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Abstract
Background: A potential benefit of profiling of tissue samples using microarrays is the generation
of molecular fingerprints that will define subtypes of disease. Hierarchical clustering has been the
primary analytical tool used to define disease subtypes from microarray experiments in cancer
settings. Assessing cluster reliability poses a major complication in analyzing output from clustering
procedures. While most work has focused on estimating the number of clusters in a dataset, the
question of stability of individual-level clusters has not been addressed.

Results: We address this problem by developing cluster stability scores using subsampling
techniques. These scores exploit the redundancy in biologically discriminatory information on the
chip. Our approach is generic and can be used with any clustering method. We propose procedures
for calculating cluster stability scores for situations involving both known and unknown numbers of
clusters. We also develop cluster-size adjusted stability scores. The method is illustrated by
application to data three cancer studies; one involving childhood cancers, the second involving B-
cell lymphoma, and the final is from a malignant melanoma study.

Availability: Code implementing the proposed analytic method can be obtained at the second
author's website.

Background
Due to the advent of high-throughput microarray technol-
ogy, scientists have conducted global molecular profiling
studies in cancer [1–3]. One of the scientific goals of these
experiments is the discovery of disease subtypes defined
by the gene expression data that are more predictive of
clinical outcomes (disease recurrence, survival, disease-
free survival, etc.) than usual clinical correlates. Develop-
ment of such a molecular classification system can poten-
tially lead to more tailored therapies for patients as well as
better diagnostic procedures.

Hierarchical clustering has been an important tool in the
discovery of disease subtypes in microarray data [4]. Such

procedures typically output a dendrogram that groups
samples. Determining the reliability of clustering proce-
dures poses a major problem in the interpretation and
analysis of microarray data.

One important related question is estimating the true
number of clusters in a dataset so that clusters which arise
due to random chance can be separated from those which
represent "true" clusters. The null hypothesis that is being
tested here is that of no structure in the data. This is often
referred to as a global hypothesis of clustering. Several
methods have addressed this issue: these include the pro-
posals of Hartigan [5], Krzanowski and Lai [6], Tibshirani
et al. [7], Ben-Hur et al. [8] and Dudoit and Fridlyand [9].
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In addition, there have been alternative clustering meth-
odologies developed for microarray data [10,11]. Still
more work has been done on assessing the validity of a
clustering procedure based on the jackknife [12] and
bootstrap methods [13].

A second hypothesis of interest in clustering problems is
testing to determine if particular clusters found represent
reliable clusters. In contrast to the global test of clustering
described in the previous paragraph, inference regarding
particular clusters is local in nature. There has been some
recent work focused on assessing the local reliability of
clusters [14,15]. While the global and local hypotheses
involve clustering are different, it is obvious that the par-
ticular clusters found depend on the number of clusters
one determines to be in the dataset.

In most microarray studies, the number of samples pro-
filed is much smaller than the number of genes and ESTs
represented on the chip. Due to the number of elements
spotted on the microarray, it is reasonable to assume that
there is redundant information available on them. Conse-
quently, if we cluster samples based on a subset of the
spots on the microarray, stable clusters should be repli-
cated on average. This statement heuristically describes
our approach to assessing the reliability of clustering anal-
yses of microarray data. It involves performing sensitivity
analyses using random subspace methods. The approach
is relatively generic and can be applied to any clustering
algorithm. We will focus primarily on hierarchical cluster-
ing since that is the technique used most often in the anal-
ysis of microarray data. While we are primarily interested
in clustering samples, these methods can be utilized for
clustering genes as well. These techniques have been
examined for supervised learning problems [16]; their
application to clustering techniques appears to be novel.
The issue addressed in this paper is separate from estimat-
ing the number of clusters in a dataset. However, the two
problems are related; in particular, the sensitivity meas-
ures we develop depend on the number of clusters. In Sys-
tem and Methods, we describe the data used, outline
hierarchical clustering and summarize the procedure of
Ben-Hur et al. [8] for estimating the number of clusters.
Two approaches are taken in this paper. For the first, we
assume that the number of clusters is known; sensitivity
measures using random subspace methods are calculated.
In the second situation, the number of clusters is
unknown. We address this problem by proposing a two-
stage procedure in which the number of clusters is esti-
mated at the first stage and sensitivity measures are calcu-
lated at the second. These techniques are described in
Systems and methods and compared with the methods
of McShane et al. [14] and Tibshirani et al. [15]. We have
programmed our procedures in the R language; in Imple-
mentation, we discuss the software. We use these meth-

ods to re-analyze three publicly available datasets in the
literature: a childhood cancer study [3], a B-lymphoma
study [2], and a cutaneous melanoma study [1]. These
analyses are summarized in Results. Finally, in Discus-
sion, we make some concluding remarks.

Systems and methods
Data and clustering procedures
We will let x1, ..., xn denote the p-dimensional vectors of
gene expression profiles; n is the number of samples pro-
filed. In what follows, we assume that the data have been
preprocessed and normalized. Thus, our procedures work
with both oligonucleotide and cDNA microarrays.

Since we will be primarily applying our methods to hier-
archical clustering procedures, we briefly summarize the
method here.

Hierarchical clustering
To implement the standard method for the analysis of
gene expression data from microarray experiments, one
first constructs a similarity measure for each pair of
objects. Some examples are given in Table 1. Clustering is
based on a pairwise distance matrix between objects,
where distance is defined to be one minus the association
measure.

Hierarchical clustering methods fall into two classes:
agglomerative nesting methods and divisive analysis
methods [17]. Agglomerative nesting algorithms proceed
in the same general manner: begin with n singleton clus-
ters; the closest pair of distinct clusters is found and
merged, leaving (n - 1) singleton clusters and one cluster
with two distinct objects; the dissimilarity matrix is
updated to take into account the merging that has
occurred; based on the new dissimilarity matrix, the two
closest distinct clusters are found and merged; iterate until
one cluster consisting of all n objects remains.

The opposite to agglomerative nesting is a divisive analy-
sis approach. Heuristically, the algorithm begins with one
cluster of n objects. The object in the cluster that has the
greatest dissimilarity to the other elements (the seed) is
then separated to form a so-called splinter group and the
remaining elements in the original cluster are examined to
see whether or not additional elements should be added
to the splinter group. Two clusters result. The diameter of
each cluster (the largest distance between observations in
the same cluster) is then computed to see which one is
greater. The steps above are repeated with the cluster that
has the greater diameter. Iterate until there are n singleton
clusters. The distance for separate clusters can be defined
based on average linkage or one of the other methods
described above.
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The algorithms described are a fraction of the available
methods for clustering gene expression data. Other tech-
niques that have been used include self-organizing maps,
minimal spanning trees, spectral analysis and k-means
clustering. While the methods described in this paper can
be used with any of these clustering procedures, we focus
on hierarchical clustering due to its popularity and to
facilitate comparisons with other proposals.

Estimating number of clusters
In the Algorithm section, we discuss a two-stage proce-
dure for performing sensitivity analysis of clustering out-
put when the number of clusters is not fixed a priori. The
method involves estimating the number of clusters at the
first stage and then computing random subspace-based
sensitivity measures at the second stage. We looked at the
literature for the various proposals of estimating the
number of clusters. Based on our experience with real
datasets, the best performance seemed to be given by the
method of Ben-Hur et al. [8]. We now briefly describe
their procedure. It should be pointed out that our
approach is relatively generic and that any method for
estimating the number of clusters can be used in the first
stage.

In the approach of Ben-Hur et al. [8], the samples are par-
titioned into k clusters. We then rerun the clustering algo-
rithm based on the subsampling a fraction of the samples
and group the subsamples into k clusters. We then com-
pute a similarity index of the subsamples, the correlation
coefficient between the clusters for the resampled data
with those for the original data based on the definition
given by Fowlkes and Mallows [18]. We repeat this several
times to get a histogram of correlation coefficient values.
We then vary k and redo the procedure.

Algorithm
Random subspace methods for known number of clusters
In this section, we assume that the number of clusters is
known to be some number, say K. Thus, the samples {1,2,
..., n} are partitioned into K sets A1, ..., AK. To apply the
random subspace, we randomly choose a subset D of the
indices {1,2, ..., p}, where the cardinality of D is d; We the
choice of d is discussed later. We then create a new dataset

, where  is the d-dimensional subvector of xi (i

= 1, ..., n). We create a new dissimilarity matrix based on

the , i = 1, ..., n and rerun the hierarchical clustering

procedure. The resulting dendrogram is cut into K clusters,

. We then check to see if Ai ⊂  for i, j = 1, ...,

K. The random subspace selection is repeated B times. For
each of the original sets A1, ..., AK, we compute the propor-
tion of B samples in which the set appears. This is our sen-
sitivity measure. If the value is close to 1, then this
evidence that the cluster is stable. On the other hand, if
the proportion is small, then this provides less evidence of
the stability of the cluster.

These sensitivity measures will depend on the choice of d.
Larger values of d tend to yield larger sensitivity measures
while the converse holds for small d. Our experience has
been to choose d to be within between .75 and .85 times p.

While we have presented the procedure from a purely
algorithmic point of view, there is some theoretical justi-
fication for our procedure. Since we are computing pro-
portions based on B random subsets of (1, ..., p), the
sensitivity measure can be thought as a probabilistic
quantity that is averaged over B models. This provides an
analogue of stacking or combining models [19,20] for
unsupervised learning. It might be also possible to
calculate sensitivity measures that average both over d as

Table 1: Distance measures used for hierarchical cluster analysis

Name d(xi,xj)

Euclidean

Manhattan

Canberra

Maximum max1≤k≤p|xik-xjk|
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well as over subsets of (1, ..., p), but we will not pursue
that here.

It is obvious that the criteria Ai ⊂  (i, j = 1, ..., K) will

favor smaller clusters. We will also calculate a size-
adjusted cluster stability score. If Pi represents cluster sta-
bility score for the ith cluster (i = 1, ..., K), then the size-

adjusted score is , where Ci = 1/(ln|Ai| + 1), |Ai| is the

size of the ith cluster, and ln(x) represents the natural log-
arithm of x. For two given clusters that have the same
unadjusted cluster stability score, the adjusted cluster sta-
bility score will be greater for that with the larger number
of clusters.

Random subspace methods for unknown number of clusters
Having developed a method for using random subspace
techniques in, we can summarize our method when the
number of clusters is not known a priori by the following
two-stage method. First, we estimate the number of clus-
ters at the first stage using the method of Ben-Hur et al.
(2002). Next, conditional on the number of clusters esti-
mated at the first stage, use the random subspace method
developed in the previous section for calculating the sen-
sitivity measures of the K* clusters.

Comparisons with other proposals
Two other techniques for assessing the reliability of indi-
vidual clusters are R-index procedure of McShane et al.
[14] and the cluster scoring method of Tibshirani et al.
[15]. We now compare and contrast our method with
these two works.

A recent paper by McShane et al. [14] describes the appli-
cation of the R-index [18] for inference regarding the local
hypothesis of clustering. Note that we use the R-index for
addressing the problem of number of clusters, which is
the global hypothesis of clustering. The authors create
new datasets based on adding independent normal ran-
dom errors to the original dataset and then determine the
proportion of pairs of specimens within the original clus-
ter for which the members of pairs stay together in the re-
clustered perturbed dataset. While the method bears some
relationships with ours, there are several operational dif-
ferences. First, their method requires adding independent
noise to the original data. By contrast, our method
involves subsampling genes from the expression profiles.
Second, while they use the overall experimental variance
for data perturbation, this choice is relatively ad hoc. Our
method requires no specification of added error variance.
Furthermore, the added noise in their procedure is inde-
pendent across genes, which is not a biologically plausible
assumption. Our procedure avoids such independence
assumptions.

In the method of Tibshirani et al. [15], a hierarchical clus-
tering is performed on the genes. The average gene expres-
sion profile in each cluster is associated with a clinical
response. A set of winning clusters is then found, and per-
mutation methods are used to assess the reliability of the
winning clusters. One fundamental difference between
our method and that of Tibshirani et al. [15] is that their
method requires a clinical outcome. Their goals is to cor-
relate gene expression patterns with a response, and a by-
product of their procedure is a score associating each clus-
ter with the clinical response. Our procedure, by contrast,
does not require a clinical response and can be used on
the gene expression data only.

Implementation
We have written macros in R for implementing the meth-
ods we have proposed for genes and samples. They are
obtainable from the second author's website at the follow-
ing URL: http://www.sph.umich.edu/~ghoshd/COMP
BIO/.

Results
We now discuss the application of the proposed method-
ology to three microarray datasets: one from a childhood
cancer study [3], one from a lymphoma study [1] and the
final is from a cutaneous melanoma study [2].

For each dataset, the Ben-Hur et al. [8] algorithm was
applied to hierarchical cluster solutions obtained using
average and complete-linkage upon standardization of
gene expression values. At each iteration of the algorithm,
two data subsets were created by randomly selecting 65%
of the available samples. Correlations between the cluster
designations for the members of each subset pair were cal-
culated using the Jaccard co-efficient. For each cluster
number, k, considered, 100 correlations were computed
and the distribution of correlation coefficients was
mapped. The distributions obtained for various cluster
numbers were compared to determine the best estimate of
the true number of clusters. In instances for which the true
number of clusters was not obvious, both visual inspec-
tion of the original dendrogram and examination of the
result obtained using the other linkage method for that
dataset were considered.

After estimating the true number of clusters, we then cal-
culated cluster stability scores using d = 0.85 p, 0.75 p, 0.5
p and 0.25 p, where p is the number of genes. For each set-
ting, B = 100 cluster trials were performed. Both unad-
justed and cluster size-adjusted scores were calculated.

In the Khan dataset, gene expression values were meas-
ured for p = 2308 genes on a total of n = 89 subjects. For
these data, application of the Ben-Hur et al. [8] algorithm
in addition to other methods described above resulted in

A j
*

pi
Ci
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estimates of five and seven for the number of clusters in
the average- and complete-linkage solutions, respectively.
To account for the presence of three singletons, the den-
drogram for the average-linkage solution was cut at k = 8
to ensure five non-singleton clusters. The results of ran-
dom gene subset clustering using average-linkage are
shown in Table 2. Similarly, results from the analysis of
the complete-linkage solution are presented in Table 3.
The average linkage clustering method finds a cluster of 66
childhood cancers which contains cancers of different
sites of origins, so it is not very meaningful clinically. Sim-
ilarly, the clustering results from the complete linkage
analyses do not suggest the presence of any meaningful
clusters, although the cluster of seven samples with a high
stability score are from the same tumor type (Ewing
sarcoma).

In the Alizadeh dataset, data were available on n = 96 sam-
ples for whom gene expression values on p = 4026 differ-
ent genes were measured. Application of the Ben-Hur et
al. [8] methodology to the average-linkage solution sug-
gested the presence of eight true clusters in the data. A sim-
ilar estimate was assumed for the complete-linkage
solution since no conclusive result was obtained. In both
instances, the dendrograms were cut at larger values of k
to account for the presence of singletons (eight and five
for the average and complete-linkage results, respec-

tively). Tables 4 and 5 display the cluster stability scores
for the average and complete linkage analyses, respec-
tively. The cluster 2 found in both analyses is the same or
contains the cluster of diffuse large B-cell lymphoma iden-
tified by Alizadeh et al. [1].

The Bittner dataset contained data on n = 31 samples for
whom gene expression measurements on p = 3613 genes
were used. Application of the Ben-Hur et al. (2002)
method in conjunction with visual inspection yielded an
estimate of four true clusters for both the complete-link-
age clustering solution. This estimate was also used for the
average-linkage solution since no conclusive result was
obtained. To account for the presence of singletons, den-
drograms were cut at k = 5 and k = 8, respectively. Results
of random gene subset clustering for both solutions are
presented in Tables 6 and 7. While the average linkage
results suggest that the melanoma cluster of Bittner et al.
[2] should be expanded to include two samples (Cluster 1
in Table 7), this cluster is not found using complete link-
age. In addition, the stability of the cluster drops off with
decreasing numbers of genes.

Discussion
In this paper, we have developed an approach to statistical
validation of clustering results based on subsampling
methods. One of the advantages of this approach is that it

Table 2: Cluster stability scores for Khan et al. [3] data

Cluster

Gene % 1 2 3 4 5

85 0.12 (0.66) 0.63 (0.82) 0.29 (0.66) 0.87 (0.95) 1.00 (1.00)
75 0.07 (0.59) 0.56 (0.78) 0.23 (0.61) 0.86 (0.95) 1.00 (1.00)
50 0.03 (0.51) 0.31 (0.61) 0.07 (0.41) 0.85 (0.95) 0.97 (0.98)
25 0.00 (0.00) 0.10 (0.38) 0.03 (0.30) 0.58 (0.83) 0.88 (0.93)

Note: Average linkage hierarchical clustering used here. The sizes of clusters 1–5 are 66,4,7,7 and 2, respectively. Gene % represents percentage 
(out of 100) of p = 2308 genes used for calculating cluster stability scores. Numbers in parentheses represent cluster size-adjusted stability scores.

Table 3: Cluster stability scores for Khan et al. [3] data

Cluster

Gene % 1 2 3 4 5 6 7

85 0.63 (0.89) 0.53 (0.83) 0.04 (0.43) 0.79 (0.92) 0.15 (0.64) 0.67 (0.87) 0.62 (0.7)
75 0.61 (0.88) 0.42 (0.77) 0.02 (0.37) 0.71 (0.88) 0.04 (0.47) 0.64 (0.86) 0.60 (0.7)
50 0.17 (0.64) 0.05 (0.41) 0.00 (0.00) 0.31 (0.66) 0.01 (0.33) 0.36 (0.71) 0.69 (0.8)
25 0.06 (0.49) 0.01 (0.26) 0.00 (0.00) 0.14 (0.49) 0.00 (0.00) 0.21 (0.59) 0.47 (0.6)

Note: Complete linkage hierarchical clustering used here. The sizes of clusters 1–7 are 19, 11, 18, 6, 26, 7 and 2, respectively. Gene % represents 
percentage of p = 2308 genes used for calculating cluster stability scores. See note to Table 2.
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Table 4: Cluster stability scores for Alizadeh et al. [1] data

Cluster

Gene % 1 2 3 4 5 6 7 8

85 1.00 (1.00) 0.19 (0.70) 1.00 (1.00) 0.39 (0.64) 0.42 (0.75) 1.00 (1.00) 0.99 (0.99) 1.00 (1.00)
75 1.00 (1.00) 0.12 (0.70) 0.99 (1.00) 0.35 (0.61) 0.44 (0.76) 1.00 (1.00) 0.92 (0.95) 1.00 (1.00)
50 0.97 (0.99) 0.11 (0.62) 0.95 (0.99) 0.28 (0.55) 0.34 (0.69) 1.00 (1.00) 0.73 (0.83) 0.84 (0.90)
25 0.90 (0.95) 0.02 (0.43) 0.77 (0.94) 0.08 (0.30) 0.37 (0.71) 1.00 (1.00) 0.41 (0.59) 0.63 (0.76)

Note: Average linkage hierarchical clustering used here. The sizes of clusters 1–8 are 3, 40, 26, 3, 7, 5, 2 and 2, respectively. Gene % represents 
percentage of p = 4026 genes used for calculating cluster stability scores. See note to Table 2.

Table 5: Cluster stability scores for Alizadeh et al. [1] data

Cluster

Gene % 1 2 3 4 5 6 7 8

85 0.98 (0.99) 0.19 (0.70) 0.98 (0.99) 0.72 (0.87) 0.99 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
75 0.89 (0.96) 0.10 (0.61) 0.95 (0.99) 0.57 (0.79) 0.92 (0.96) 0.98 (0.99) 1.00 (1.00) 0.98 (0.99)
50 0.62 (0.86) 0.08 (0.59) 0.71 (0.90) 0.36 (0.65) 0.75 (0.87) 0.82 (0.93) 0.97 (0.99) 0.88 (0.97)
25 0.35 (0.71) 0.03 (0.48) 0.49 (0.81) 0.13 (0.43) 0.53 (0.74) 0.66 (0.86) 0.82 (0.91) 0.72 (0.92)

Note: Complete linkage hierarchical clustering used here. The sizes of clusters 1–8 are 8, 41, 11, 4, 3, 6, 3 and 15, respectively. Gene % represents 
percentage of p = 4026 genes used for calculating cluster stability scores. See note to Table 2.

Table 6: Cluster stability scores for Bittner et al. [2] data

Cluster

Gene % 1 2 3 4

85 0.09 (0.48) 0.98 (0.99) 0.09 (0.49) 0.52 (0.73)
75 0.03 (0.35) 0.90 (0.96) 0.04 (0.39) 0.47 (0.70)
50 0.03 (0.35) 0.71 (0.88) 0.03 (0.36) 0.34 (0.60)
25 0.00 (0.00) 0.48 (0.77) 0.01 (0.26) 0.28 (0.55)

Note: Complete linkage hierarchical clustering used here. The sizes of clusters 1–4 are 10, 6, 11, and 3, respectively. Gene % represents 
percentage of p = 3613 genes used for calculating cluster stability scores. See note to Table 2.

Table 7: Cluster stability scores for Bittner et al. [2] data

Cluster

Gene % 1 2 3 4

85 0.47 (0.83) 1.00 (1.00) 0.29 (0.28) 0.16 (0.34)
75 0.36 (0.78) 1.00 (1.00) 0.34 (0.53) 0.09 (0.24)
50 0.14 (0.62) 0.98 (0.99) 0.44 (0.62) 0.06 (0.19)
25 0.07 (0.52) 0.87 (0.90) 0.33 (0.52) 0.05 (0.17)

Note: Average linkage hierarchical clustering used here. The sizes of clusters 1–4 are 21, 2, 2, and 2, respectively. Gene % represents percentage 
of p = 3613 genes used for calculating cluster stability scores. See note to Table 2.
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exploits the fact that in microarray experiments, the
number of spots on the chip is greater than the number of
samples profiled. By subsampling the spots on the chip,
we are able to determine which clusters are relatively sta-
ble on average. It is important to note that an assumption
being made is that there is sufficient correlation on the
spots with respect to discriminating between clustered
samples. For example, if only one gene on a 10 K chip dis-
criminates two cancer subtypes, then the approach
described here might give misleading results. However,
given the fact that cancer is a complex trait, it is highly
unlikely that all discriminatory information will be avail-
able in one gene.

Based on the cluster stability score method, we revisited
several datasets from cancer studies to explore the stability
of clustered samples. The main point of the analyses was
to demonstrate the ability of our method to provide a
measure of stability for the clusters that were found. In
certain cases, the analyses helped confirm was what found
in the previous analyses, while in other cases, they led to
clinically nonmeaningful results. These results demon-
strate the potential pitfalls of clustering analyses [21].

In many cancer studies, there are additional clinical cov-
ariates (e.g., survival time, PSA recurrence) available. One
potential method of more formal biological validation is
to combine the clustering methodology with correlation
of the subsequent output to these covariates. Such an
approach was taken in Tibshirani et al. [15]. Due to the
variability in gene expression data, it may be potentially
desirable to incorporate clinical knowledge into such clus-
tering analyses.
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