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Abstract
Background: Contradicting evidence has been presented in the literature concerning the
effectiveness of empirical contact energies for fold recognition. Empirical contact energies are
calculated on the basis of information available from selected protein structures, with respect to a
defined reference state, according to the quasi-chemical approximation. Protein-solvent
interactions are estimated from residue solvent accessibility.

Results: In the approach presented here, contact energies are derived from the potential of mean
force theory, several definitions of contact are examined and their performance in fold recognition
is evaluated on sets of decoy structures. The best definition of contact is tested, on a more realistic
scenario, on all predictions including sidechains accepted in the CASP4 experiment. In 30 out of 35
cases the native structure is correctly recognized and best predictions are usually found among the
10 lowest energy predictions.

Conclusion: The definition of contact based on van der Waals radii of alpha carbon and side chain
heavy atoms is seen to perform better than other definitions involving only alpha carbons, only beta
carbons, all heavy atoms or only backbone atoms. An important prerequisite for the applicability
of the approach is that the protein structure under study should not exhibit anomalous solvent
accessibility, compared to soluble proteins whose structure is deposited in the Protein Data Bank.
The combined evaluation of a solvent accessibility parameter and contact energy allows for an
effective gross screening of predictive models.

Background
Renewed interest in the protein folding problem has been
stimulated by both the boost in genomic projects and by
continuous improvement in prediction achievements.

A wide range of tools has been employed for structure pre-
diction ranging from coarse grained lattice representa-
tions to all atoms molecular dynamics simulations [1,2].

A guiding principle of most prediction models is that pro-
tein native structure is thermodynamically stable and
therefore it is at a free energy minimum [3]. As a conse-
quence, the problem of finding the native structure can be
split in two main components:

i) the representation of a protein by a model which allows
the definition of a (free) energy for each of its
conformations;
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ii) the development of an efficient search algorithm.

Very different empirical functions have been previously
defined (see for a review ref. [4]), and their ability in dis-
criminating the native structure from non-native ones has
been explored for different proteins, also in comparative
studies [5].

One model which has attracted much interest describes,
in a very compact way, protein conformation using resi-
due-residue contact maps: for each residue pair a Boolean
variable is introduced which describes the presence or ab-
sence of a contact. It has been shown that with a sufficient
number of contacts, protein structure can be reconstruct-
ed with sufficient accuracy (see e.g. ref. [6]).

To each amino acid pair in contact an (additive) energy is
assigned and the energy of the protein can be estimated
from the sum of all pairwise energies.

Empirical contact energies may be derived in different
ways, mainly employing optimisation algorithms that
maximise the gap between the free energy assigned to the
native and decoy structures, or statistical survey of con-
tacts in native structures.

In the present work, empirical energies are calculated us-
ing the statistical information derived from an ensemble
of protein structures, selected from a structural database,
and should reflect the propensity of each amino acid type
to interact with any other amino acid type. The perform-
ance of the method depends on model definition and the
present investigation aims at evaluating different models
and at establishing applicability limits of the model itself.

The first attempt to calculate empirical contact energy,
from structural information available from a dedicated
data base, is attributable to Tanaka and Scheraga [7] and
it was later developed by Miyazawa and Jernigan [8–11].

Empirical contact energies may be used in fold recogni-
tion experiments, where a contact matrix represents a pro-
tein conformation. This approach has the drawback that it
is not easy to discriminate against unphysical contact
maps, although some heuristic rules have been defined to
solve this problem [6,12,13]. A solution to this problem
can be the use of additive energetic terms, such as the re-
pulsion energy term, as formulated by Miyazawa and
Jernigan [9], and local conformational propensity energy
terms.

Following the work of Miyazawa and Jernigan, many new
ideas and improvements, such as the choice of a different
reference state [14,15], or of a different amino acid's rep-

resentation [14,16,17], have been proposed in recent
years.

Notwithstanding all the criticisms received, in particular
concerning the non-additivity of contact potentials ([18]
and see ref. [19] for a general discussion on a related is-
sue) the quasi-chemical approximation seems to perform
generally satisfactorily [9].

As far as protein representation is concerned, several mod-
els have been used and Park and Levitt [5] examined and
compared the performance of several different contact
and energy definitions, showing that a combination of
different energy functions is able to discriminate the na-
tive structure from decoys. Vendruscolo et al. [20] investi-
gated the possibility itself of defining contact energies able
to discriminate native from decoy structures with a gener-
al negative answer.

As far as the search algorithm for the contact map model
is concerned the main problem is that only a limited
number of plausible contact maps are physically feasible,
because of stereochemical constraints on amino acid con-
formations. Moreover the energy definition based on con-
tacts does not take into account other local
conformational preferences, like secondary structure pro-
pensities, which are of fundamental importance for pro-
tein structure. Search algorithms must take into account
all these aspects as done for instance by the algorithm of
Vendruscolo and Domany [12] which aims at generating
only physically feasible conformations. Prediction of con-
tacts from sequence is still difficult although there have
been improvements in the last years [21,22]. All results
obtained on decoys should, in view of these problems,
taken with much care. In this respect predictions made in
the Critical Assessment of Structure Prediction (CASP) ex-
periment [23] should be more realistic as these make usu-
ally use of alignment, homology modeling and threading
on real structures.

In the present work we investigate the reliability of amino
acid empirical contact energy definitions for use in fold
recognition, by searching and testing the optimal defini-
tion of contact. In the Methods section the theory under-
lying the present approach is presented. Compared to the
method of Miyazawa and Jernigan [8,9], the present deri-
vation is somewhat simpler, it is based on the potential of
mean force theory and relies (in a simple way) only on
contact counts and solvent accessibility.

Results
Solvent accessibility parameter
The solvent accessibility parameter defined in the Materi-
als and methods section has been computed for all the
746 chains in the dataset of proteins selected from the
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pdb_select ensemble. The distribution of the solvent ac-
cessibility parameter is reported as a histogram in Figure
1. The largest values refer mainly to short chains in associ-
ation with other larger units or in some cases to proteins
classified as membrane proteins. After selection of 500
proteins with the lowest values of solvent accesibility pa-
rameter (less than 0.486) a weak anti-correlation of the
solvent accessibility parameter with the number of resi-
dues is found, as can be gleaned from Figure 2. It is likely
that very large values of this parameter for predictive mod-

els will hint at some problems with the model or be indic-
ative of association with other units.

Optimal contact definition
The discrimination performance for different contact def-
initions was estimated by means of the z-score and the
rank score (see Methods section). In particular several cut-
off values were tested using the following different resi-
due-residue distance definitions:

Figure 1
Histogram of solvent accessibility parameter The histogram (bin width 0.025) of solvent accessibility parameter com-
puted on the 746 proteins selected from the pdb_select 25%.
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i) the distance between alpha carbons (CA);

ii) the distance between beta carbons, or alpha carbon for
glycine (CB);

iii) the minimum distance between the van der Waals
spheres of each residue heavy atoms (HA);

iv) the minimum distance between the van der Waals
spheres of each residue backbone heavy atoms (BB);

v) the minimum distance between the van der Waals
spheres of each residue side chain heavy atoms or alpha
carbons (SC+CA);

For all these definitions empirical contact energies have
been derived from contacts observed in the dataset. Then,
for each sequence in the dataset, energies corresponding
to all matrices were computed and used to obtain a distri-
bution of energy values. From this distribution of values
the z-score and the rank score corresponding to the native
structure could be estimated. The results are reported in
Table 1 where the mean z-scores corresponding to each

Figure 2
Solvent accessibility parameter versus number of residues The solvent accessibility parameter is plotted versus the 
number of residues for the 500 proteins with solvent accessibility parameter values lower than 0.486 (see text).
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distance definition are reported versus the cutoff value. In
all cases, except for the worst choices the rank score was 1.

From Table 1 it is apparent that the SC+CA distance defi-
nition is the best performing one, because mean z-score
values are clearly higher. The same results prove that the
definition of residue-residue distance is a crucial determi-
nant of the discrimination performance of empirical con-
tact energies.

It should also be noted that, as expected, when the infor-
mation deriving from side chains is ignored and only
backbone's atoms are considered, the system is character-
ised by very poor discrimination power. A somewhat un-
expected result is that ignoring backbone atoms improves
discrimination performance. We ascribe this behaviour to
rather unspecific information provided by backbone
atoms.

In this analysis, the discrimination system was tested on
the same proteins employed for the empirical energies
calculation.

Before proceeding further, these conclusions have been
tested more rigorously on few proteins not belonging to
the proteins' dataset with similar results. Optimal cutoff
values for these few tested proteins were in the range 0.7
to 0.9 Å.

Fold recognition experiments on decoys' sets
In view of the rather crude derivation of optimal contact
definition we tested and refined it on alternatives generat-
ed by predictive computational methods: these alternative
conformations are called decoys. Many decoys' sets are
available, and they differ from one another in the protein
to which they refer, and, more important, in the algorithm
producing them.

Because of the previous observations, the SC+CA distance
definition was employed and cutoff's value was separately
set at 0.7 Å, 0.8 Å, 0.9 Å, 1.0 Å, 1.1 Å, 1.2 Å, 1.3 Å and 1.4
Å. For every tested protein, the reference structure depos-
ited in the PDB [24] was always considered as the native
conformation. The fold recognition performance was test-
ed using both the rank score and z-score.

For all the proteins in the misfold set the native conforma-
tion was assigned the lower energy, thus allowing the dis-
crimination against the alternative structure. The misfold
set has been generated a decade ago by Holm and Sander
[25] by superimposing the sequence of a protein on the
structure of another. Although this might seem a very
rough procedure it is worth mentioning that not all meth-
ods reported in the literature recognize the native fold for
all protein pairs, probably due to missing heterogroups
(see e.g. [26–28]).

A more challenging test has been conducted with the oth-
er three sets of decoys, because they offer many alternative
non-native conformations. Results are summarised in

Table 1: Test of different contact definitions on the dataset

Cutoff (Å) All atoms SC+CA BB CB CA

0.4 2.15 5.53 0.05 - -
0.5 2.14 7.08 0.10 - -
0.6 2.21 7.33 0.22 0.03 -
0.7 2.28 6.85 0.49 0.03 -
0.8 2.36 6.31 1.03 0.03 -0.02
0.9 2.43 5.82 1.52 0.03 -0.05
1.0 2.49 5.44 1.63 0.05 -0.07
1.1 2.56 5.16 1.59 0.08 -0.06
1.2 2.59 4.93 1.53 0.12 -0.05
1.3 2.61 4.76 1.49 0.15 -0.04
1.4 2.61 4.63 1.46 0.21 -0.03
1.6 - - - 0.37 0.07
1.8 - - - 0.72 0.08
2.0 - - - 1.50 0.14
2.2 - - - 3.07 0.62
2.4 - - - 4.18 1.53
2.6 - - - 4.09 1.95
2.8 - - - 3.74 1.80

The average z-score (see Materials and methods section) for different contact definitions is reported versus the cutoff employed.
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Table 2: Performance of contact energies for fold recognition

4state

Protein 
Cutoff (Å)

1ctf z-
score

rank 1r69z-
score

rank 1sn3z-
score

rank 2cro z-
score

rank 3icb z-
score

rank 4pti z-
score

rank 4rxn z-
score

rank

0.7 3.24 1 5.07 1 3.32 1 3.54 1 2.95 1 4.86 1 5.40 1
0.8 3.43 1 5.35 1 3.68 1 4.65 1 3.03 1 5.30 1 5.68 1
0.9 3.80 1 5.43 1 3.49 1 4.55 1 3.37 1 4.90 1 5.50 1
1.0 4.21 1 5.39 1 3.60 1 4.81 1 3.22 1 5.03 1 5.28 1
1.1 4.50 1 5.89 1 3.71 1 5.11 1 3.00 1 4.84 1 5.49 1
1.2 4.83 1 5.90 1 3.47 1 5.11 1 3.01 1 4.77 1 5.40 1
1.3 4.53 1 5.58 1 3.31 1 4.76 1 2.79 1 4.56 1 5.12 1
1.3 4.09 1 5.06 1 3.16 1 4.29 1 3.23 1 4.52 1 4.81 1

acc. par. 0.39 0.44 0.54 0.49 0.37 0.53 0.58
length 68 63 65 65 75 58 54

casp3

Protein 
Cutoff (Å)

1bg8-A z-
score

rank 1bl0z-
score

rank 1eh2z-
score

rank 1jwe z-
score

rank

0.7 2.78 4 -0.01 486 2.74 12 2.48 12
0.8 3.16 1 0.10 455 2.95 4 3.70 1
0.9 3.38 1 0.73 223 2.82 4 4.36 1
1.0 3.61 1 1.03 151 3.09 2 4.54 1
1.1 3.92 1 1.07 70 3.35 2 4.35 1
1.2 3.35 1 1.02 80 3.56 2 4.09 1
1.3 3.01 1 0.67 134 3.26 3 3.80 1
1.4 2.88 1 0.80 107 3.11 4 3.59 1

acc. par. 0.55 0.40 0.48 0.46
length 76 99 79 114

lmds

Protein 
Cutoff (Å)

1b0n-B z-
score

rank 1bba z-
score

rank 1fc2z-
score

rank

0.7 1.11 76 1.02 65 -5.76 501
0.8 0.54 153 0.44 163 -5.44 501
0.9 0.79 116 -0.07 264 -5.04 501
1.0 0.58 148 -0.84 395 -5.25 501
1.1 1.15 59 -1.42 457 -4.74 501
1.2 1.53 35 -1.53 472 -4.36 501
1.3 1.63 29 -1.19 442 -4.89 501
1.4 1.42 40 -1.05 424 -3.77 501

acc. par. 1.08 0.83 0.57
length 31 36 43

lmds

Protein 
Cutoff (Å)

1ctf z-
score

rank 1dtk z-
score

rank 1igd z-
score

rank 1shf-A z-
score

rank 2cro z-
score

rank 2ovo z-
score

rank 4pti z-
score

rank

0.7 2.89 1 1.44 16 3.48 1 3.19 1 3.69 1 1.88 14 2.76 5
0.8 3.24 1 1.32 20 3.97 1 4.90 1 5.73 1 1.84 16 3.38 3
0.9 3.64 1 1.57 11 3.94 1 4.77 1 6.12 1 2.30 6 3.17 4
1.0 4.17 1 2.50 3 3.84 1 4.56 1 6.91 1 2.47 6 3.51 1
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Table 2. The discrimination performance, judged by z-
score and rank score, critically depends on the solvent ac-
cessibility parameter and on the number of residues in the
chain. It is, in fact, important to note that worst perform-
ance is found for the shortest chains, namely with lengths
31, 36 and 43 amino acids, and for proteins with the high-
est solvent accessibility parameter, which indicates that
the protein cannot be described by the assumed model
itself.

Another important point is that the highest discrimina-
tion performance is not always achieved with the same
cutoff value. This fact could be due to different ways of
producing the decoys' sets. Nevertheless, even in different
decoys' sets belonging to the same group, i. e. constructed
using the same algorithm, a single cutoff value is not al-
ways the best one. So other effects should be responsible
for the discrimination performance.

Best discrimination is obtained for cutoffs in the range 1.0
– 1.3 Å, as opposed to much shorter optimal cutoff in the
gross test performed on the dataset sequences.

Amongst short chains, a singular behavior is observed for
1fc2, whose native structure is always associated to the
highest energy. This result is fully consistent with the re-
sults of Felts et. al. [29]. An explanation for this unexpect-
ed behaviour is that the chain is a fragment of a larger
chain (protein A) which is associated in the PDB file with
another protein (a FC fragment) and model assumptions
are not respected in this case.

Unfavourable results were obtained in the case of 1bl0
protein, whose rank score value was 151 (with cutoff 1.0
Å), in spite of the acceptable solvent accessibility parame-
ter value. If all decoys were ordered with respect to the es-
timated energy, in the first 25 alternative conformations,
13 structures with RMSD greater than 13 Å, calculated
with respect to the native structure, are found (Figure 3).
It should be however mentioned that the RMSD among
these 13 structures is in the range 0.5 to 1.0 Å.

Structure 1bl0 represents a multiple antibiotic resistance
protein interacting with a DNA molecule through a wide
portion of its exposed surface [30] this fact may be impor-
tant because the environment could not be treated as it
was completely aqueous solvent.

This and the previous examples show that our simple sol-
vent accessibility parameter, although useful, could not be
sufficient to ascertain the infringement or observance of
model's limitations.

It is interesting to note, however, that, for a few tested pro-
teins for which both free and complexed structures are
available in the PDB, the energy associated to the free con-
formation was found to be lower than that of the bound
conformation for three tested proteins.

Empirical contact energies
The calculated energies for a dehydration reaction, with
the SC+CA contact definition and cutoff value 1.0 Å, are
reported in Table 3. The cutoff value has been chosen as a
reasonable average in view of results obtained in the tests
on the dataset obtained by gapless threading and on the
decoys' sets.

The lowest energy value correspond to the contact be-
tween cysteines, which reflects the unique capability of
cysteines of forming disulphide bridges. This feature was
found also by other authors, following different schemes
(see e.g. ref. [9]).

Consistently with similar studies, very low energy values
can be observed, as expected, for contacts between hydro-
phobic residues, while unfavourable energies regard the
formation of contacts involving residues with electrostatic
charge of the same sign. The preference of polar residues
for contacts with other polar residues or solvent is much
less pronounced, thus confirming the main role of the hy-
drophobic effect in protein stability.

1.1 4.60 1 3.39 1 4.06 1 4.59 1 7.63 1 2.27 7 3.40 2
1.2 4.86 1 3.18 1 3.51 1 4.99 1 7.84 1 2.35 8 3.54 2
1.3 4.72 1 3.53 1 3.24 2 4.77 1 7.58 1 2.31 6 3.52 2
1.4 4.42 1 3.26 1 3.26 1 4.37 1 7.17 1 2.46 5 3.64 1

acc. par. 0.39 0.55 0.56 0.58 0.49 0.66 0.52
length 68 63 65 65 75 58 54

For all the tested decoys' sets the z-score and the rank score are reported for the SC+CA contact definition. The number of residues for each chain 
and the solvent accessibility parameter are also reported.

Table 2: Performance of contact energies for fold recognition (Continued)
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Analysis of the results on the 4state decoys' set
The results obtained on decoys and summarized in Table
2 give a good impression of the performance of the meth-
odology. However it is worth reminding that the task of
recognizing an experimental structure among a set decoys
is poorly related to real fold recognition tasks. First of all
in a real fold recognition experiment the task is to recog-
nize, among several predictive models, native-like struc-
tures, rather than native structure, whose overall RMSD
with the native structure can be rather high (say e.g. ca. 5
Å). For this reason it is very important that any energy
function should show some correlation with the RMSD of
the predictive models from native structure.

Second a native-like structure could not be present in the
ensemble and we should be able to recognize this fact, ei-
ther at the gross test stage or at a later stage.

Third, the specific environment, or cofactors, or associa-
tion state of the protein is often not known, and this can
lead to discarding good structures, based, for instance on
solvent accessibility properties, when a hydrophobic in-
terface is not recognized as such.

The two latter issues can be better tested on blind predic-
tions made in the context of the CASP experiment [23]
and they will be addressed in the next section.

Concerning the first issue raised above, the 4state set of
decoys was chosen for test because it has been generated

by keeping most of the structure in native conformation,
and choosing for just few "hinge" regions a set of allowed
conformations [5]. The original paper by Park and Levitt
[5] contains several analysis which allow comparison with
the present results. An outstanding property of these de-
coys is that several near-native conformations exist and
RMSDs are well distributed even at low values. The proce-
dure used to generate this set guarantees that all
conformers should be physically feasible as confirmed
also by the explicit evaluation of the corresponding ener-
gies by Hassan and Meheler [26] and by Lee and Kollman
[31] by hybrid molecular mechanics – implicit solvent
methods.

The solvent accessibility parameters on these decoys does
not allow by itself discrimination of native conformation.
Figures 4 to 10 report for each target protein of the set the
contact energy per residue versus the RMSD with respect
to the native structure. In view of the short length of the
chains we chose a rather permissive 0.6 cutoff for the sol-
vent accessibility parameter. Even with such a tolerant
filter almost half of the decoys are discarded. For all pro-
teins the native structure is well separated from the de-
coys. For some, but not for all, of the proteins (namely
2cro and 3icb) a correlation between contact energy and
RMSD is apparent from the plot. In all cases, however,
among the five lowest energy decoys there is a native-like
structure with RMSD lower than 2.0 Å. These results
should be compared with the results obtained both with
similar approaches and with more refined methods like

Figure 3
1bl0 structure and decoys The native structure of multiple antibiotic resistance protein (pdb id. 1bl0) is shown together 
with the best decoy (i.e. the lowest energy) decoy and the worst decoy (i.e. the highest energy decoy).
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hybrid molecular mechanics – implicit solvent methods
[26,31,29]. The performance of several energy functions
tested on an enlarged version of the 4state decoys' set has
been afforded by Park and Levitt [5]. It is apparent that the
contact definition proposed in the present work has supe-
rior capabilities with respect to most similar approaches
tested in that study. This is not just depending on cutoff
choice for contact definition, because both rank score and
z-score for native structure are consistently 1 and ranging

between ca. 3.0 and ca. 6.0, respectively, for all cutoff
choices, whereas the corresponding z-scores with contact
potentials was between ca. 0.5 and ca. 3.0 on the enlarged
set of decoys. On the other hand, when we compare our
results (Figures 4 to 10) with the corresponding results
obtained using the screened Coulomb potential-implicit
solvent model (SCP-ISM) [26] or MM/PBSA free energy
[31] we notice that with more refined methods a correla-

Table 3: Amino acid empirical contact energies

CYS MET PHE ILE LEU VAL TRP TYR ALA GLY

CYS -3.477 -2.240 -2.424 -2.410 -2.343 -2.258 -2.080 -1.892 -1.700 -1.101
MET -2.240 -1.901 -2.304 -2.286 -2.208 -2.079 -2.090 -1.834 -1.517 -0.897
PHE -2.424 -2.304 -2.467 -2.530 -2.491 -2.391 -2.286 -1.963 -1.750 -1.034
ILE -2.410 -2.286 -2.530 -2.691 -2.647 -2.568 -2.303 -1.998 -1.872 -0.885
LEU -2.343 -2.208 -2.491 -2.647 -2.501 -2.447 -2.222 -1.919 -1.728 -0.767
VAL -2.258 -2.079 -2.391 -2.568 -2.447 -2.385 -2.097 -1.790 -1.731 -0.756
TRP -2.080 -2.090 -2.286 -2.303 -2.222 -2.097 -1.867 -1.834 -1.565 -1.142
TYR -1.892 -1.834 -1.963 -1.998 -1.919 -1.790 -1.834 -1.335 -1.318 -0.818
ALA -1.700 -1.517 -1.750 -1.872 -1.728 -1.731 -1.565 -1.318 -1.119 -0.290
GLY -1.101 -0.897 -1.034 -0.885 -0.767 -0.756 -1.142 -0.818 -0.290 0.219
THR -1.243 -0.999 -1.237 -1.360 -1.202 -1.240 -1.077 -0.892 -0.717 -0.311
SER -1.306 -0.893 -1.178 -1.037 -0.959 -0.933 -1.145 -0.859 -0.607 -0.261
ASN -0.788 -0.658 -0.790 -0.669 -0.524 -0.673 -0.884 -0.670 -0.371 -0.230
GLN -0.835 -0.720 -0.807 -0.778 -0.729 -0.642 -0.997 -0.687 -0.323 0.033
ASP -0.616 -0.409 -0.482 -0.402 -0.291 -0.298 -0.613 -0.631 -0.235 -0.097
GLU -0.179 -0.209 -0.419 -0.439 -0.366 -0.335 -0.624 -0.453 -0.039 0.443
HIS -1.499 -1.252 -1.330 -1.234 -1.176 -1.118 -1.383 -1.222 -0.646 -0.325

ARG -0.771 -0.611 -0.805 -0.854 -0.758 -0.664 -0.912 -0.745 -0.327 -0.050
LYS -0.112 -0.146 -0.270 -0.253 -0.222 -0.200 -0.391 -0.349 0.196 0.589
PRO -1.196 -0.788 -1.076 -0.991 -0.771 -0.886 -1.278 -1.067 -0.374 -0.042

THR SER ASN GLN ASP GLU HIS ARG LYS PRO

CYS -1.243 -1.306 -0.788 -0.835 -0.616 -0.179 -1.499 -0.771 -0.112 -1.196
MET -0.999 -0.893 -0.658 -0.720 -0.409 -0.209 -1.252 -0.611 -0.146 -0.788
PHE -1.237 -1.178 -0.790 -0.807 -0.482 -0.419 -1.330 -0.805 -0.270 -1.076
ILE -1.360 -1.037 -0.669 -0.778 -0.402 -0.439 -1.234 -0.854 -0.253 -0.991
LEU -1.202 -0.959 -0.524 -0.729 -0.291 -0.366 -1.176 -0.758 -0.222 -0.771
VAL -1.240 -0.933 -0.673 -0.642 -0.298 -0.335 -1.118 -0.664 -0.200 -0.886
TRP -1.077 -1.145 -0.884 -0.997 -0.613 -0.624 -1.383 -0.912 -0.391 -1.278
TYR -0.892 -0.859 -0.670 -0.687 -0.631 -0.453 -1.222 -0.745 -0.349 -1.067
ALA -0.717 -0.607 -0.371 -0.323 -0.235 -0.039 -0.646 -0.327 0.196 -0.374
GLY -0.311 -0.261 -0.230 0.033 -0.097 0.443 -0.325 -0.050 0.589 -0.042
THR -0.617 -0.548 -0.463 -0.342 -0.382 -0.192 -0.720 -0.247 0.155 -0.222
SER -0.548 -0.519 -0.423 -0.260 -0.521 -0.161 -0.639 -0.264 0.223 -0.199
ASN -0.463 -0.423 -0.367 -0.253 -0.344 0.160 -0.455 -0.114 0.271 -0.018
GLN -0.342 -0.260 -0.253 0.054 0.022 0.179 -0.290 -0.042 0.334 -0.035
ASP -0.382 -0.521 -0.344 0.022 0.179 0.634 -0.664 -0.584 -0.176 0.189
GLU -0.192 -0.161 0.160 0.179 0.634 0.933 -0.324 -0.374 -0.057 0.257
HIS -0.720 -0.639 -0.455 -0.290 -0.664 -0.324 -1.078 -0.307 0.388 -0.346

ARG -0.247 -0.264 -0.114 -0.042 -0.584 -0.374 -0.307 0.200 0.815 -0.023
LYS 0.155 0.223 0.271 0.334 -0.176 -0.057 0.388 0.815 1.339 0.661
PRO -0.222 -0.199 -0.018 -0.035 0.189 0.257 -0.346 -0.023 0.661 0.129

Contact energies are reported for all amino acid pairs corresponding to the SC+CA contact definition and employing a cutoff of 1.0 Å.
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tion between energy and RMSD from native structure is
found which is much less pronounced with contact
potentials.

Evaluation of CASP4 predictive models
In order to test the chosen contact definition on a more re-
alistic fold recognition scenario we tested all accepted pre-
dictive models including sidechains atoms accepted in the
CASP4 experiment and for which the corresponding ex-
perimental structure has been solved and a link to the pdb
file could be found on the CASP4 homepage http://pre-

dictioncenter.llnl.gov/casp4/. The range of legths, mul-
timeric state and structural features of CASP4 targets is
much wider than that of decoys [32]. Also the range of
techniques used to generate the models is very wide in
methods and quality (see e. g. abstracts available at http:/
/predictioncenter.llnl.gov/casp4/). In such an experiment
it is likely to be able to obtain either from own programs
or from prediction servers a number of models and to be
in the position of having to choose the best model or
models for further study. One obvious difference with de-
coys' set tests is that it is not obvious that any native-like

Figure 4
Energy vs. RMSD for 1ctf 4state decoys The contact energy is plotted against the RMSD from native structure for native 
structure and all decoy structures with solvent accesibility parameter lower than 0.6 (see text).
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structure will be present in the ensemble of structures con-
sidered. This is indeed the case for many of the targets and
models considered here.

Therefore, rather than looking for native fold discrimina-
tion, here we are interested in discriminating plausible
(possibly native-like) structures from grossly misfolded
ones.

In order to evaluate results and simulate a real prediction
task we retained the ten lowest energy predictions which

had an accessibility parameter lower than 0.486, a value
chosen, for medium sized proteins, as a reasonable cutoff
for applicability of the methodology. In a real prediction
task, the ten lowest energy predictive models would be
candidates for evaluation with more refined fold recogni-
tion methods. The results obtained in this test are
summarized in Table 4. A prerequisite of the methodolo-
gy is obviously that the native structure should be discrim-
inated against all misfold predictive models. This is
indeed the case for 30 out of 35 targets. The exceptions
concerns: i) two out of the four NMR structures (targets 97

Figure 5
Energy vs. RMSD for 1r69 4state decoys The contact energy is plotted against the RMSD from native structure for native 
structure and all decoy structures with solvent accesibility parameter lower than 0.6 (see text).
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and 105, a putative Chaperone in dimeric form, and the
SAND domain of a DNA binding protein, respectively); ii)
the secreted frizzled protein 3 from mouse (target 106)
which presents however a rather large solvent accessibility
parameter (0.581) possibly due to its multimeric state; iii)
porcine lactoglobulin (target 123) for which low RMSD
predictions have lower contact energy possibly due to a
domain swap in the dimerization domain; iv) phospholi-
pase C beta from turkey (target 124) which presents unu-
sually long helices (more than 80 residues). One of the

lowest energy predictions, however, has also very long
helices.

Problems with NMR structures versus X-ray structures
have been repeatedly pointed out (see e. g. ref. [31]) so
that failure in native structure recognition could also be
due to artifacts in structure generation from NMR
restraints. These few examples point out the complexity of
predicting real proteins, where biological insight and
additional informations about the function, the environ-
ment, ligands and multimeric state is of utmost impor-

Figure 6
Energy vs. RMSD for 1sn3 4state decoys The contact energy is plotted against the RMSD from native structure for native 
structure and all decoy structures with solvent accesibility parameter lower than 0.6 (see text).
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tance. It should be noticed that only 15 targets had
predictions (in the selection we did) with RMSD lower
than 5 Å. For 12 out of these 15 targets a low RMSD pre-
diction (less than 5 Å) was found among the ten lowest
energy predictive models. For one of the remaining three
targets (target 90) the chosen prediction has still rather
low RMSD (6.125 Å). The other two targets (targets 120
and 124) where the method fails to recognize low RMSD
predictions are dimers where only a monomer or part of
it are modelled. For the sake of clarity the structure of the
chains to be predicted (pdb id. 1fu1 and 1jad, respective-

ly) are reported in Figures 11 and 12. Overall these results
demonstrate the capability of contact energy (correspond-
ing to the optimal contact definition) to recognize low
RMSD predictions among the lowest energy models, pro-
vided that the structure to be modelled has the typical fea-
tures of soluble globular proteins. The same results
however point out that it is difficult to assess the reliability
of the predictive models, because there is almost no corre-
lation between the energy per residue and the proximity
of the models to the native structure (when all pairs

Figure 7
Energy vs. RMSD for 2cro 4state decoys The contact energy is plotted against the RMSD from native structure for native 
structure and all decoy structures with solvent accesibility parameter lower than 0.6 (see text).
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RMSD-energy are pooled together), at least for the models
we selected from the CASP4 experiment.

Conclusions
The fold prediction problem can be divided in two parts:
the generation of alternative conformations and the esti-
mation of the stability of every available structure. The
second task is usually accomplished using structural infor-
mation available from the protein data bank. Based on the
theory of the potential of mean force, empirical contact
energies for any pair of amino acids have been derived.

Crucial to this derivation and its performance in fold rec-
ognition, are: i) the definition of contact and ii) the defi-
nition of applicability limits.

The analysis presented in this work shows that the best
definition of contact is the one involving the minimum
distance between van der Waals spheres of any two side
chain or alpha carbon atoms belonging to the two amino
acids, and employing a cutoff distance around 1.0 Å. The
performance of the proposed definition on decoys' sets is
superior to other proposed contact definitions, as far as

Figure 8
Energy vs. RMSD for 3icb 4state decoys The contact energy is plotted against the RMSD from native structure for native 
structure and all decoy structures with solvent accesibility parameter lower than 0.6 (see text).
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native structure recognition is concerned. An ad hoc de-
fined solvent accessibility parameter helps in discriminat-
ing against structures not conforming to model
assumptions.

Indeed, contact energies refer to a desolvation process and
therefore crucially depend on the solvent. Proteins that do
not show a "normal" solvent accessibility most likely do
not conform to model assumptions and have been indeed
found, by later inspection, to be associated in macromo-
lecular complexes or to be membrane proteins.

A more intriguing issue is understanding why the ap-
proach fails on short monomeric chains. A possible expla-
nation is that entropic restrictions on backbone atoms
ensuing from folding are on average different for short
chains and for larger chains from which the energy contact
table is mainly derived.

Results obtained in a real prediction scenario, like the one
set up by the CASP experiment, are twofold: first, a gross
screening (discarding approximately nine tenths of the
predictive models) can be afforded by evaluating the sol-

Figure 9
Energy vs. RMSD for 4pti 4state decoys The contact energy is plotted against the RMSD from native structure for native 
structure and all decoy structures with solvent accesibility parameter lower than 0.6 (see text).
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vent accessibility parameter and comparing the contact
energy among models; second, the correlation between
the energy per residue of a model and its similarity to na-
tive structure, if there is any, is very poor, and therefore the
reliability of the best predictive models, for each target,
cannot be assessed and more refined methods, like hybrid
molecular mechanics – implicit solvent methods should
be used in later stages of the prediction procedure.

Materials and methods
We discuss in the following sections the theoretical frame-
work, based on the potential of mean force theory [33],
which allows to define empirical contact energies from
observed statistical contact preferences [34]. This ap-
proach received several objections. One of the most seri-
ous concerns the additivity of contact energies [18]. The
general possibility of dissecting a free energy (e. g. of fold-
ing or binding) into components faces several problems
which have been clearly pointed out by Mark and van
Gunsteren [19]. One clear proof that these issues are well-

Figure 10
Energy vs. RMSD for 4rxn 4state decoys The contact energy is plotted against the RMSD from native structure for native 
structure and all decoy structures with solvent accesibility parameter lower than 0.6 (see text).
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Figure 11
Structure of target 120 in the CASP4 experiment The structure of the N-terminal domain of human DNA repair pro-
tein XRCC4 is shown (pdb id. 1fu1, chain A). The long helix is in contact with another chain in the pdb file.
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Figure 12
Structure of target 124 in the CASP4 experiment The structure of the C-terminal domain of turkey phospolipase C 
beta is shown (pdb id. 1jad, chain A). The long helix forms a coiled coil with the other chain in the pdb file.
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founded is that folding energies obtained from contact
energies are usually one order of magnitude larger than
expected. Notwithstanding all these problems contact
energies and free energy decomposition appear still suc-
cessful in many instances.

Potential of mean force and empirical contact energies
We consider a system composed by many interacting bod-
ies, which will be ultimately amino acids. The probability
that a system composed by N particles is in the state

described by coordinates  is given by:

where U is the potential energy of the system, k is Boltz-
mann constant and T is the temperature. Let us assume
that bodies 1 and 2 belong to different body types i and j,
which are represented by Ni and Nj bodies, respectively.
Then, the probability, which we assume to depend only
on the distance r, that a body of type i is at a distance r

Table 4: Summary of the results on the CASP4 accepted prediction models

target pdb id. n. res. energy s. a. par. n. models RMSD range RMSD pred. energy pred. s. a. par. pred.

86 1fw9 164 -2.46 0.278 53 13.04 – 33.26 15.79 -1.77 0.48
87 1i74 304 -2.37 0.276 61 14.71 – 49.16 16.00 -1.61 0.46
89 1e4f 378 -2.44 0.266 70 13.98 – 67.53 13.98 -1.78 0.41
90 1g0s 201 -1.84 0.530 88 4.67 – 45.25 6.12 -1.51 0.46
92 1im8 219 -2.44 0.336 84 2.92 – 32.47 2.92 -1.77 0.46
94 1fsi 179 -2.23 0.443 56 9.78 – 38.71 15.24 -1.81 0.46
95 1l7c 234 -2.09 0.384 81 9.73 – 34.10 12.86 -1.94 0.42
96 1e2x 223 -2.41 0.328 82 3.18 – 31.22 3.65 -1.60 0.46
97 1g7d 106 -1.53 0.345 136 7.92 – 18.12 9.22 -1.59 0.45
98 1fc3 119 -2.45 0.461 115 7.50 – 40.42 11.36 -2.39 0.45
100 1qjv 342 -2.24 0.294 48 10.34 – 

112.23
10.39 -1.48 0.48

102 1e68 70 -2.42 0.468 111 3.55 – 34.62 3.91 -0.60 0.46
103 1ga6 369 -2.64 0.217 67 4.38 – 71.71 4.38 -2.04 0.38
104 1fl9 157 -2.22 0.421 88 6.21 – 37.95 7.95 -1.70 0.47
105 1h5p 95 -1.29 0.462 91 6.10 – 24.11 11.99 -1.38 0.40
106 1ijx 125 -2.39 0.581 75 8.47 – 26.55 9.21 -2.76 0.48
107 1i82 189 -2.22 0.273 88 10.88 – 38.55 12.75 -1.68 0.45
108 1j83 178 -2.34 0.276 64 7.75 – 66.56 7.76 -1.54 0.47
111 1e9i 430 -2.30 0.200 92 1.60 – 81.08 1.86 -1.92 0.23
112 1e3j 350 -2.65 0.269 87 11.21 – 97.16 11.93 -2.02 0.36
113 1e3w 251 -2.27 0.342 92 2.03 – 41.72 2.40 -2.02 0.35
114 1gh5 87 -2.55 0.457 85 6.58 – 32.14 6.58 -0.58 0.37
115 1fwk 296 -2.47 0.280 56 12.16 – 59.64 18.68 -1.40 0.46
116 1ewq 746 -2.28 0.315 40 8.38 – 115.82 14.41 -1.50 0.47
117 1j90 195 -2.20 0.362 79 2.87 – 35.27 2.87 -1.68 0.38
118 1fzr 129 -1.53 0.681 80 13.72 – 26.35 18.82 -1.33 0.46
119 1krh 337 -2.50 0.309 87 2.74 – 82.93 2.88 -2.06 0.34
120 1fu1 174 -1.72 0.563 50 1.32 – 44.20 19.04 -1.15 0.31
121 1g29 372 -2.50 0.329 90 3.35 – 100.88 3.70 -1.90 0.38
122 1geq 241 -2.65 0.274 97 2.09 – 41.36 2.73 -2.08 0.39
123 1exs 160 -2.11 0.481 111 3.30 – 36.92 3.42 -2.17 0.35
124 1jad 235 -1.22 0.435 64 3.51 – 89.91 23.85 -1.25 0.47
125 1gak 137 -1.93 0.378 113 3.26 – 31.68 3.26 -1.75 0.41
126 1f35 157 -1.99 0.487 81 9.70 – 29.48 13.96 -1.23 0.47
127 1g8p 321 -2.38 0.327 74 11.15 – 67.04 17.29 -1.98 0.43

Results obtained with contact definition SC+CA with a 1.0 Å cutoff on targets in the CASP4 experiment are summarized. Columns list the target 
number, the corresponding pdb code, the number of residues, the energy per residue of the experimental structure, the solvent accessibility 
parameter of the experimental structure, the number of models considered, the range of RMSD, the RMSD of the best structural prediction 
among the ten lowest energy models, the energy per residue for the same structure and its solvent accessibility parameter.
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from a body of type j, independently of all other particles'
positions, is:

In the absence of any interaction among the bodies the
probability depends only on their density:

dPij0 = ρi0ρj0Vdr

where V is the volume,  and  are the

densities of bodies of type i and j, respectively. The ratio
between the actual and reference probability density is the
distribution function gij(r):

dPij(r) = ρi0ρj0gij(r)drV

which may be written in a form similar to a Boltzmann
distribution according to the potential of mean force
wij(r):

Conversely the potential of mean force may be expressed
as follows:

wij(r) = -kT ln gij(r)

The equation above allows one to derive the potential of
mean force from the observed distribution function over
a representative ensemble of configurations. The deriva-
tive of the potential of mean force gives the mean force,
averaged over all other degrees of freedom, between bod-
ies i and j, as can be shown taking the derivative of the
equation above.

In order to treat all interactions among amino acids in
terms of contacts we should schematize continuously var-
ying potential of mean force functions as step functions
assuming a value different from zero only in the distance
range corresponding to a contact. In order to make this
approximation in a consistent way we will introduce in
the next section the Bethe approximation.

Bethe approximation
The potential of mean force described above may be sche-
matised by a well function. For distances shorter than the
width of the well the two bodies interact and they are said
to be in contact. This is partly justified by the short-range
nature of most important interaction forces among amino
acids. The correspondence between actual and schema-
tised potential of mean force is depicted in Figure 13.

In order to define properly the depth of the well function,
once a contact distance (rcutoff) has been chosen, it is
worth to consider the contact probability

where r is a scalar expressing, for a fixed body, the distance
with any other body.

Introducing the well potential f, which is constant and
equal to W for every r between the core and cutoff radius,
the contact probability Pc can be expressed as:

It should be noted that the term ρ0∆V represents the con-
tact probability P0c in the case of no interactions other
than the repulsive ones. The equation above allows one to
calculate the well depth W from the observed contact
probability and from the reference contact probability

:

It is worth noting that the two factors affecting the refer-
ence contact probability are ρ i.e. the density of the parti-
cle considered, and ∆V i. e. the volume available for a
contact. This reference state implies that the expected
number of contacts, in the absence of interactions be-
tween amino acids, will be proportional to the amino acid
type density, i.e. their number, and the volume where a
contact is defined, i. e. the number of possible contacts,
which is often named the coordination number. A special
kind of residue must be associated to solvent, to describe
it in a way which is consistent with this framework, as we
discuss later. The above equations relate the observed con-
tact probability with the corresponding contact energy. In
order to measure contact probabilities we must sample
the most probable conformations of an ensemble of ami-
no acids (e. g. constituting a protein chain) in an efficient
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way. An ad hoc way to treat this problem is described in
the next section.

Conformational space sampling
To calculate the potential of mean force, sampling of the
conformational space is necessary for every protein, but
this operation is not possible because we only have the
native conformation for each polypeptide chain. Every
protein structure is considered to be a particular configu-
ration, more precisely the most probable one, of a system
of interacting amino acids and solvent. The probability of
a contact between amino acids of different types will be

defined based on the number of observed contacts in na-
tive conformations. This in turn requires a definition of
contact.

Definition of a contact
A contact is defined to exist only if the distance between
residues is less than a cutoff value. The distance between
residues is usually defined as the minimum distance be-
tween parts of an amino acid.

Simple distance definitions based on alpha or beta carbon
positions do not take into account differences in amino

Figure 13
Contact definition representation A schematic diagram relating contact definition to the potential of mean force is shown.
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acid shape and volume. The choice of all heavy atoms in-
cluding hydrogen-bond forming backbone atoms, on the
other hand, tends to mask amino acid contact specificity
under non-specific backbone contacts. As will be shown,
best results are obtained considering only heavy atoms of
side chains and alpha carbons.

An important approximation is neglect of the effect of
chain connectivity. Obviously contacts between residues
that are neighbours in sequence are much more frequent-
ly observed than contacts between residues separated by a
long stretch of chain. The only correction here introduced
that takes into account chain connectivity is ignoring con-
tacts between residues that are next to each other in the se-
quence: because of the peptide bond, those contacts
cannot but exist. An implicit assumption in this scheme is
that contacts between residues close in sequence show the
same preferences as residues widely separated. The matrix
of contacts, whose element i, j is 1 if there is a contact be-
tween residues i and j, and 0 otherwise, is a very compact
way to represent a protein structure independently from a
reference system. Chirality information, which is not
present in the matrix, is enforced by amino acids chirality
itself. In the following sections, we will examine how to
treat contacts with solvent whose definition is not so
straightforward.

Contacts with the solvent
Contacts with solvent molecules, often not available in
the PDB files, must be estimated indirectly. The number of
contacts established by each amino acid depends on the
nature and relative orientation of the contacting residues.
In order to get rid of the solvent contacts problem, the co-
ordination number has been estimated for non solvent ac-
cessible residues as their number of contacts. The
dependence on contacts specificity has been neglected
and average values have been used. In practice the number
of contacts, for different contact definitions, has been
plotted versus accessibility (computed using a routine of
the WHATIF program [35]) for each amino acid type. The
intercept of the regression curve at zero accessibility was
then defined as the coordination number. This procedure
increases statistical significance for all preferentially sol-
vent exposed residues, compared to just examining buried
residues. The coordination number represents the average
number of contacts made by a buried residue.

Similar to a lattice model, the coordination number estab-
lishes the number of contacts made by every residue at
any time, either with other residues or solvent (Table 5).

Because interactions among amino acids are estimated us-
ing the concept of contact, we need an analogous method
to express the interactions with the solvent: in this con-

Table 5: Amino acid coordination numbers and solvent accesibilities

Residue coord. n. am (Å2) σa (Å2)

CYS 7 6.683 10.044
MET 8 13.818 15.638
PHE 9 12.747 14.597
ILE 8 9.487 13.742
LEU 8 10.454 12.840
VAL 7 8.523 10.375
TRP 10 15.233 16.309
TYR 9 16.430 14.349
ALA 5 9.865 10.059
GLY 4 8.675 7.659
THR 6 14.775 10.542
SER 5 13.687 9.927
ASN 7 19.319 12.195
GLN 7 22.667 13.855
GLU 7 23.294 12.322
ASP 6 17.791 10.786
HIS 8 19.122 14.963

ARG 9 31.045 17.145
LYS 8 33.329 13.796
PRO 6 17.674 12.097

Coordination numbers with contact definition SC+CA with a 1.0 Å cutoff and solvent accessibility values. am is the mean accessibility and σa is the 
accessibility's standard deviation estimated for each amino acid type. am and σa values have been obtained from the file EVAACC.ACC from pro-
gram WHATIF.
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text, the concept of residue-equivalent of solvent is
defined.

We assume that the difference between the coordination
number and actual number of contacts is due to contacts
with solvent-equivalent residues. Therefore the coordina-
tion number of solvent-equivalent residue is the weighted
mean of the coordination numbers of amino acid
residues.

Reference state
In order to compute the contact energy the expected
number of contacts, assuming no preferential contacts,
must be computed. Consistent with the previous discus-
sion, the reference state is calculated considering both res-
idue representativeness and coordination number.
Similar to a lattice model, the probability that a chosen
contact involves amino acid types i and j is:

pijαNiNicNjNjc + NjNjcNiNic = 2NiNicNjNjc when i ≠ j

piiαNiNicNiNic

where Ni is the number of amino acids of type i and Nic is
the coordination number of amino acid of type i. The
probability's summation over i and j must be 1:

where k is a proportionality constant. When we introduce
the total number of contacts Nc we have:

and constant k can be estimated by:

Therefore the number of contacts in the reference state can
be estimated by the following expressions:

The number of observed and expected contacts for each
amino acid type and solvent-equivalent residue has been

computed for each protein and summed over all proteins,
thus obtaining the number of total expected and observed
contacts:

where the superscript p indicates each protein of the data-
set, which must be suitably chosen.

Selection of proteins for the construction of the dataset
Each protein is described as a collection of 20 different
amino acid's types, and the entire remaining space is as-
sumed to be aqueous solvent. Other groups, like
polysaccharides, lipids, nucleic acids and prosthetic
groups, are ignored. In this context, all non soluble pro-
teins and proteins interacting with other groups cannot be
adequately described by the model. We assume that these
proteins can be discriminated because we expect atypical
solvent exposure properties, like e.g. the presence of large
exposed areas of hydrophobic residues for membrane
proteins which are actually exposed to a lipid
environment.

For every amino acid type, typical solvent exposure is ex-
pressed in terms of mean and standard deviation of ob-
served accessibility distribution, and is provided by the
internal database of the program Whatif [35].

For a given test protein, a solvent accessibility parameter
is introduced that takes into account residue accessibilities
larger than the corresponding typical value:

where: a(i) is the accessibility observed for residue i, am(i)
is the mean accessibility estimated for the ith residue's
amino acidic type, σa(i) is the accessibility's standard de-
viation estimated for the ith residue's amino acidic type, N
is the number of amino acids and δ is the Heaviside
function.

The rationale behind this choice is that, due to the possi-
ble neglect of other molecules or groups not explicitly rep-
resented, the calculated accessibility can only
overestimate the real accessibility.

In order to perform proper statistical analysis, it is neces-
sary to avoid database information redundancy: similar to
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other works conducted on protein structures, only
proteins belonging to the list called pdb_select 25%
[36,37], released in October 2000, were considered.
Moreover, only protein's structures resolved by X-ray crys-
tallography were accepted here, and non-complete coor-
dinate sets, or sets containing non-standard aminoacids,
were rejected. The remaining 746 chains were ranked ac-
cording to the solvent accessibility parameter, and only
the arbitrary number of 500 best structures were retained,
which formed our proteins' dataset. In this way, proteins
with solvent accessibility parameter greater than 0.486
were rejected.

Empirical contact energies
Provided with energies for residue-residue, residue-sol-
vent and solvent-solvent contacts, we consider the folding
reaction starting from a completely hydrated conforma-
tion. For each contact established in the native structure
the considered reaction is

i0 + j0 → ij + 00

where i, j and 0 indicate residues of type i, j and solvent,
respectively.

A strong assumption is made here, and in similar works,
that the free energy corresponding to products and
reactants may be simply computed by adding contact po-
tential of mean force for each contact in the products and
the reactants.

Thus the corresponding free energy can be calculated by
the following formula:

where: tij is the ratio of the number of contacts observed
and the number of contacts in the reference state. Finally,
the energy of folding starting from a completely solvated
conformation is:

where i and j run on all aminoacid type. In this reaction
every amino acid contact replaces a contact with solvent
and therefore the number of newly formed contacts be-
tween solvent-equivalent residues is equal to the number
of contacts between amino acidic residues.

Alternative conformations
In order to test empirical energies for fold recognition, al-
ternative conformations must be compared and the native
conformation must be assigned a lower energy than alter-
native conformations. Chosen a test protein, alternative
conformations can be obtained essentially in two ways:
modelling the sequence to structures available from a
structural database, or producing different possible and
physically admissible conformations by means of compu-
tational methods.

As a cheap approximation to threading procedure and for
a quick test of the quality of the empirical contact energies
derived from different contact definitions, we assumed
that each sequence (truncated if necessary) in the protein
dataset could assume a conformation corresponding to
the contact matrix (or sub-matrix) of any other protein in
the dataset itself. In this procedure amino acids do not
maintain their coordination numbers, i.e. a small residue
may be assigned a large number of contacts and viceversa.
Although more clever threading procedures exist, we used
this as a gross test, reasoning that in this non optimal nor
refined superposition, the native contact matrix must have
a much lower energy than any other contact matrix. Thus
good discrimination in this gross test is a preliminary
minimal requirement for any empirical contact energy
table.

Contrary to this procedure, when alternative contact maps
are derived from alternative structures, for a given protein
chain, produced by computational methods, the sequence
– contact matrix superposition will be always properly
performed. In these more accurate tests, alternative con-
formations have been referred to as decoys. The sets of de-
coys employed here are freely available from the URL
http://dd.stanford.edu. Here, we used four different sets
of decoys, which are called misfold [25], 4state_reduced
[5], lmds [Kesar and Levitt, unpublished] and fisa_casp3
[38]. In the following, the first and last sets, respectively,
will be simply referred to as 4state and casp3.

The misfold set contains a single decoy for 26 chains ob-
tained by gapless threading of the sequence onto another
structure. Side chains have been placed using a Monte
Carlo annealing procedure in rotamer space using an
atom-atom simple potential. Native and decoy structures
may have radically different secondary structures, which
may conflict with local propensities.

The 4state decoy set includes ca. 650 decoys for each of
seven small proteins. The decoys have been generated im-
posing to each residue one out of four allowed conforma-
tions. For ten ("hinge") residues all conformations have
been generated, for all other residues the best one fitting
to local structure have been used. The very large set thus
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obtained has been filtered using steric and compactness
criteria and the best scoring decoys (using a variety of scor-
ing functions) have been retained. These decoys retain lo-
cal secondary structures, have compactness typical of
native proteins and contain a large number of decoys with
low RMSD from native structure.

The local minima decoy set (lmds) includes ca. 450 alter-
native conformations for each of 11 proteins. This set has
been generated randomizing the torsional angles of loop
regions and by minimization in torsion angle space using
an energy function which entails atom-atom interactions
and additional terms that promote compactness and for-
mation of secondary structure. In most cases native struc-
ture could be distinguished from decoys using the solvent
accessibility parameter.

The casp3 decoy set includes ca. 1400 decoys for each of 4
proteins generated by ab initio fragment assembly using
fragments with similar local sequences. Most of the mod-
els have solvent accessibility parameter values higher than
native structure.

The detailed description of all these decoys and additional
references are available from the URL: http://dd.stan-
ford.edu

Evaluation of discrimination power
The energy distribution assigned to different alternative
conformations is analysed through two different parame-
ters, subsequently described.

For a given sequence, alternative contact matrices are
ranked according to the corresponding energies. The rank
score is the rank position of the native matrix. Thus if the
energy corresponding to the native matrix is the lowest
one, the rank score assumes value 1.

A good fold recognition system is able not only to dis-
criminate the native conformation, assigning to it the low-
est energy, but also to separate it in a clearcut way from
other non-native conformations. The energy distribution
is characterised by a mean and a standard deviation,
which are used to estimate the extent of such a separation.
The z-score is defined (a minus sign is introduced here,
compared to standard definitions) as the distance of the
energy of the native conformation from the average ener-
gy measured in standard deviation units:

The more positive is the value of the z-score, the greater is
the separation of the native conformation from the alter-
native ones.

The z-score has been used in recent years to derive and as-
sess the quality of potentials for protein folding (see e.g.
[39–41]).
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