in the original publication after manual analysis. GiGA finds them automatically, and also detects the 
– biologically obvious – connections between them. As all the evidence is included in the same picture, the biologist can then 
use her expertise to assess the relevance of each link, without having to make the connections ad hoc by tedious literature 
studies.
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Visualization of the two most significant "up-regulated neighborhoods" identified by GiGA using a metabolic network derived from Swissprot annotationsFigure 3
Visualization of the two most significant "up-regulated neighborhoods" identified by GiGA using a metabolic network derived 
from Swissprot annotations. The expression data are taken from the 20.5 h timepoint of the yeast diauxic shift (DeRisi et al., 
1997). The layout was generated as in Fig 2. Colored boxes show the regulated genes (darker shading indicates stronger regu-
lation), white boxes show the substrates that are in common between genes. Important components of this regulatory neigh-
borhood are indicated (TCA cycle and glyoxylate cycle enzymes, and the various respiratory chain complexes). Here it can be 
seen that GiGA not only detects protein complexes (such as ribosomes or the respiratory chain complexes), but also "linear" 
metabolic pathways such as TCA cycle and glyoxylate cycle (and potentially signal transduction pathways or regulatory cas-
cades etc.). Almost all the enzymes discussed by DeRisi et al. (1997) are included in these two subgraphs, plus the relevant 
enzymatic information necessary to assess the relevance of each link, without the danger of missing some genes (unless the 
annotation is incomplete).

acetyl
CoA
synthetase

acetyl
CoA
hydrolase

coenzyme
QH2
cytochrome
c
reductase...

F1F0ATPase
alpha
subunit

ATP
synthase
gamma
subunit

transketolase,
similar
to
TKL1

citrate
synthase

NADdependent
glutamate
dehydrogenase

ubiquinol
cytochrome
C
oxidoreductase
subunit...

ubiquitinconjugating
enzyme|ubiquitinprotein
ligase

Rieske
ironsulfur
protein
of
the...

isocitrate
lyase

ubiquinol
cytochrome
C
oxidoreductase
subunit...

nicotinamidase|pyrazinamidase

pyruvate
carboxylase

Hypothetical
ORF

beta
subunit
of
succinylCoA
ligase...

6phosphofructose2kinase

alphaketoglutarate
dehydrogenase

Similar
to
SDH1

F(1)F(0)ATPase
complex
beta
subunit

malate
dehydrogenase

succinate
dehydrogenase
flavoprotein
subunit

phosphoenolpyruvate
carboxylkinase

succinate
dehydrogenase
(ubiquinone)
ironsulfur
protein...

NADPdependent
isocitrate
dehydrogenase

fructose1,6bisphosphatase

carnitine
Oacetyltransferase

Llactate
cytochrome
c
oxidoreductase|cytochrome
b2

NADH
dehydrogenase
(ubiquinone)

aldeyhde
dehydrogenase

glutamate
decarboxylase

NADPdependent
isocitrate
dehydrogenase

isocitrate
dehydrogenase
1
alpha4beta4
subunit

carboncatabolite
sensitive
malate
synthase

citrate
synthase

aldehyde
dehydrogenase

fumarase

ATP
synthase
subunit
g
homolog

NADP(+)

pyruvate

Isocitrate

glyoxylate

AMP

citrate

oxaloacetate

An aldehyde

succinate

diphosphate

ubiquinone

NADPH

(S)malate

Dfructose 6phosphate

Succinate

NAD(+)

Dglyceraldehyde 3phosphate

Lglutamate

H(+)(In)

2oxoglutarate

2 ferrocytochrome c
NH(3)

Q

phosphate

QH(2)

fumarate

an acid
2 ferricytochrome c

CO(2)

Sedoheptulose 7phosphate

H(+)(Out)

CoA

ubiquinol

ADP

AcetylCoA

acetate

NADH

cytochrome
c
oxidase
subunit
VIIa

catalase
A

cytochrome
c
oxidase
subunit
IV

cytochrome
c
oxidase
subunit
VIa|may...

catalase
T

cytochrome
c
oxidase
subunit

cytochrome
c
oxidase
chain
Vb

Glutathione
peroxidase
paralogue

cytochrome
c
oxidase
subunit
VIb

cytochrome
c
oxidase
chain
VIII

cytochrome
c
oxidase
chain
Va

2 H(2)O(2)

2 H(2)O

4 ferricytochrome c

4 ferrocytochrome c

O(2)

respiratory chain
complex IV

respiratory chain
complex V
(ATP synthase)

respiratory chain
complex II

respiratory chain
complex III

TCA cycle

glyoxylate
cycle
Page 6 of 10
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:100 http://www.biomedcentral.com/1471-2105/5/100
It is important to be aware that each of the highlighted
subgraphs has to be carefully evaluated for its biological
relevance. On the one hand, the sheer number of possible
subgraphs in an evidence network creates a major multi-
ple-testing problem, which means that some of the
detected associations may be due to chance. Random
permutations of the expression data – which can be gen-
erated by the GiGA software – can give an idea of the
expected false-discovery rate. On the other hand, func-
tional annotations are at present notoriously unreliable
and spurious edges may affect the details of the results.
Also, not all genes within a detected subgraph will neces-
sarily show a strong expression change, because some-
times less strongly affected genes may connect those genes

that do change. Such a relation is for example expected for
many transcription factors and their targets [9]. Nonethe-
less, GiGA is able to direct the user to the most interesting
areas in the evidence network.

The GiGA method is not restricted to use with exhaus-
tively annotated genomes. It can work on a wide variety of
"evidence" to build the necessary network, including
hypothetical predicted functions or associations. It is even
possible to apply GiGA to metabolomics results, which
are characterized by the absence of any significant amount
of annotation – usually only exact molecular masses and
their differential abundance are known. In that case, an
evidence network can be built from the measured masses

Table 1: Iterative Group Analysis of gene expression during the yeast diauxic shift. Up-regulated groups. 

0 h 9.5 h 11.5 h 13.5 h 15.5 h 18.5 h 20.5 h

6144 – purine base 
metabolism

6099 – 
tricarboxylic acid 
cycle

6099 – tricarboxylic acid 
cycle

3773 – heat shock 
protein activity

6099 – tricarboxylic acid 
cycle

9277 – cell wall 
(sensu Fungi)

3773 – heat shock 
protein activity

5749 – respiratory chain 
complex II (sensu 
Eukarya)

6099 – tricarboxylic 
acid cycle

3773 – heat shock protein 
activity

297 – spermine 
transporter 
activity

6950 – response to 
stress

6121 – oxidative 
phosphorylation, 
succinate to ubiquinone

5977 – glycogen 
metabolism

5749 – respiratory chain 
complex II (sensu 
Eukarya)

15846 – polyamine 
transport

297 – spermine 
transporter activity

8177 – succinate 
dehydrogenase 
(ubiquinone) activity

6950 – response to 
stress

6121 – oxidative 
phosphorylation, 
succinate to ubiquinone

4373 – glycogen 
(starch) synthase 
activity

3773 – heat shock protein 
activity

4373 – glycogen 
(starch) synthase 
activity

8177 – succinate 
dehydrogenase 
(ubiquinone) activity

15846 – polyamine 
transport

4373 – glycogen (starch) 
synthase activity

4129 – cytochrome c 
oxidase activity

6537 – glutamate biosynthesis

5353 – fructose 
transporter activity

7039 – vacuolar protein 
catabolism

5751 – respiratory 
chain complex IV 
(sensu Eukarya)

6097 – glyoxylate cycle

15578 – mannose 
transporter activity

6950 – response to stress 5749 – respiratory 
chain complex II 
(sensu Eukarya)

5750 – respiratory chain 
complex III (sensu 
Eukarya)

7039 – vacuolar 
protein catabolism

4129 – cytochrome c 
oxidase activity

6121 – oxidative 
phosphorylation, 
succinate to 
ubiquinone

9060 – aerobic respiration

8645 – hexose 
transport

5751 – respiratory chain 
complex IV (sensu 
Eukarya)

8177 – succinate 
dehydrogenase 
(ubiquinone) activity

4129 – cytochrome c 
oxidase activity

4396 – hexokinase 
activity

4396 – hexokinase activity 30162 – regulation of 
proteolysis and 
peptidolysis

5751 – respiratory chain 
complex IV (sensu 
Eukarya)

5215 – transporter 
activity

297 – spermine transporter 
activity

4364 – glutathione 
transferase activity

16491 – oxidoreductase 
activity

5977 – glycogen 
metabolism

6101 – citrate metabolism

For this analysis, genes were assigned to groups based on GeneOntology annotations http://www.geneontology.org obtained from Affymetrix http:/
/www.affymetrix.com/analysis/download_center.affx. All groups that are changed with a minimal p-value smaller than 1/ [number of annotated 
genes] (1/4087 = 2.4E-4) are shown, sorted by significance. Numbers and names are the standardized GeneOntology identifiers. Groups shown in 
bold were also reported as changed in the original publication (DeRisi et al., 1997) Up-regulated groups
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Table 2: Iterative Group Analysis of gene expression during the yeast diauxic shift. 

0 h 9.5 h 11.5 h 13.5 h 15.5 h 18.5 h 20.5 h

7152 – spore wall 
assembly (sensu 
Saccharomyces)

5730 – nucleolus 30490 – processing of 20S 
pre-rRNA

5843 – cytosolic small ribosomal 
subunit (sensu Eukarya)

30490 – processing 
of 20S pre-rRNA

5732 – small nucleolar 
ribonucleoprotein complex

5842 – cytosolic large ribosomal 
subunit (sensu Eukarya)

7046 – ribosome 
biogenesis

5730 – nucleolus 30490 – processing of 20S pre-
rRNA

30515 – snoRNA 
binding

42273 – ribosomal large 
subunit biogenesis

5730 – nucleolus

5842 – cytosolic large 
ribosomal subunit (sensu 
Eukarya)

6414 – translational elongation

30515 – snoRNA binding 5732 – small nucleolar 
ribonucleoprotein complex

3938 – IMP dehydrogenase 
activity

27 – ribosomal large subunit 
assembly and maintenance

6183 – GTP biosynthesis 42273 – ribosomal large subunit 
biogenesis

154 – rRNA modification 30515 – snoRNA binding
3723 – RNA binding
154 – rRNA modification

Down-regulated groups. See Table 1 for details. Down-regulated groups.

Table 3: Graph-based iterative Group Analysis of gene expression during the yeast diauxic shift.

Down-regulated genes using GeneOntology-based network

anchor locus group description minimal p-value E-value N max. rank

YHL015W ribosomal proteins and rRNA processing 5.87E-86 <0.01 39 48
YMR217W amino acid and nucleotide biosynthesis 3.38E-13 2.7 9 172
YDR144C cell wall biogenesis 4.06E-08 4.5 6 242
YNL065W membrane transporter 4.02E-05 9.3 3 141
YLR062C bud site selection 6.41E-05 9.9 4 367
YGL225W protein glycosylation in Golgi 1.12E-04 10.8 4 422
YPR074C pentose phosphate pathway 1.44E-04 11.2 4 449
total genes measured in network: 4087.
Down-regulated genes using metabolic network

anchor locus group description minimal p-value E-value N max. rank

YNL141W nucleotide and amino acid biosynthesis, 
tRNA synthetases

4.67E-59 <0.01 39 45

YOR224C RNA polymerases 2.59E-13 1.1 23 219
total genes measured in network: 744.
Up-regulated genes using GeneOntology-based network

anchor locus group description minimal p-value E-value N max. rank

YER065C TCA and glyoxylate cycle, respiratory chain 8.57E-77 <0.01 39 66
YKL217W membrane transporters (sugar, amino acids) 1.76E-15 2.3 8 62
YAL017W protein kinases 1.07E-07 4.8 6 284
YBL043W cell wall biogenesis 3.81E-07 5.4 4 103
YGR248W carbohydrate metabolism 5.66E-07 5.5 5 232
YEL011W glycogen metabolism 1.01E-06 5.8 3 42
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themselves, linking compounds m1 and m2 whenever
their mass difference (∆m = |m1 - m2|) can be explained by
a common biochemical transformation (e.g. dehydrogen-
ation: ∆m = 2* mass(hydrogen)). The set of relevant trans-
formations can easily be collected from any biochemistry
textbook. In addition, one can introduce edges for con-
densation reactions between observed masses, i.e. if m1 +
m2 = m3 + mass(H2O) then edges between m1 and m3,
and m2 and m3 are added to the evidence network. We are
currently developing the application of GiGA to this kind
of data in the Sir Henry Wellcome Functional Genomics
Facility at the University of Glasgow http://
www.gla.ac.uk/functionalgenomics/; data not shown).

Conclusions
The present analysis of a biologically well-understood test
case demonstrates the reliable performance of GiGA. The
method automatically identifies all relevant physiological
processes, puts them into context, summarizes them in an
intuitive format, and associates them with the underlying
evidence (Fig. 2 and 3). It can be applied to experiments
with very small numbers of replicates (a single time point
in the diauxic shift test case) and can be used with any
available functional annotation, including protein inter-
action networks, co-expression data or literature mining

results, as well as in areas beyond microarray analysis. For
visualization, we have used the graph-layout software
aiSee, but output files suitable for a variety of graphical
tools can easily be generated by slight modifications in the
implementation. GiGA can be used as a stand-alone tool,
but we expect that it will be most useful when integrated
into existing microarray analysis software, and for that
reason the GiGA algorithm is freely available without
restrictions.

Methods
Yeast gene expression data for the diauxic shift experiment
were obtained from the Stanford Microarray Database
http://genome-www5.stanford.edu/. GeneOntology
annotations http://www.geneontology.org were obtained
from Affymetrix http://www.affymetrix.com/analysis/
download_center.affx. The enzyme substrate networks
were built based on information contained in the annota-
tion of the yeast proteome in the SwissProt database http:/
/us.expasy.org/sprot/. The GiGA algorithm has been
implemented as a Perl script and compiled as a Windows
command line executable. These files are available
(together with a manual and example files) as Additional
files 1 to 8.

YER037W protein phosphatases 1.07E-06 5.8 8 736
YJL137C glycogen biosynthesis 7.46E-06 7.3 4 215
YDL085W disulfide oxidoreductases 1.05E-05 7.6 4 234
YNL173C mating signal transduction 1.65E-05 8.2 4 262
YNL134C alcohol dehydrogenase 1.34E-04 11.1 3 210
YBL038W mitochondrial large ribosomal subunit 1.99E-04 11.9 4 487
total genes measured in network: 4087.
Up-regulated genes using metabolic network

anchor locus group description minimal p-value E-value N max. rank

YER065C TCA and glyoxylate cycle, respiratory chain 4.96E-53 0.11 39 54
YGR088W cytochrome c oxidase 3.09E-10 1.2 11 106
YFR015C glycogen synthases 2.08E-04 3.6 3 45
YJR073C methyltransferases 3.85E-04 4.0 5 156
YDR001C trehalases 5.01E-04 4.2 3 60
YCR014C DNA and RNA polymerases 5.44E-04 4.2 17 481
YIR038C glyoxalases 8.64E-04 4.5 5 183
total genes measured in network: 744.

The evidence network was constructed either from GeneOntology information (nodes are connected if they share a GeneOntology annotation) or 
from enzyme activity information obtained from Swissprot http://www.expasy.ch. In the latter case, genes are connected if their encoded proteins 
convert the same substrate (as product or educt, i.e. the direction of the reaction is not taken into account here). This type of network is much 
smaller (only 744 genes), as only genes coding for enzymes are included. All groups that are changed with a minimal p-value smaller than 1/[number 
of annotated genes] are shown, sorted by significance. The corresponding E-value as estimated by the analysis of 100 random permutations of the 
data is also shown. The employed threshold for inclusion in the table is very generous and does not guarantee that all subgraphs shown are 
statistically significant. The local minimum anchoring each regulated neighborhood is indicated by its genetic locus name (for overlapping 
neighborhoods, only the best-ranking minimum is shown). Descriptive group names were added manually. Groups that correspond to processes 
discussed in the original paper are highlighted in italics. It can be seen that the highest ranking group in each case is the largest and contains the 
central biological processes detected by DeRisi et al. (1997) and by iGA (see Table 1 and 2). N, number of genes in each subgraph.

Table 3: Graph-based iterative Group Analysis of gene expression during the yeast diauxic shift. (Continued)
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Gene expression data. Sorted list of genes, based on expression during the 
yeast diauxic shift.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-100-S4.txt]

Additional File 5
Evidence network. List of gene pairs connecting genes whenever their gene 
products are enzymes that share a common substrate. Based on annotation 
derived from SwissProt.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-100-S5.txt]

Additional File 6
Genenames file. Contains descriptive names of the yeast genes contained 
in Additional file 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-100-S6.txt]

Additional File 7
Example output in text format. List of significantly affected subgraphs 
detected in the experimental data (Additional file 4) using GiGA with 
default settings.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-100-S7.txt]

Additional File 8
Example output in graph-description language format. Contains the same 
results as Additional file 7, but in a format that can be visualized and 
explored using graph-layout software, e.g. aiSee, which is freely available 
for academics at http://www.aisee.com.
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