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Abstract
Background: When analyzing protein sequences using sequence similarity searches, orthologous
sequences (that diverged by speciation) are more reliable predictors of a new protein's function
than paralogous sequences (that diverged by gene duplication). The utility of phylogenetic
information in high-throughput genome annotation ("phylogenomics") is widely recognized, but
existing approaches are either manual or not explicitly based on phylogenetic trees.

Results: Here we present RIO (Resampled Inference of Orthologs), a procedure for automated
phylogenomics using explicit phylogenetic inference. RIO analyses are performed over bootstrap
resampled phylogenetic trees to estimate the reliability of orthology assignments. We also
introduce supplementary concepts that are helpful for functional inference. RIO has been
implemented as Perl pipeline connecting several C and Java programs. It is available at  [http://
www.genetics.wustl.edu/eddy/forester/] . A web server is at  [http://www.rio.wustl.edu/] . RIO was
tested on the Arabidopsis thaliana and Caenorhabditis elegans proteomes.

Conclusion: The RIO procedure is particularly useful for the automated detection of first
representatives of novel protein subfamilies. We also describe how some orthologies can be
misleading for functional inference.

Background
Accurate computational protein function analysis is an
important way of extracting value from primary sequence
data. Due to the large amount of data, automated systems
seem unavoidable (at least for initial, prioritizing steps).
Such efforts are complicated, for a variety of reasons.
Many proteins belong to large families, as suggested by
Dayhoff [1]. Such families are often composed of sub-
families related to each other by gene duplication events.
For example, Ingram [2] showed that human α, β, and γ
chains of hemoglobins are related to each other by gene
duplications. Gene duplication allows one copy to as-

sume a new biological role through mutation, while the
other copy preserves the original functionality [3,4].
Hence, subfamilies often differ in their biological func-
tionality yet still exhibit a high degree of sequence similar-
ity.

Other complications in functional analysis include: ignor-
ing the multi-domain organization of proteins; error
propagation caused by transfer of information from previ-
ously erroneously annotated sequences; insufficient
masking of low complexity regions; and alternative splic-
ing [5].
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Typically, automated sequence function analysis relies on
pairwise sequence similarity and programs such as BLAST
[6] or FASTA [7]. Annotating a sequence by transferring
annotation from its most similar sequence(s) tends to
produce overly specific annotation. In contrast, analyses
using profile search algorithms such as HMMER  [http://
hmmer.wustl.edu/]  and Pfam [8] classify sequences too
generally. They recognize that a query sequence belongs to
a certain family (or, to be more precise, indicate which do-
main(s) the query is likely to contain), but do not subclas-
sify the sequence.

At least two scenarios can cause misleading predictions
when using pairwise sequence similarity alone for anno-
tation: (i) not having a known annotated representative of
the correct subfamily because incomplete sequence data-
bases and/or gene loss (Figure 1), and (ii) unequal rates of
evolution (Figure 2). The case of trying to annotate the
first (or only) representative of a novel subfamily is of par-

ticular interest. Pairwise similarity based methods alone
cannot recognize that a new sequence does not belong in
any currently known subfamily (e.g. "orphan" G-protein
coupled receptors), because every sequence is most simi-
lar to something. In contrast, when constructing a phylo-
genetic tree, this case is easy to observe (as illustrated in
Figure 1). A human annotator can use phylogenetic tree
analysis to place a new sequence in the subfamily struc-
ture of a gene tree of known sequences. This approach was
called "phylogenomics" by Eisen [9]. It would be desira-
ble to automate this procedure, but the best automated
methods for subfamily annotation, such as the COGs da-
tabase [10], are clustering methods that do not directly
use phylogenetic analysis.

It is infeasible to completely automate functional analysis,
because it is impossible to precisely define what protein
"function" means. However, a principle of phylogenom-
ics is that orthologous sequences (that diverged by speci-
ation) are more likely to conserve protein function than
paralogous sequences (that diverged by gene duplica-
tion). Orthology and paralogy are well defined and can be
inferred from gene and species trees. One useful and au-
tomatable phylogenomics approach would be as follows:
if a novel sequence has orthologs, annotation can be
transferred from them (as in best BLAST analysis); if there
are no orthologs, the sequence is classified as just a family
member (as in Pfam/InterPro analysis) and flagged as
possibly the first representative of a novel subfamily. At

Figure 1
Over annotation due to database bias or gene loss
under equal rates of evolution Species harboring the
sequences are indicated. Two cases are depicted. In A, the
query sequence belongs to the "Y" subfamily which can be
correctly inferred by both sequence similarity and phyloge-
netic tree based methods (in situation A, the query is most
similar to "Y" of rat and mouse). In short, in situation A,
orthology and "most similar" do (partially) overlap. In B, a sit-
uation is depicted where the query is actually a member of a
third subfamily "X" but this can only be inferred by consider-
ing the evolutionary history of this sequence family. Sequence
similarity based methods would misleadingly indicate that this
query belongs to "Y" since it is most similar to "Y" in rat,
mouse and wheat. In short, in situation B, orthology and
"most similar" do not correspond. Observe that if there
would have been already members of "X" in the database (no
gene loss and complete sampling) the query in B could have
been correctly determined to belong to a "X" subfamily
(under equal rates of evolution).
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Figure 2
Over annotation due to unequal rates of evolution
Sequence similarity based methods would indicate that the
query is a member of the "Z" subfamily. Phylogenetic tree
based methods correctly identify it as a member of subfamily
"Y".
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the core of such approaches stands therefore the distinc-
tion between orthologs and paralogs, and hence the abil-
ity to discriminate between duplication and speciation
events on a gene tree. Various efficient algorithms to infer
gene duplications on a gene tree by comparing it to a spe-
cies tree have been described (for example: by Eulenstein
[11], and by Zhang [12]). We developed a simple algo-
rithm (named SDI for Speciation Duplication Inference)
that appears to solve this problem even more efficiently
on realistic data sets, though it has an asymptotic worst-
case running time that is less favorable [13].

In practice, phylogenetic trees are unreliable. Errors in
trees will produce spurious inferred duplications. This is
obviously problematic if duplications are to be used as in-
dicators of potential functional changes. Therefore, in-
stead of determining the orthologs of a query sequence on
just one gene tree, inference could be performed over
bootstrap resampled gene trees [14,15] to estimate of the
reliability of the assignments. Here we describe and test a
procedure – RIO (for Resampled Inference of Orthologs)
– which allows to perform such analyses in an automated
fashion. We present results of using RIO to analyze a plant
(A. thaliana[16]) and an animal (the nematode C. ele-
gans[17]) proteome.

Algorithm
Definitions
Orthologs are defined as two genes that diverged by a spe-
ciation event. Paralogs are defined as two genes that di-
verged by a duplication event [18]. Other concepts
derived from gene trees can be useful for functional pre-
diction. We introduce and justify three such concepts
("super-orthologs", "ultra-paralogs", and "subtree-neigh-
bors"):

Careless use of orthology relationships without examin-
ing the tree itself can lead to incorrect annotations. In the
example shown in Figure 3A, the human query sequence
has two orthologous sequences in wheat. These two wheat
sequences are related to each other by a gene duplication
and one (or even both) of them might have undergone
functional modification after their divergence. Given a
procedure that gave a list of orthologues for the human
gene query, such situations should be revealed by only
partial (or complete absence of) agreement between the
annotations of the wheat orthologs. Now consider the sit-
uation in Figure 3B. This is trickier, since in this case only
one ortholog will be reported for the query sequence, but
it will be just as dangerous to transfer annotation. We do
not attempt to solve this problem (the solution is careful
manual analysis of the gene tree) but an automated pro-
cedure can warn that this situation might be present. For
this purpose we introduce the concept of "super-or-
thologs":

Definition 1. Given a rooted gene tree with duplication or
speciation assigned to each of its internal nodes, two se-
quences are super-orthologous if and only if each internal
node on their connecting path represents a speciation
event.

Hence, the query sequences in Figure 3 have no super-or-
thologs. In contrast, the rat, mouse, and wheat sequences
in Figure 1A are super-orthologs pf the human query se-
quence. By definition, the super-orthologs of a given se-
quence are a subset of its orthologs.

Certain sequences underwent multiple recent duplica-
tions, resulting in large species specific sequence families,
such as the C. elegans seven-transmembrane proteins act-
ing as odorant and chemosensory receptors [19,20]. For
query sequences belonging to such sequence families, or-
thologs (if present) are less effective for predicting specific
information. In these cases, paralogs of the same (sub)
family might be more informative for functional predic-
tion (as long as the duplications indeed happened "late"
in evolutionary times). To formalize this, we introduce
the concept of "ultra-paralogs":

Definition 2. Given a rooted gene tree with duplication or
speciation assigned to each of its internal nodes, two se-
quences are ultra-paralogous if and only if the smallest
subtree containing them both contains only internal
nodes representing duplications.

Figure 3
The reasons for introducing super-orthologs Examples
of how inferring the biological role of a query sequence by
simply transferring functional annotation from a orthologous
sequence might lead to inaccuracies. These potential pitfalls
lead us to introduce the concept of super-orthologs (Defini-
tion 1).
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Figure 4 illustrates the concept of ultra-paralogs. It follows
from definition 2 that two ultra-paralogous sequences
must occur in the same species.

Often, researchers construct a gene tree and then infor-
mally use "subtrees" (clades) to make inferences about se-
quences (without regard to duplications and speciations).
We introduce this concept into our procedure as well, for-
malized as "subtree-neighbors" (illustrated in Figure 5):

Definition 3. Given a completely binary and rooted gene
tree, the k-subtree-neighbors of a sequence q are defined as
all sequences derived from the k-level parent node of q, ex-
cept q itself (the level of q itself is 0, q's parent is 1, and so
forth).

Subtree-neighbors can be useful if there is (partial) agree-
ment among their annotations (for example: if the sub-
tree-neighbors of a query are NAD+-dependent isocitrate
dehydrogenase and NADP+-dependent isocitrate dehy-
drogenase we can suppose that the query is likely to be a
isocitrate dehydrogenase, but it is not possible to deter-

mine whether it is dependent on NAD+ or NADP+). If the
subtree-neighbors lack any agreement in their annota-
tions a useful inference is not possible (see [9] for a more
detailed discussion). Furthermore, orthologs that are not
also subtree-neighbors can be misleading (for a more de-
tailed discussion of this, see below, and see Figures 10 and
11 for examples).

The RIO procedure
This basic RIO procedure is as follows. For a simple exam-
ple with only four bootstrap resamples, see Figure 6.

We use the Pfam protein family database [8] as a source of
high quality curated multiple sequence alignments and

Figure 4
An example of ultra-paralogous sequences
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An illustration of subtree-neighbors The dotted sub-
trees could either be just one external node or a subtree of
arbitrary size and topology. Species information is of no con-
sequence for the concept of subtree-neighbors. The subtree-
neighbors depicted here are for the default of k = 2.
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profile HMMs (Hidden Markov Models, see [21] for a re-
view), as well as programs from the HMMER package  [ht-
tp://hmmer.wustl.edu/] . RIO can easily be adapted to
work with different sources of alignments and different
alignment programs. For tree reconstruction, the neighbor
joining (NJ) algorithm [22] is used, since it is reasonably
fast, can handle alignments of large numbers of sequenc-
es, and does not assume a molecular clock. NJ recreates
the correct additive tree as long as the input distances are
additive [23], and is effective even if additivity is only ap-
proximated [24].

Input: A query protein sequence Q with unknown func-
tion.

A curated multiple alignment A from the Pfam database
for the protein family that Q belongs to (as determined by
hmmpfam from the HMMER package).

A profile HMM H for the protein family that Q belongs to.

Output: A list (as in Figure 7) of proteins orthologous to
Q, sorted according to a bootstrap confidence value
(based on orthology, super-orthology, or subtree-neigh-
borings).

Optional: A gene tree based on the multiple alignment A
and the query Q annotated with orthology bootstrap con-
fidence values for the query Q.

Procedure:

1. Query sequence Q is aligned to the existing alignment
A (using hmmalign from the HMMER package and the
Pfam profile HMM H).

2. The alignment is bootstrap resampled x times (usually,
x = 100).

3. Maximum likelihood pairwise distance matrices are cal-
culated for each of the x multiple alignments using a mod-
el of amino acid substitution (for example, BLOSUM [25]
or Dayhoff PAM [26]).

4. An unrooted phylogenetic tree is inferred for each of the
x multiple alignments by neighbor joining [22], resulting
in x gene trees. Each tree is rooted by a modified version
of our SDI algorithm [13] that minimized the number of
duplications postulated (this is discussed in more detail
later).

5. For each of the x rooted gene trees: For each node it is
inferred whether it represents a duplication or a speciation
event by comparing the gene tree to a trusted species tree.

6. For each sequence s in the gene tree (except Q): Count
the number of gene trees where s is orthologous to Q (see
Figure 6 for an illustration of steps 5. and 6.). Bootstrap
confidence values for super-orthologies, ultra-paralogies
and subtree-neighbors are calculated analogously.

Precalculation of pairwise distances for increased time ef-
ficiency
The most time consuming step in the procedure described
above is the calculation of pairwise distances. [The time
complexity is O(xLN2), N being the number of sequences,
L being their length, and x being the number of bootstrap

Figure 6
A simple example of the RIO procedure Four boot-
strap resampled gene trees are shown. Letters represent
sequence names/"functions". "A" (nematode and wheat) are
true orthologs of the human query sequence, whereas "B"
(rat) is a true paralog of the query (i.e. the first tree happens
to be the real one). In 3 out of 4 trees nematode "A" appears
orthologous to the query, in 3 out of 4 trees wheat "A"
appears orthologous to the query. Rat "B" never appears to
be orthologous. For an example of actual RIO output see Fig-
ure 7.
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Figure 7
RIO output for the A. thaliana protein F12M16_14 analyzed against the Pfam ldh domain alignment (PF00056)
The "Sequence" column identifies sequences in the Pfam alignment either by their SWISS-PROT "ID" or their TrEMBL "AC"
[36] with added species information (the numbers after the dash are the Pfam domain boundaries added by HMMER).
"Description" is the "DE" information either from SWISS-PROT or TrEMBL. The number of observed orthologies ("o"), sub-
tree-neighborings ("n"), and super-orthologies ("s") to the query in the 100 bootstrapped trees are indicated (in %) for the
sequences in the Pfam alignment. Furthermore the evolutionary distances (average number of amino acid replacements per
residue calculated by maximum likelihood based on the BLOSUM 62 matrix) between the query and the sequences in the Pfam
alignment are shown. For space reasons some lines of the output are not shown ("...") (the complete output is available at
[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/AT_LDH_MDH/] ). The output is sorted by orthology
values. According to this RIO analysis the query sequence is likely to be orthologous and a subtree-neighbor to the plant
sequences MDHM_BRANA and Q9SPB8_SOYBN. In addition, the query is likely to be super-orthologous to MDHM_BRANA.
The bacterial sequences MDH_ECOLI and MDH_SALTY are also possibly orthologs but no subtree-neighbors. Hence,
F12M16_14 is very likely to be a malate dehydrogenase and possibly mitochondrial.

Sequence                Description                                                                o[%] n[%] s[%]  distance 

--------                -----------                                                                ---- ---- ----  -------- 

MDHM_BRANA/27-173       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 89  100   89  0.028000 

Q9SPB8_SOYBN/31-177     MALATE DEHYDROGENASE.                                                        87  100   42  0.109080 

MDH_ECOLI/1-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                          53    0    0  0.458890 

MDH_SALTY/1-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                          53    0    0  0.468930 

… 

MDHM_CHLRE/60-205       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 32    2    4  0.358410 

MDHM_RAT/22-168         MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.470390 

MDHM_PIG/22-168         MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.471480 

MDHM_HUMAN/22-168       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.491850 

MDHM_MOUSE/22-168       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.491910 

O15769_TRYBB/6-151      MALATE DEHYDROGENASE.                                                        14    3    0  0.492340 

Q9VU29_DROME/25-171     MALATE DEHYDROGENASE.                                                         6    3    0  0.718600 

Q9Y7R8_SCHPO/26-173     MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.                                4    2    0  0.557380 

Q9VEB1_DROME/22-168     CG7998 PROTEIN.                                                               3    0    0  0.455680 

O76731_TRYBB/1-154      GLYCOSOMAL MALATE DEHYDROGENASE.                                              2    1    0  0.726530 

Q9U140_LEIMA/1-153      MALATE DEHYDROGENASE.                                                         2    1    0  0.832380 

MDHC_YEAST/10-176       MALATE DEHYDROGENASE, CYTOPLASMIC (EC 1.1.1.37).                              2    0    0  0.845440 

MDHM_YEAST/15-163       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                  1    1    0  0.605030 

MDHP_YEAST/1-143        MALATE DEHYDROGENASE, PEROXISOMAL (EC 1.1.1.37).                              1    0    0  0.580820 

MDHG_ORYSA/42-188       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.338480 

MDHG_SOYBN/39-185       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.350720 

MDHG_CUCSA/42-188       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.368460 

MDHG_BRANA/39-185       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.424130 

O81609_PEA/77-223       NODULE-ENHANCED MALATE DEHYDROGENASE.                                         0    1    0  0.399520 

O81844_ARATH/80-226     MALATE DEHYDROGENASE PRECURSOR.                                               0    1    0  0.428890 

Q9SN86_ARATH/80-226     MALATE DEHYDROGENASE.                                                         0    1    0  0.428890 

Q9XQP4_TOBAC/91-237     MALATE DEHYDROGENASE PRECURSOR.                                               0    1    0  0.442160 

O81278_SOYBN/92-238     MALATE DEHYDROGENASE.                                                         0    1    0  0.446470 

Q9U8L4_LEIMA/1-71       MALATE DEHYDROGENASE (FRAGMENT).                                              0    1    0  0.468950 

P93106_CHLRE/34-180     NAD-DEPENDENT MALATE DEHYDROGENASE (EC 1.1.1.37) (MALIC DEHYDROGENASE).       0    0    0  0.462200 

MDHM_CAEEL/26-172       PROBABLE MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).         0    0    0  0.483690 

Q9VU28_DROME/20-166     MALATE DEHYDROGENASE.                                                         0    0    0  0.907050 

O59312_PYRHO/1-23       HYPOTHETICAL 40.1 KDA PROTEIN PH1688.                                         0    0    0  1.000670 

MDH_SULAC/1-37          MALATE DEHYDROGENASE (EC 1.1.1.37) (FRAGMENT).                                0    0    0  1.270070 

MDH_RICPR/2-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.369000 

Q29385_PIG/18-42        LACTATE DEHYDROGENASE-A (FRAGMENT).                                           0    0    0  1.384020 

Q55383_SYNY3/11-154     2-KETOACID DEHYDROGENASE (MALATE DEHYDROGENASE, LACTATE DEHYDROGENASE).       0    0    0  1.468610 

MDH_BACSU/2-147         MALATE DEHYDROGENASE (EC 1.1.1.37) (VEGETATIVE PROTEIN 69) (VEG69).           0    0    0  1.482390 

MDH_CHLVI/1-142         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.509210 

MDH_ARCFU/1-142         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.523550 

MDH_AERPE/7-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.531830 

LDH_THEMA/1-140         L-LACTATE DEHYDROGENASE (EC 1.1.1.27).                                        0    0    0  1.545580 

LDH_THEAQ/1-140         L-LACTATE DEHYDROGENASE (EC 1.1.1.27).                                        0    0    0  1.603000 

O67581_AQUAE/11-161     MALATE DEHYDROGENASE.                                                         0    0    0  1.617760 

LDHA_HORVU/41-183       L-LACTATE DEHYDROGENASE A (EC 1.1.1.27) (LDH-A).                              0    0    0  1.618550 

LDHH_RABIT/2-45         L-LACTATE DEHYDROGENASE H CHAIN (EC 1.1.1.27) (LDH-B) (FRAGMENT).             0    0    0  1.618900 

… 
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Figure 8
A phylogenetic tree for zinc-binding dehydrogenases produced by RIO This tree is based on the Pfam alignment
adh_zinc (PF00107) and is a subtree of a larger tree. It has been calculated by the neighbor joining method using maximum like-
lihood pairwise distances [34] based on the BLOSUM 62 matrix [25]. Gene duplication are indicated by circles (inferred by our
SDI algorithm [13]). The tree was rooted by minimizing the sum of duplications. The tree image was produced by ATV [33].
Species are represented by their SWISS-PROT abbreviations (ARATH: Arabidopsis thaliana, TOBAC: Nicotiana tabacum,
MAIZE: Zea mays, MYCTU: Mycobacterium tuberculosis, BACSU: Bacillus subtilis, LEIMA: Leishmania major, HELPY: Helicobacter
pylori, SYNY3: Synechocystis sp. strain PCC 6803, YEAST: Saccharomyces cerevisiae, KLULA: Kluyveromyces lactis, KLUMA: Kluy-
veromyces marxianus, CANAL: Candida albicans, EMENI: Emericella nidulans, SCHPO: Schizosaccharomyces pombe, CAEEL:
Caenorhabditis elegans, BACST: Bacillus stearothermophilus). The A. thaliana query sequence F28P22_13 is labeled with Q. The
bootstrap orthology values for potential orthologs are indicated in brackets. According to this tree, F28P22_13 has no
orthologs.

Q9SJ10_ARATH

Q9SJ25_ARATH

CAD1_ARATH

CAD3_ARATH

CAD2_ARATH

O65621_ARATH

CAD9_TOBAC

CAD4_TOBAC

CADH_MAIZE

CAD4_ARATH

ADH_MYCTU

O06007_BACSU

Q9U1F0_LEIMA

O25732_HELPY

YAHK_ECOLI [ 1 ]

P71306_ECOLI [ 1 ]

F28P22_13_ARATH [ Q ]  

YJGB_ECOLI

P74721_SYNY3

YM97_YEAST

YCZ5_YEAST

P95153_MYCTU

ADH2_YEAST

ADH1_YEAST

ADH1_KLULA

ADH2_KLULA

ADH3_YEAST

ADH4_KLULA

ADH3_KLULA

ADH1_KLUMA

ADH5_YEAST

ADH1_CANAL

O94038_CANAL

ADH1_EMENI

ADH3_EMENI

ADH2_EMENI

ADH_SCHPO

ADH1_CAEEL

ADH2_CAEEL

Q9UAT1_CAEEL (?)

ADH3_BACST

ADH1_BACST

ADH2_BACST

ADHP_ECOLI (propanol preferring 1.1.1.1)

EC 1.1.1.195
cinnamyl-alcohol dehydrogenase

reaction: cinnamyl alcohol + NADP+

= cinnamaldehyde + NADPH

EC 1.1.1.2
alcohol dehydrogenase (NADP)

reaction: an alcohol + NADP+

= an aldehyde + NADPH

EC 1.1.1.1
alcohol dehydrogenase (NAD)

reaction: an alcohol + NAD+

= an aldehyde + NADH

?
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resamples. On an average Intel processor the wall clock
time for 100 bootstrapped datasets of a typical Pfam mul-
tiple alignment is in the range of hours.]

Since the query sequence is aligned to stable Pfam align-
ments, it is possible to precalculate the pairwise distances
for each alignment and store the results. Then, when RIO
is being used to analyze a query sequence, only the dis-
tances of the query to each sequence in the Pfam align-
ment have to be calculated. This step becomes thus
O(xLN) instead of O(xLN2).

To do this correctly, the aligned query sequence has to be
bootstrap resampled in exactly the same way as was used
for precalculating the pairwise distances of the Pfam align-
ment. For this purpose, bootstrap positions (e.g. which
aligned columns from the Pfam alignment were chosen in
a particular bootstrap sample) are saved to a file. With this
file it is possible to bootstrap the new alignment of N+1
sequences (Pfam alignment plus query sequence) in pre-
cisely the same manner, so the NxN precalculated distanc-
es are valid for the (N+1)x(N+1) distance matrix. The
alignment method must also guarantee that the original
Pfam multiple alignment remains unchanged when the
query sequence is aligned to it. This requires specially pre-
pared Pfam full alignments and profile HMMs that are
created with the HMMER software as follows:

Input: Original Pfam full alignment A.

Output: "aln" file containing RIO-ready full alignment

"hmm" file containing a RIO-ready profile HMM

"nbd" file containing pairwise distances

"bsp" file bootstrap positions file

"pwd" file containing pairwise distances for bootstrap re-
sampled alignment

1. Remove sequences from species not in RIO's master
species tree from alignment A. If A does not contain
enough sequences (<6), abort.

2. Run hmmbuild -o A' on A, using the same options as
were used to build the original Pfam HMM for A, resulting
in alignment A'. (HMMER's construction procedure
slightly modifies the input alignment in ways that are usu-
ally unimportant, but which matter to bootstrapping in
RIO.) Keep A' as the "aln" file.

3. Run hmmbuild with "--hand" option on A', resulting in
HMM H' (using the same options as were used to build

the original HMM for A). Calibrate H' with hmmcalibrate
and keep as "hmm" file.

4. Remove non-consensus (insert) columns from A' (these
are annotated by HMMER), resulting in alignment A".

5. Calculate pairwise distances for A", resulting in the
"nbd" file (non-bootstrapped distances).

6. Bootstrap resample the columns of A", resulting in the
"bsp" file (bootstrap positions file).

7. Calculate pairwise distances for bootstrapped A", result-
ing in the "pwd" file.

Rooting of gene trees
The concept of speciation and duplication is only mean-
ingful on rooted gene trees, but the neighbor joining algo-
rithm infers unrooted trees. We use a simple parsimony
criterion for rooting. Gene trees are rooted on each
branch, resulting in 2N-3 differently rooted trees for a
gene tree of N sequences. For each of these, the number of
inferred duplications is determined. From the trees with a
minimal number of duplications (if there is more than
one) the tree with the shortest total height is chosen as the
rooted tree. Empirical studies on gene trees based on 1750
Pfam alignments show that about 60% of trees rooted in
such a way have their root in the same position that direct
midpoint rooting [27] would place it.

Naively performing a full duplication/speciation analysis
on each of 2N-3 differently rooted trees results in a overall
time complexity of O(N2) or worse, but this can be avoid-
ed. For the purpose of the following discussion it is as-
sumed that our SDI algorithm for speciation/duplication
inference is employed, but the idea applies to all algo-
rithms based on a mapping function M defined as follows
[28]:

Definition 4. Let G be the set of nodes in a rooted binary
gene tree and S the set of nodes in a rooted binary species
tree. For any node g ∈ G, let γ (g) be the set of species in
which occur the extant genes descendant from g. For any
node s ∈ S, let σ (s) be the set of species in the external
nodes descendant from s. For any g ∈ G, let M(g) ∈ S be
the smallest (lowest) node in S satisfying γ (g) ⊆ σ (M(g)).

Duplications are then defined using M(g) as follows:

Definition 5. Let g1 and g2 be the two child nodes of an
internal node g of a rooted binary gene tree G. Node g is a
duplication if and only if M(g) = M(g1) or M(g) = M(g2).
Page 8 of 19
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The main task of most algorithms for duplication infer-
ence is the calculation of M. After M has been calculated
for any rooted gene tree G it is possible to explore different
root placements without having to recalculate M for every
node of G. As long as the root is moved one node at the
time, M has to be recalculated only for two nodes: the one
node which was child 1 (if the new root is placed on a
branch originating from child 1 of the previous root) or
child 2 (otherwise) of the previous root, as well as for the
new root itself. Hence, two postorder traversal steps (child
1 or 2 of the old root, then the new root) in the SDI algo-
rithm are all that is needed. The new sum of duplications
is determined by keeping track of the change in duplica-
tion/speciation status in the two recalculated nodes as

well as in the previous root. Performing this over the
whole gene tree (some nodes will be visited twice) it is
possible to explore all possible root placements and calcu-
late the resulting duplications in practically linear time.
The pseudocode algorithm is as follows:

Algorithm for speciation duplication inference combined 
with rooting
Input : binary gene tree G, rooted binary species tree S.

Output:G with "duplication" or "speciation" assigned to
each internal node and rooted in such a way that the sum
of duplications is minimized.

Figure 9
RIO output for the A. thaliana protein F28P22_13 analyzed against the Pfam adh_zinc domain alignment
(PF00107) For an explanation of the output see Figure 7. For space reasons some lines of the output are not shown ("...")
(the complete output is available at  [http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P22_13/] ). The
output is sorted by orthology values. According to this RIO analysis the query sequence is likely to have no orthologs in this
alignment. In contrast, the query probably has subtree-neighbors which are cinnamyl-alcohol dehydrogenases (EC 1.1.1.195),
NADP-dependent alcohol dehydrogenases (EC 1.1.1.2), as well as other zinc-containing alcohol dehydrogenases.

Sequence                Description                                                                o[%] n[%] s[%]  distance 

--------                -----------                                                                ---- ---- ----  -------- 

YAHK_ECOLI/14-343       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN BETT-PRPR IN     1   98    0  0.923480 

                        TERGENIC REGION.                                                           

P71306_ECOLI/14-343     SIMILAR TO CINNAMYL-ALCOHOL DEHYDROGENASE OF P. CRISPUM.                      1   98    0  0.923760 

XYLB_PSEPU/14-365       ARYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.90) (BENZYL ALCOHOL DEHYDROGENASE) (     1    1    1  1.768320 

                        BADH).                                                                     

Q9SJ10_ARATH/18-348     PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE.                                      0   99    0  0.788690 

Q9SJ25_ARATH/18-349     PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE.                                      0   99    0  0.801010 

CAD1_ARATH/24-353       CINNAMYL-ALCOHOL DEHYDROGENASE 1 (EC 1.1.1.195) (CAD).                        0   99    0  0.813150 

CAD2_ARATH/20-349       CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-1 (EC 1.1.1.195) (CAD).                   0   99    0  0.888760 

O65621_ARATH/25-354     CINNAMYL ALCOHOL DEHYDROGENASE-LIKE PROTEIN, SUBUNIT A (CINNAMYL ALCOHOL      0   99    0  0.905050 

                        DEHYDROGENASE-LIKE PROTEIN, LCADA).                                        

CAD3_ARATH/20-349       CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (EC 1.1.1.195) (CAD).                   0   99    0  0.911850 

CAD4_TOBAC/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD).                          0   99    0  0.996520 

CAD9_TOBAC/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD).                          0   99    0  0.998400 

CADH_MAIZE/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD) (BROWN-MIDRIB 1 PROTE     0   99    0  1.036040 

                        IN).                                                                       

CAD4_ARATH/22-351       CINNAMYL-ALCOHOL DEHYDROGENASE 2 (EC 1.1.1.195) (CAD).                        0   99    0  1.039940 

ADH_MYCTU/15-343        NADP-DEPENDENT ALCOHOL DEHYDROGENASE (EC 1.1.1.2).                            0   98    0  0.935120 

O06007_BACSU/18-346     NADP-DEPENDENT ALCOHOL DEHYDROGENASE.                                         0   98    0  0.955200 

Q9U1F0_LEIMA/16-346     NADP-DEPENDENT ALCOHOL HYDROGENASE.                                           0   98    0  0.968460 

O25732_HELPY/16-343     CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (CAD).                                  0   97    0  1.123840 

YM97_YEAST/20-353       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN PRE5-FET4 IN     0   76    0  1.388040 

                        TERGENIC REGION.                                                           

YCZ5_YEAST/20-354       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN YCR105W (EC 1.1     0   76    0  1.439990 

                        .1.-).                                                                     

P74721_SYNY3/13-333     ZINC-CONTAINING ALCOHOL DEHYDROGENASE FAMILY.                                 0   60    0  1.354540 

YJGB_ECOLI/15-337       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN GNTV-LEUX IN     0   60    0  1.368110 

                        TERGENIC REGION (ORF1).                                                    

P95153_MYCTU/25-346     ADHA.                                                                         0    9    0  1.931400 

ADH3_BACST/12-336       ALCOHOL DEHYDROGENASE (EC 1.1.1.1) (ADH-HT).                                  0    8    0  1.272530 

… 
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Figure 10
A phylogenetic tree for O-methyltransferases produced by RIO This tree is based on the Pfam alignment
Methyltransf_2 (PF00891). It has been constructed in the same manner as the tree in Figure 8. (TOBAC: Nicotiana tabacum,
ARATH: Arabidopsis thaliana, MAIZE: Zea mays, HORVU: Hordeum vulgare, WHEAT: Triticum aestivum, PEA: Pisum sativum,
RHOSH: Rhodobacter sphaeroides, RHOCA: Rhodobacter capsulatus, BOVIN: Bos taurus, CHICK: Gallus gallus, RAT: Rattus nor-
vegicus, MYCTU: Mycobacterium tuberculosis.). The A. thaliana query sequence F16P17_38 is labeled with Q. The bootstrap
orthology values for potential orthologs are indicated in brackets (the brightness of the green color is proportional to this
value). The apparent trifurcation at the root is caused by a branch length of 0.0 (the bacterial hydroxyneurosporene methyl-
transferases subtree and the plant O-methyltransferases subtree are connected by a speciation event). Inferred gene duplica-
tion are indicated by circles. According to this tree, F16P17_38 has orthologs only in bacteria.

Q42958_TOBAC (2.1.1.6)

Q04065_TOBAC (2.1.1.6)

O49964_ARATH (?)

COMT_MAIZE (2.1.1.68)

Q42949_TOBAC (2.1.1.6)

F16P17_38_ARATH [ Q ]

Q9SRD4_ARATH

Q9ZU24_ARATH

Q9SCP7_ARATH

Q96565_HORVU [ 19 ]

Q9T002_ARATH

Q9T003_ARATH

Q43771_HORVU

O49010_MAIZE

Q9ZRC1_WHEAT

ZRP4_MAIZE

O24305_PEA

CRTF_RHOSH [ 93 ] 

Q9RFC4_RHOSH [ 93 ] 

CRTF_RHOCA [ 93 ]

HIOM_BOVIN [ 3 ]

HIOM_HUMAN [ 3 ]

HIOM_CHICK [ 3 ]

O09179_RAT [ 3 ] 

O95671_HUMAN [ 3 ] 

O53764_MYCTU [ 10 ]

EC 2.1.1.4
acetylserotonin O-methyltransferase

reaction:

S-adenosyl-L-methionine + N-acetylserotonin

= S-adenosyl-L-homocysteine + melatonin

?

EC 2.1.1.-
hydroxyneurosporene methyltransferase

reaction:

converts hydroxyneurosporene to 

methoxyneurosporene

or demethylspheroidene to spheroidene

EC 2.1.1.-
various (O-) methyltransferases

EC 2.1.1.6
catechol O-methyltransferase

reaction: S-adenosyl-L-methionine + a catechol

= S-adenosyl-L-homocysteine + a guaiacol

and

EC 2.1.1.68
caffeate O-methyltransferase

reaction: S-adenosyl-L-methionine

+ 3,4-dihydroxy-trans-cinnamate

= S-adenosyl-L-homocysteine

+ 3-methoxy-4-hydroxy-trans-cinnamate
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SDIunrooted(G, S)

root gene tree G at the midpoint of any branch;

set B = getBranchesInOrder(G);

SDIse(G, S) (see [13]);

for each branch b in B:

set n1 = child 1 of root of G;

set n2 = child 2 of root of G;

root G at the midpoint of branch b;

updateM(n1, n2, G);

if (sum of duplications in G < dmin):

set dmin = d;

set Gdmin = G;

return Gdmin;

updateM(n1, n2, G)

set r = root of G;

if (child 1 of r == n1 || child 2 of r == n1):

Figure 11
RIO output for the A. thaliana protein F16P17_38 analyzed against the Pfam Methyltransf_2 domain alignment
(PF00891) For an explanation of the output see Figure 7. The output is sorted by orthology values. According to this RIO
analysis the orthologs of F16P17_38 are bacterial hydroxyneurosporene methyltransferases. These contrast with the subtree-
neighbors of F16P17_38 which are all plant O-methyltransferases.

Sequence                Description                                                                o[%] n[%] s[%]  distance 

--------                -----------                                                                ---- ---- ----  -------- 

Q9RFC4_RHOSH/112-349    CRTF.                                                                        93    0    0  1.666990 

CRTF_RHOCA/137-367      HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE).            93    0    0  1.707230 

CRTF_RHOSH/109-346      HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE).            93    0    0  1.713780 

Q96565_HORVU/110-352    CAFFEIC ACID O-METHYLTRANSFERASE (EC 2.1.1.6) (CATECHOL O- METHYLTRANSFER    19   43    0  0.913640 

                        ASE) (0-METHYLTRANSFERASE).                                                

O53764_MYCTU/71-316     PUTATIVE METHYLTRANSFERASE.                                                  10    0    0  1.602520 

O95671_HUMAN/349-595    ASMTL PROTEIN.                                                                3    0    0  1.580280 

O09179_RAT/80-322       HYDROXYINDOLE-O-METHYLTRANSFERASE (EC 2.1.1.4) (ACETYLSEROTONIN O- METHYL     3    0    0  1.674460 

                        TRANSFERASE) (HYDROXYINDOLE O-METHYLTRANSFERASE).                          

HIOM_HUMAN/79-322       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.749550 

                        -METHYLTRANSFERASE) (ASMT).                                                

HIOM_BOVIN/79-322       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.764290 

                        -METHYLTRANSFERASE) (ASMT).                                                

HIOM_CHICK/81-323       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.787620 

                        -METHYLTRANSFERASE) (ASMT).                                                

Q9SRD4_ARATH/100-342    PUTATIVE CATECHOL O-METHYLTRANSFERASE.                                        0  100    0  0.526350 

O49964_ARATH/97-338     O-METHYLTRANSFERASE 1.                                                        0   72    0  0.632160 

Q42958_TOBAC/99-340     CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0   72    0  0.639820 

Q04065_TOBAC/99-340     CATECHOL O-METHYLTRANSFERASE.                                                 0   72    0  0.649210 

Q42949_TOBAC/100-342    CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0   72    0  0.663620 

COMT_MAIZE/100-341      CAFFEIC ACID 3-O-METHYLTRANSFERASE (EC 2.1.1.68) (S-ADENOSYSL-L- METHIONI     0   72    0  0.721520 

                        NE:CAFFEIC ACID 3-O-METHYLTRANSFERASE) (COMT).                             

Q9SCP7_ARATH/93-336     CAFFEIC ACID O-METHYLTRANSFERASE-LIKE PROTEIN.                                0   37    0  0.988010 

Q9ZU24_ARATH/96-339     F5F19.5 PROTEIN.                                                              0   36    0  0.701190 

Q9T003_ARATH/103-358    O-METHYLTRANSFERASE-LIKE PROTEIN.                                             0    2    0  0.974450 

Q9T002_ARATH/46-301     O-METHYLTRANSFERASE-LIKE PROTEIN.                                             0    2    0  1.100820 

ZRP4_MAIZE/94-341       O-METHYLTRANSFERASE ZRP4 (EC 2.1.1.-) (OMT).                                  0    2    0  1.116310 

O24305_PEA/93-337       6A-HYDROXYMAACKIAIN METHYLTRANSFERASE.                                        0    2    0  1.182120 

Q43771_HORVU/117-367    CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0    2    0  1.264630 

Q9ZRC1_WHEAT/97-359     O-METHYLTRANSFERASE.                                                          0    2    0  1.270800 

O49010_MAIZE/90-340     HERBICIDE SAFENER BINDING PROTEIN.                                            0    2    0  1.530230 
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calculateMforNode(n1);

else:

calculateMforNode(n2);

calculateMforNode(r);

calculateMforNode(n)

if (n != external):

set a = M(child 1 of n);

set b = M(child 2 of n);

while (a != b):

if (a > b):

set a = parent of a;

else:

set b = parent of b;

set M(n) = a;

if (M(n) == M(child 1 of n) || M(n) == M(child 2 of
n):

n is duplication;

else:

n is speciation;

getBranchesInOrder(G)

set n = root of G;

set i = 0;

while !(n == root && indicator of n == 2):

if (n != external && indicator of n != 2):

if (indicator of n == 0):

set indicator of n = 1;

set n = child 1 of n;

else:

set indicator of n = 2;

set n = child 2 of n;

if (parent of n != root):

set B [i ] = branch connecting n and parent of
n;

else:

set B [i ] = branch connecting child 1 of root
and child 2 of root;

set i = i + 1;

else:

if (parent of n != root && n != external):

set B [i ] = branch connecting n and parent of
n;

set i = i + 1;

set n = parent of n;

return B;

Master species tree
Duplication inference requires a species tree. For this pur-
pose, a single completely binary master species tree was
compiled manually, containing 249 of the most com-
monly encountered species in Pfam (spanning Archaea,
Bacteria, and Eukaryotes). This tree is based mainly on in-
formation from Maddison's "Tree of Life" project  [http://
tolweb.org/tree/phylogeny.html] , NCBI's taxonomy da-
tabase  [http://www.ncbi.nlm.nih.gov/Taxonomy/taxon-
omyhome.html] , the "Deep Green" project  [http://
ucjeps.berkeley.edu/bryolab/greenplantpage.html] , and
[29–32]. This master tree groups nematodes and arthro-
pods into a clade of ecdysozoans (molting animals) as
proposed by Aguinaldo [29], a classification which is still
controversial. The tree is available in NHX format [33] at
[http://www.genetics.wustl.edu/eddy/forester/
tree_of_life_bin_1-4.nhx] .

Implementation
RIO is implemented in a Perl pipeline of several software
programs as follows. Alignment of the query sequence is
done programs from the HMMER package  [http://hm-
mer.wustl.edu/] . Bootstrapping is performed by a be-
spoke C program. Maximum likelihood pairwise
distances are calculated using BLOSUM matrices [25] by a
modified version of TREE-PUZZLE [34]. Neighbor joining
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trees are calculated by a modified version of NEIGHBOR
from the PHYLIP package [35] [http://evolution.genet-
ics.washington.edu/phylip.html] . Rooting and duplica-
tion inference are accomplished by "SDIunrooted" – a
Java implementation of our SDI algorithm which incor-
porates various methods for rooting (see above). The ac-
tual counting of orthologs is performed by methods of the
Java class "RIO". These programs, with the exception of
HMMER, are part of the FORESTER package and are avail-
able under the GNU license at  [http://www.genet-
ics.wustl.edu/eddy/forester/] .

In order to run RIO locally, the following packages and
databases need to be present: HMMER, the Pfam database
[8], the SWISS-PROT and TrEMBL databases [36].

RIO is also available as an analysis webserver at  [http://
www.rio.wustl.edu/] . The pairwise distance and tree cal-
culations are parallelized in this version (currently, ten
1.26 GHz Pentium III processors are being used).

Results and Discussion
Precalculation of pairwise distances
Pairwise distances to be used in RIO analyses were calcu-
lated using the "full" alignments (as opposed to the small-
er curated "seed" alignments) from Pfam 6.6 (August
2001, 3071 families, [8]). Sequences from species not
present in the master species tree were removed from the
alignments. For computational efficiency reasons, align-
ments that still contained more than 600 sequences were
further pruned; sequences not originating from SWISS-
PROT were discarded, and sequences from certain mam-
mals were excluded (mouse, rabbit, hamsters, goat, all pri-
mates except human), since mammals are likely to be
oversampled in most Pfam families. For some extremely
large families [immunoglobulin domain (PF00047), pro-
tein kinase domain (PF00069), collagen triple helix re-
peat (PF01391), and rhodopsin-type 7 transmembrane
receptor (PF00001)], all mammalian sequences except
those from human and rat were excluded.

Alignments of average length <30 amino acids (<40 for
zinc finger domains) or with <6 sequences were not ana-
lyzed, because of lack of phylogenetic signal. For all other
families, pairwise distances for 100 bootstrap samples
were prepared. Following the above rules, pairwise dis-
tances were precalculated for 2384 alignments from a to-
tal of 3071 in Pfam 6.6 (75 alignments were too short and
612 alignments contained less than six sequences from
species in the master species tree).

Phylogenomic analyses of the A. thaliana and C. elegans 
proteomes
In order to get an estimate of the effectiveness of this im-
plementation of automated phylogenomics, we used the

RIO procedure to analyze the A. thaliana [16] and C. ele-
gans [17] proteomes.

The input for RIO consists of a query protein sequence to-
gether with a Pfam alignment for a protein family that the
query belongs to. Before RIO could be applied we there-
fore had to determine the matching domains for each pro-
tein in the A. thaliana and C. elegans proteomes. For
proteins composed of different domains, a RIO analysis is
performed for each domain individually.

The source for protein sequences were:
ATH1.pep.03202001, a flatfile database of 25,579 A. thal-
iana amino acid sequences (hypothetical, predicted and
experimentally verified) that have been identified as part
of the Arabidopsis Genome Initiative (AGI)  [http://
www.arabidopsis.org/info/agi.html] , and wormpep 43, a
flatfile database of 19,730 C. elegans amino acid sequenc-
es  [http://www.sanger.ac.uk/Projects/C_elegans/worm-
pep/] .

The program hmmpfam (version 2.2 g) from the HMMER
package was used to search each protein sequence in
ATH1.pep.03202001 and wormpep 43 against Pfam 6.6.
Only domains with a score above the so-called Pfam gath-
ering cutoff were reported ("cut_ga" option) in order to
include only confident domain assignments.

The sum of domains assigned to the 25,579 A. thaliana
protein sequences was 17,847 (counting multiple copies
of the same domain in one protein as one). 12,431 se-
quences matched one domain (containing possibly mul-
tiple copies of this one domain). 1,982 sequences
matched two different domains (containing possibly mul-
tiple copies of both). 453 sequences matched three or
more different domains (containing possibly multiple
copies of each). Therefore, a total of 14,866 (58%) se-
quences from ATH1.pep.03202001 could be assigned to
one or more Pfam families.

Similarly, a sum of 12,314 domains was assigned to the
19,769 C. elegans protein sequences. 7,698 sequences
matched one domain, 1,632 matched two different do-
mains, and 388 matched three or more different domains.
Thus, 9,718 (49%) sequences from wormpep 43 could be
assigned to one or more Pfam families.

RIO was then used to analyze each protein sequence
matching one or more Pfam families. The results from
these analyses can be found at  [http://www.genet-
ics.wustl.edu/eddy/forester/rio_analyses/] . The approxi-
mate time requirement was between two and three weeks,
performed on eight Pentium III 800 Mhz processors.
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How many sequences can be analyzed with RIO?
The first question we asked was simply how many se-
quences can be analyzed with RIO. For an overview, see
Table 1. From the 17,847 A. thaliana domain sequences
matching a Pfam family, 14,905 (84%) could be analyzed
with RIO using the precalculated distances. 2859 (16%)
domain sequences were not analyzed because the corre-
sponding Pfam alignments were either too short or did
not contain enough sequences (as described above). 83
(0.5%) domain sequences were not analyzed because the
E-value for the match to their profile HMM was below the
threshold of 0.01. This represents a second filtering step
for preventing analyzing false domain assignments (be-
sides only analyzing domain sequences which score above
the gathering cutoff in the domain analysis). (RIO per-
forms a preprocessing step before aligning the query se-
quence to a Pfam alignment, in which the program
hmmsearch is used to trim the query sequence by search-
ing it with the appropriate profile HMM. If the resulting E-
value was below 0.01 no analysis was performed.) Multi-
ple copies of the same domain in certain sequences result
in a sum of individual analyses larger then the number of
analyzed domain sequences. In case of A. thaliana this
number was 17,940.

Correspondingly, from the 12,314 C. elegans domain se-
quences matching a Pfam family, 11,287 (92%) could be
analyzed with RIO using the precalculated distances. 901
(7%) domain sequences were not analyzed because the
corresponding Pfam alignments were either too short or
did not contain enough sequences. 53 (0.4%) domain se-
quences were not analyzed because the E-value for the
match to their profile HMM was below the threshold of
0.01. In addition, we did not analyze the 73 C. elegans se-
quences matching the immunoglobulin family
(PF00047), because we considered the phylogenetic sig-
nal in this alignment to be questionable. Furthermore,
most of the 73 sequences contain multiple copies of the
immunoglobulin domain (for example, CE08028 con-
tains 48 immunoglobulin domains) and we therefore
worried that the results from this family might skew our
overall results. The sum of RIO analyses was 14,740.

Thus, a little less than half of each proteome can be ana-
lyzed by RIO. The most important factor is whether a pro-
tein sequence has a match to a Pfam domain family.

RIO analysis of lactate/malate dehydrogenase family 
members
In order to test whether RIO performs well on an "easy"
case, RIO was used to analyze lactate/malate dehydroge-
nase family members both in A. thaliana and C. elegans.
L-Lactate and malate dehydrogenases are members of the
same protein family (represented in Pfam as ldh for the
NAD-binding domain and ldh_C for the alpha/beta C-ter-
minal domain), yet they catalyze different reactions. L-lac-
tate dehydrogenase (EC 1.1.1.27) catalyzes the following
reaction: (S)-lactate + NAD+ = pyruvate + NADH [37].
Malate dehydrogenase (NAD) (EC 1.1.1.37) catalyzes:
(S)-malate + NAD+ = oxaloacetate + NADH [38]. NADP-
dependent malate dehydrogenase (EC 1.1.1.82) utilizes
NADP+ as cofactor instead of NAD+[39,40]. According to
the Pfam domain analysis described above, the A. thaliana
proteome contains ten lactate/malate dehydrogenase
family members, whereas the C. elegans proteome con-
tains three. (In addition, C. elegans also contains two pu-
tative members of a second lactate/malate dehydrogenase
family [41], ldh_2, which are not discussed here.) The RIO
output for the A. thaliana protein F12M16_14 analyzed
against the ldh domain alignment is shown as an example
in Figure 7. The results are summarized in Tables 2 and 3.
Complete RIO output files (as well as NHX [33] tree files)
are avaliable, here [http://www.genetics.wustl.edu/eddy/
forester/rio_analyses/RIO_paper/AT_LDH_MDH/]  for A.
thaliana and at here [http://www.genetics.wustl.edu/
eddy/forester/rio_analyses/RIO_paper/CE_LDH_MDH/]
for c.elegans. In all cases, distinction between malate de-
hydrogenase (NAD) and lactate dehydrogenase is unques-
tionable and in accordance with existing annotations and
BLAST results irrespective which domain (ldh or ldh_C)
was used for the RIO analysis (which implies that no do-
main swapping occurred over long evolutionary times).
Furthermore, the same results are achieved whether only
the top 1 sequence (the one with the highest orthology
value, shown in Tables 2 and 3) or the top 10 sequences
are used to transfer annotation from. The only likely
NADP-dependent malate dehydrogenase is the A. thaliana

Table 1: Number of domains which can be analyzed with RIO

Protein sequences in 
proteome

Sum of domains 
assigned to proteome

Domain sequences ana-
lyzed with RIO

Sum of individual RIO 
analyses

A. thaliana 25,579 17,847 14,905 17,940
C. elegans 19,769 12,314 11,287 14,740
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sequence MCK7_20. For some query sequences, the top
orthology values are low. Yet, all subtree-neighborings
above 50% exhibit consensus at distinguishing between
malate and lactate dehydrogenase. In contrast, a finer dis-
tinction (e.g. between mitochondrial and cytoplasmic
malate dehydrogenase) proves more problematic. While
there is no case of actual conflict between the existing an-
notation and the RIO results, in many cases there is no
compelling evidence in the RIO results to confirm the fin-
er distinctions in the existing annotations. Obviously, the
resolution power of RIO is limited by the given annota-
tions and by the number (or even presence) of sequences
for each sub(sub)family.

Sequences with no orthologs in the current databases
Next, we determined the distribution of the top orthology
bootstrap values. The sequence with the top orthology
bootstrap value is the one that is most likely to be the true
ortholog of the query. If the top orthology bootstrap value
is low, then the query sequence is likely to have no or-
tholog in the Pfam alignment. These results are summa-
rized in Table 4. For example, for 2252 A. thaliana query
sequences, at least one sequence was orthologous in at
least 95 out of 100 resampled trees. In contrast, for 930 A.
thaliana query sequences, no sequence was orthologous
in more than five out of 100 bootstrapped trees. For query
sequences with more than one copy of the same domain,

Table 2: RIO analysis of A. thaliana lactate/malate dehydrogenase family members

Sequence ID Annotation RIO top 1 hit (highest orthology value)

Domain used for analysis:
ldh (PF00056) Ldh_C (PF02866)

dl4665w LDH (LDH1) L-LDH (o = 91%, n = 3%) L-LDH (o = 94%, n = 12%)
F19P19_13 putative MDH MDH (o = 2%, n = 98%) cytoplasmic MDH (o = 40%, n = 78%)
F12M16_14 mitochondrial NAD-dependent MDH mitochondrial MDH (o = 89%, n = 100%) mitochondrial MDH (o = 94%, n = 66%)
T30L20.4 putative glyoxysomal MDH precursor MDH (o = 55%, n = 0%) glyoxysomal MDH (o = 95%, n = 37%)
K15M2_16 mitochondrial NAD-dependent 

MDH, putative
MDH (o = 89%, n = 100%) mitochondrial MDH (o = 84%, n = 80%)

F1P2_70 Chloroplast NAD-dependent MDH MDH (o = 87%, n = 21%) MDH (o = 85%, n = 6%)
F17I14_150 microbody NAD-dependent MDH glyoxysomal MDH (o = 100%, n = 100%) glyoxysomal MDH (o = 80%, n = 97%)
MWF20_2 cytoplasmic MDH MDH (o = 2%, n = 100%) MDH (o = 38%, n = 75%)
MIK19_17 cytoplasmic MDH cytoplasmic MDH (o = 5%, n = 99%) MDH (o = 31%, n = 84%)
MCK7_20 NADP-dependent MDH MDH (o = 60%, n = 30%) chloroplast NADP-MDH (EC 1.1.1.82) (o 

= 68%, n = 82%)

Annotations are from ATH1.pep.03202001 (Arabidopsis Genome Initiative  [http://www.arabidopsis.org/info/agi.html] ). "o=" and "n=" are orthol-
ogy and subtree-neighboring values for the sequence in the Pfam alignment (ldh or ldh_C) with the highest orthology value towards the respective 
query sequence. LDH stands for L-lactate dehydrogenase. MDH stands for malate dehydrogenase.

Table 3: RIO analysis of C. elegans lactate/malate dehydrogenase family members

Sequence ID Annotation RIO top 1 hit (highest orthology value)
Domain used for analysis:
ldh (PF00056) ldh_C (PF02866)

F13D12.2 
(CE02181)

LDH (predicted) L-LDH (o = 75%, n = 61%) L-LDH (B chain) (o = 66%, n = 23%)

F20H11.3 
(CE09512)

Member of the MDH protein family 
(predicted)

MDH (o = 42%, n = 16%) MDH (o = 53%, n = 34%)

F46E10.10 
(CE20820)

Putative MDH, possible ortholog of 
H. sapiens Hs.75375 gene product 
(cytoplasmic MDH) (predicted)

cytoplasmic MDH (o = 13%, n = 95%) MDH (o = 76%, n = 52%)

Annotations are from WormPD™ [49] (12/31/2001)  [http://www.proteome.com/databases/index.html] . For more explanations see Table 2.
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each copy had to meet the conditions individually in or-
der for the whole query sequence being counted to be be-
low or above the threshold.

We do not think it is possible at this stage to determine re-
liable threshold values for "true orthologs" or "absence of
orthologs". Such thresholds are very likely to be different
for different Pfam families since families vary in the phyl-
ogenetic signal their alignment contains. Some sequences
that are very likely to be true orthologs nonetheless exhib-
it marginal orthology bootstrap values (in the range of
70% or even lower).

We focused on sequences that appeared to have no or-
thologs (<5% bootstrap), since these would be cases
where a RIO analysis might be most able to correct overly
specific annotations that might be transferred based solely
on sequence similarity (as illustrated in Figure 1). An ex-
ample for this is the A. thaliana sequence F28P22_13.
(Files related to this analysis are avaliable, here [http://
www.genetics.wustl.edu/eddy/forester/rio_analyses/
RIO_paper/F28P22_13/] .) This sequence is a zinc-bind-
ing dehydrogenase (Pfam: adh_zinc, PF00107).
F28P22_13 has been annotated in ATH1.pep.03202001
"as putative cinnamyl-alcohol dehydrogenase", based on
sequence similarity (its top 10 BLAST matches are all cin-
namyl-alcohol dehydrogenases with E-values in the range
of 10-94 if analyzed against all non-redundant GenBank
CDS translations+PDB+SwissProt+PIR+PRF on Jan 2,
2002). Cinnamyl-alcohol dehydrogenase (EC 1.1.1.195)
catalyzes the following reaction: cinnamyl alcohol +
NADP+ = cinnamaldehyde + NADPH (but it can also act
on coniferyl alcohol, sinapyl alcohol and 4-coumaryl al-
cohol) in the flavonoid, stilbene and lignin biosynthesis
pathways [40,42]. According to the RIO analysis,
F28P22_13 has no orthologs (see Figure 8 for the corre-
sponding tree and Figure 9 for the RIO output). Further-
more its subtree-neighbors above 90%, cinnamyl-alcohol
dehydrogenases and NADP-dependent alcohol dehydro-

genases (EC 1.1.1.2), exhibit only partial annotation
agreement (namely that of some type of NADP-depend-
ent alcohol dehydrogenase, but not EC 1.1.1.2 or EC
1.1.1.195). Hence, F28P22_13 is likely to be a (possibly
novel) type of NADP-dependent alcohol dehydrogenase
(other than EC 1.1.1.2), possibly a novel type of cin-
namyl-alcohol dehydrogenase.

One might expect that each query sequence that appears
to have no orthologs is connected with scenario similar to
the one described above for F28P22_13. Yet, this is clearly
not the case, for the following reasons: (i) Gene duplica-
tions might not be followed by functional modification
(many Pfam families are composed of sequences which
have all the same function, at least at the resolution of the
current annotation). (ii) Some Pfam families are com-
posed solely of sequences originating from closely related
(or the same) species (such as PF02362, the B3 DNA bind-
ing domain of higher plants). For such families, query se-
quences from the same species group are expected to have
low orthology values. In such cases the concept of subtree-
neighbors and ultra-paralogs is more useful than or-
thologs. (iii) Erroneous RIO results caused by an insuffi-
cient phylogenetic signal (due to short sequences, for
example) can lead to low orthology values. For this rea-
son, RIO also outputs the average bootstrap value for the
consensus tree to give the user a hint about the amount of
phylogenetic signal in the alignment used.

Inconsistency between orthology bootstrap values and se-
quence similarity
We were next interested in the number of sequences in the
two proteomes for which the orthology bootstrap values
do not correspond to sequence similarity (Table 5). Such
disagreements could be caused by the situation illustrated
in Figure 2. To determine these numbers, we used the fol-
lowing rules. Two thresholds for orthology bootstrap val-
ues were chosen: O, the minimum for being an ortholog
(e.g. 90%) and N, the maximum for not being an ortholog
(e.g. 10%). Furthermore, a maximal ratio R for the dis-
tance of the query to non-orthologs to the distance of the
query to orthologs was chosen (e.g. 0.5). In order for be-
ing counted as exhibiting disagreement between the or-
thology bootstrap values and sequence similarity a query
sequence had to fulfill the following two conditions: (i) it
must have a least one ortholog with bootstrap orthology
value above or equal to O, and (ii) all sequences in the
alignment with bootstrap orthology values above N, must
have distance ratios smaller or equal to R for at least one
sequence with bootstrap orthology lower or equal to N.
Sequences from the following species were ignored in this
analysis (since they were the species of the query sequence
or related to it): A. thaliana proteome: Rosidae (A. thal-
iana, Pisum sativum, Glycine max, Cucurbita maxima,
Cucumis sativus, Brassica campestris, Brassica napus, Cit-

Table 4: Top orthology bootstrap values of RIO analyses

Top orthology 
bootstrap values [%]

A. thaliana 
(total: 14,905)

C. elegans 
(total: 11,287)

≥ 95 2252 922
≥ 90 2982 1224
≥ 80 4185 1858
≥ 70 5198 2393
≥ 50 7493 3459
≤ 20 2680 4751
≤ 10 1360 3171
≤ 5 930 2452
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rus unshiu, Citrus sinensis, Theobroma cacao, Gossypium
hirsutum); C. elegans proteome: nematodes (C. elegans,
Caenorhabditis briggsae, Haemonchus contortus, Ascaris
suum).

Manual inspection of the RIO output leads to the follow-
ing, somewhat unexpected, conclusion. In many cases a
discrepancy between orthology bootstrap values and se-
quence similarity is caused by orthologs in only phyloge-
netically distant (relatively to the query sequence) species.
This can lead to errors if functional annotation is blindly
transferred from these orthologs to the query. As an exam-
ple of this, the results of analyzing the A. thaliana O-meth-
yltransferase F16P17_38 are shown in Figures 10 and 11.
(Complete files are at here [http://www.genet-
ics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/
F16P17_38/] .) Even though the F16P17_38 sequence is
orthologous to the bacterial hydroxyneurosporene meth-
yltransferases (EC 2.1.1.-) [43] it would be dangerous to
annotate it as such. A more reasonable annotation for this
query would be to annotate it based on subtree-neighbors
and hence call it a plant O-methyltransferase. An indica-
tion of this problem (besides a discrepancy between or-
thology bootstrap values and sequence similarity) is the
meeting of the following three conditions: A query se-
quence has (i) likely orthologs and (ii) likely subtree-
neighbors in other species than the query itself, yet (iii)
there is no significant overlap between the orthologs and
the subtree-neighbors.

We were unable to find convincing examples in the C. el-
egans and A. thaliana proteomes where wrong sequence
similarity based annotations might be caused by unequal
rates of evolution (as illustrated in Figure 2). This is not to
say that such cases do not exist in those two proteomes,
but they are likely to be quite rare. Similarly to the issues
described in the previous section, the detection of such ex-
amples is complicated by the fact that for many cases in
which a discrepancy between orthology bootstrap values

and sequence similarity exists, all sequences in the Pfam
alignment appear to have to same function, the Pfam fam-
ily is lineage specific, or the annotations are too poor/con-
fusing to make any kind of inference.

Conclusions
RIO is a procedure for automated phylogenomics. The
RIO procedure appears to be particularly useful for the de-
tection of first representatives of novel protein sub-
families. Sequence similarity based methods can be
misleading in these cases since every query is always
"most similar to something", whereas RIO can detect the
absence of orthologs.

Storm, Sonnhammer, and colleagues have recently devel-
oped similar ideas and procedures in a program called
ORTHOSTRAPPER [44,45]. One distinction between the
two approaches is that ORTHOSTRAPPER's orthology de-
termination procedure does not employ a species tree for
duplication inference; it uses a heuristic based on se-
quence similarity rather than a formally correct phyloge-
netic means of inferring orthology. Another distinction is
that ORTHOSTRAPPER uses uncorrected observed mis-
matches as a sequence distance measure, rather than esti-
mating evolutionary distances. In general, RIO brings
more of the power of known phylogenetic inference algo-
rithms to bear on the problem of proteomic annotation.

Super-orthology is a very stringent criterion. If a query se-
quence is likely to have super-orthologs, they represent an
excellent source to transfer functional annotation from. In
contrast, the absence of super-orthologs does not imply
that a function for a query sequence cannot be inferred (in
the two proteomes analyzed in this work, most sequences
appear to have no super-orthologs in Pfam 6.6).

Ultra-paralogs are sequences in the same species as the
query and are likely to be the result of recent duplications
and therefore might not have yet undergone much func-
tional divergence. Operationally, splice variants can also
be thought of as ultra-paralogs (at least as long as protein
sequences are considered).

Subtree-neighbors have two uses: (i) If the subtree-neigh-
bors of the query sequence exhibit (partial) agreement in
their functional annotations, the elements in which they
agree might be used to infer a (partial) function for the
query. This is useful for query sequences that are appear to
have no orthologs in the current databases. (ii) For query
sequences that do have orthologs, absence of overlap be-
tween the sequences considered orthologous and those
which appear to be subtree-neighbors raises a red flag, in-
dicating that the orthologs are in phylogenetically distant
species relative to the query. Transferring annotation from

Table 5: The numbers of sequences for which the orthology boot-
strap values do not correspond to sequence similarity

Thresholds Number of query 
sequences

O N R A. thaliana C. elegans

90% 10% 0.5 128 19
90% 10% 0.8 328 102
80% 20% 0.5 254 45
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such orthologs is risky. In this case, subtree-neighbors are
a more reliable source to transfer annotation from.

RIO outputs warnings if the distance of the query se-
quence to other sequences is unusually short or long, rel-
ative to other branch lengths on the tree. The usefulness of
this was not investigated in this work.

A RIO procedure based on Pfam alignments analyzes each
protein domain individually since Pfam is protein family
database based on individual domains [8]. In some re-
spects, it would be preferable to analyze whole protein se-
quences, but well curated databases of complete protein
alignments are not available (to our knowledge). Howev-
er, domain-by-domain analysis is not necessarily disad-
vantageous. Due to domain shuffling many proteins are
mosaic proteins, composed of domains with different ev-
olutionary histories [46,47]. For such proteins it makes
much sense to analyze each domain individually. Further-
more, mosaic proteins from sufficiently distant species
might be impossible to be aligned over more than one do-
main at the time, since they are unlikely to exhibit the
same domain organization. The same is true for multiple
copies of the same domain in protein: Each of them is an-
alyzed individually (such proteins often differ in their
number of domain copies and could therefore not be
aligned from end to end for the whole family).

In general, the concept of "annotation consensus" is very
important in this work (for example consensus between
subtree-neighbors, or between subtree-neighbors and or-
thologs). We have employed this notion loosely. A useful
future extension would be to incorporate automated an-
notation consensus detection into RIO. This would in-
clude annotation of internal nodes of a gene tree with a
"biological function". Automated consensus detection is
trivial for a highly formalized notation system, such as EC
numbers (the consensus of EC 1.1.1.3 and EC 1.1.1.23 is
EC 1.1.1, a oxidoreductase acting on the CH-OH group of
donors with NAD+ or NADP+ as acceptor [40]). Obvious-
ly, it is much more difficult to analyze natural language
annotations in the same manner. Perhaps this could be
accomplished by utilizing the set of structured vocabular-
ies of the Gene Ontology (GO) project [48] [http://
www.geneontology.org/] .
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