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Abstract

Background: The humoral immune system response is based on the interaction between antibodies and antigens for
the clearance of pathogens and foreign molecules. The interaction between these proteins occurs at specific positions
known as antigenic determinants or B-cell epitopes. The experimental identification of epitopes is costly and time
consuming. Therefore the use of in silico methods, to help discover new epitopes, is an appealing alternative due the
importance of biomedical applications such as vaccine design, disease diagnostic, anti-venoms and immune-
therapeutics. However, the performance of predictions is not optimal been around 70% of accuracy. Further research
could increase our understanding of the biochemical and structural properties that characterize a B-cell epitope.

Results: We investigated the possibility of linear epitopes from the same protein family to share common
properties. This hypothesis led us to analyze physico-chemical (PCP) and predicted secondary structure (PSS)
features of a curated dataset of epitope sequences available in the literature belonging to two different groups of
antigens (metalloproteinases and neurotoxins). We discovered statistically significant parameters with data mining
techniques which allow us to distinguish neurotoxin from metalloproteinase and these two from random
sequences. After a five cross fold validation we found that PCP based models obtained area under the curve values
(AUC) and accuracy above 0.9 for regression, decision tree and support vector machine.

Conclusions: We demonstrated that antigen’s family can be inferred from properties within a single group of
linear epitopes (metalloproteinases or neurotoxins). Also we discovered the characteristics that represent these two
epitope groups including their similarities and differences with random peptides and their respective amino acid
sequence. These findings open new perspectives to improve epitope prediction by considering the specific
antigen'’s protein family. We expect that these findings will help to improve current computational mapping
methods based on physico-chemical due it's potential application during epitope discovery.

Background

Living organisms often encounter a pathogenic virus,
microbe or any foreign molecule during it’s lifetime [1].
The B cells of the immune system recognize the foreign
body or pathogen’s antigen by their membrane bound
immunoglobulin receptors, which later produce antibo-
dies against this antigen [2,3]. The recognized sites on
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the antigen’s surface, known as epitopes, represent the
minimum wedge recognized by the immune system [4].
Therefore, epitopes lie at the heart of the humoral
immune response [5]. The rapid reaction to a previously
encountered antigen depends on the binding ability of
the antibodies found in the immune system of the
organism [6], the physico-chemical properties of the epi-
tope and it’s structural conformation [7]. Thus, under-
standing epitope characteristics and how they are
recognized, in sufficient detail, would allow us to iden-
tify and predict their position in the antigen [8].
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The main objective of epitope prediction is to design a
molecule that can replace an antigen in the process of
either antibody production or antibody detection
[4,9-11]. Such a protein can be synthesized in case of
peptides or in case of a larger protein, produced by
yeast after the gene is cloned into an expression vector
[12]. After 30 years of research, it is known that the
optimum size of peptides possessing cross-reactive
immunogenicity is between 10-15 amino acids [13]. The
earliest efforts made to understand and predict B-cell
epitopes were based on the amino acid properties, such
as flexibility [14], hydrophaty [15], antigenicity [7], beta
turns [16] and accessibility [17]. Epitope prediction is
important to design epitope-based vaccines and precise
diagnostic tools such as diagnostic immunoassay for
detection, isolation and characterization of associated
molecules for various disease states. These benefits are
of undoubted medical importance [18,19].

Recently developed prediction methods face several
challenges like data quality [20,7], a limited amount of
positive learning examples [21] or difficulty in choosing
an appropriate negative learning examples [22]. These
negative training samples may harbor genuine B cell epi-
topes and affect the training procedure, resulting in a
poor classification performance [23,24]. Moreover, none
of the published work took into account the protein
family or function to predict epitopes [25].

The present study explores the possibility of epitopes
belonging to same protein family share common proper-
ties. For these purpose, the amino acid statistics, physico-
chemical and structural properties were compared within
each other [26] for two protein’s group. This assumption
is based on previous studies showing that it exists amino
acid trends in composition and shared properties for
intravenous immunoglobulins [27]. Despite the difficulty
of distinguishing epitopes from non epitopes [28] the
addition of information, such as evolutionary and pro-
pensity scales, proved to be helpful for epitope prediction
[21]. Therefore, it is interesting to assume including
information about the protein antigen’s family may be
resourceful to improve prediction.

Methods

Dataset composition

We have obtained experimentally validated 106 linear B-
cell epitopes for two groups of antigens (metalloproteinases
and neurotoxins) extracted from Pubmed (http://www.ncbi.
nlm.nih.gov/pubmed/).

They were manually curated until September 2012 fol-
lowing several search criteria based on the keywords:
epitope, metalloproteinase, proteinase, peptidase, toxin
and neurotoxin in a joint and disjoint manner. The
redundancy was removed for repeated sequences using
100% identity as threshold and the maximum size of the
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epitopes was fixed to be equal or less than 32. As non
epitope data, we created 49 linear random peptides pro-
portional number to the mean of the amount of epi-
topes in the groups metallorproteinase and neurotoxin.
These random peptides are based on the statistics from
the dataset UniProtKB/Swiss-Prot, meaning that the
sum of the random peptides amino acids are equal to
the percentages found in uniprot database. The final set
contained 99 non redundant epitopes, containing
29 metalloproteinases, 70 neurotoxins and 49 random
peptides as showed in Additional file 1.

Feature selection for data mining analysis

In this study, we generated and used 33 physico-chemi-
cal parameters composed by aliphatic index, GRAVY,
isoelectric point, amino acid content in percentages,
amino acid groups such as hydrophobic (AVILMFYW),
positive charged (RHK), negative charged (DE), not
charged (STNQ) and specials (SGP) as described by
Gasteiger with the difference that each feature was
transformed to percentage removing the length differ-
ence for the epitope sequences [29]. Also 6 predicted
secondary structure properties such as strand, helix,
coil, relative surface accessibility, absolute surface acces-
sibility and z-fit which were calculated with Netsurf
algorithm [29]. These parameters were calculated for
the three groups in study (Metalloproteinase, Neuro-
toxin and Random) and the results where compared
using Welch two sample t-test available in the statistical
software R. In total, we evaluated 3 different matrices
for the classification purpose of discover how much
sequence-derived information was needed to obtained a
good classification. The first matrix based of purely PCP
information, a second with only PSS data and a third
one which was merely the addition of the PSS features
to the PCP matrix.

Selection of data mining methods and statistical analysis

The Konstanz Information Miner (KNIME) [30] was used
to evaluate Kmeans (KM), decision tree [31] (DT), naive
bayes classifier (NB), support vector machine [32] (SVM)
for the matrices generated with our dataset. The free soft-
ware environment R for statistical computing and graphics
was used to create the multiple regression models (LMR).
For LMR the nominal class variable was transformed into
a numerical variable for the two groups, a positive with
value 10g(0.99/(1-0.99)) for metalloproteinases and a nega-
tive been log(0.01/(1-0.01)) for neurotoxins. The linear
model function available in R was used to solve a series of
equations where the class variable was equal to the feature
variables. After solving the equations, a linear multiple
regression model was generated, a p-value was calculated
and the model was rejected for any p-value superior to
0.005. The predicted resulting score of the model was
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scaled (0 to 1) by using exp(predicted value./(1+predicted
value)) formula. The performance of all the generated
models was evaluated for every possible decision threshold
with ROCR package by using the parameters AUC (area
under the curve formed by true and false positive rates)
and accuracy, which gives an overall view of the perfor-
mance of the classification method used [33].

Results

Statistical differences of amino acid composition between
metalloproteinase and neurotoxin linear epitopes
compared with random sequences

The dataset contain 11 metalloproteinases and 16 neuro-
toxins. The two protein families (or group) respectively
contains 29 and 70 epitopes with an average sequence
length of 13.8 amino acids (aa). The minimum length was
4 aa and maximum 32 aa. The negative or non epitope set
contained 49 sequences of 14 aa length (Table 1).

These epitope groups also indicated variation when
compared to our non epitope control for the amino
acids K, C, A, V and I for metalloproteinases and R, K,
D, N, Q,C, A, I K, Mand W for neurotoxins (Table 2
columns 2 and 3). As expected, we also detected differ-
ences in other parameters such as aliphatic index, grand
average of hydropaty and isoelectric point (Table 2 last
three rows). Therefore, we were able to identify com-
mon characteristics in epitope’s composition within
unique antigen groups and differences between neuro-
toxin and metalloproteinase epitope groups.

Decision tree and multiple regression models can
distinguish linear B-cell epitopes from two different
antigen groups
We investigated our capacity to discriminate if an epi-
tope belonged to neurotoxin or metalloprotease based
on the statistical significant differences observed in epi-
topes amino acids composition, isoeletric point, gravy
and aliphatic index (Table 2). For this purpose, we used
five different methods: SVM, NB, DT, KM and LMR.
Our analysis used three different input matrices as
described before: Only physico-chemical properties
(PCP), only secondary structure (PSS) and the

Table 1. Dataset composition

Groups Proteins Epitopes Non epitopes
Uniprot 544996 - -
Neurotoxin 16 29 0
Metalloproteinase 11 70 0
Negative examples 13 0 49

The metalloproteinase and neurotoxin epitopes showed to be different from
each other showing a statistical dissemblance for a confidence interval of 95%
for the amino acids R, K, M and Y (Table 2, column 1). Also when compared
these epitopes to their respective proteins they showed differences for the
amino acids R, Q, V and M for metalloproteinases (Table 2, column 4) and D
and C for neurotoxins (Table 2, column 5).
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combination of both (PCP+PSS) for each algorithm. The
performances displayed as AUC values for all data
mining methods are showed in table 3. All the methods
with the exception of KM were able to group and distin-
guish correctly both groups of epitopes. As expected, the
best results were for SVM followed by similar perfor-
mance by much simpler techniques, LMR and DT.

During the use of PSS features as input, a reduction in
the performance of 0.1-0.3 AUC value was noticed for
MLR and NB techniques (Table 3). Only SVM and DT
obtained an AUC superior to 0.9 while all the other
methods performed poorly with AUC of 0.65 for LMR
and close to 0.5 for the others. The SVM technique per-
formed with an AUC of 1.0 for combined properties
while LMR showed a slight increase from 0.9 to 1.0. By
the other hand DT, NB and Kmeans stayed the same
(Table 3). These results indicate that the type of input
used (PSS or PCP) were not significant, where the mod-
els based on the PCP were the simplest to analyze and
understand. The most stable AUC results were obtained
with DT method where all the matrices analyzed
resulted in an AUC value around 0.95.

The techniques DT and LMR are statistical approaches
that showed results similar to SVM which is a non statis-
tical classifier. These methods allowed us to discriminate
the epitopes belonging to metalloproteinases or neuro-
toxins and to identify the important properties inside
these groups. The relevant features to classify the epitope
groups for the LMR and DT models can be found in
table 4.

We observed which amino acids were critical to differ-
entiate epitopes from neurotoxins and metalloprotei-
nases. In the case of LMR model, the amino acids
asparagine (N), glutamine (Q) and serine (S), and in the
case of DT model the amino acids lysine (K), aspartate
(D) and methionine (M) were the key to achieve good
classification (above 0.9 AUC) (Table 4).

Discussion

The amino acid composition has been investigated for
proteins related to the B-cell response [34] and as key for
understanding protein-protein interactions [35,36] along-
side their role during prediction of epitopes for both T
and B-cells [37]. Epitopes are rich in charged and polar
amino acids and low in aliphatic hydrophobic amino
acids, when comparing the epitope amino acid distribu-
tion to either the entire PDB database [38] or to the anti-
gen [39,40]. Also Rubinstein [39] suggested that the
amino acid Tyr is significantly over-represented in epi-
topes and that Val is significantly depleted. Interestingly,
the residues Arg and Lys are more frequent in the epi-
topes of our dataset along other differences as aliphatic
index and gravy. This particularities are probably a result
of focusing common features in a diverse epitope group,
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Table 2. Analysis of means for all datasets with Welch two sample T-test
Parameter p - values for a confidence interval of 95%
(1)ME vs NE (2)Random vs ME (3)Random vs NE (4) MP vs ME (5) NP vs NE
R (Arg) 0.0029 0.0762 0.0001 0.0241 04226
H (His) 0.0362 0.1046 0.1074 0.5636 0.7906
K (Lys) 0.0000 0.0113 0.0000 0.4098 04818
D (Asp) 0.0890 0.6994 0.0079 0.7091 0.0030
E (Glu) 0.9289 0.2681 0.0838 0.6696 04072
S (Ser) 0.2953 0.5024 0.3546 0.9630 0.8954
T (Thr) 04077 0.1867 0.3509 02199 04523
N (Ans) 0.1878 0.7647 0.0101 0.5880 04944
Q (GIn) 0.1509 0.9483 0.0039 0.8471 0.8185
C (Cys) 0.1821 0.0003 0.0000 0.0316 0.0075
G (Gly) 0.6979 02576 04620 03509 0.8450
P (Pro) 03156 05165 03781 02103 04271
A (Ala) 02121 0.0066 0.0000 0.1092 0.0756
V (Val) 0.0993 0.0019 0.2903 0.0550 0.1854
I (Ile) 0.2657 0.0068 0.0352 0.1286 03275
L (Leu) 01374 0.1182 0.0000 0.5549 02322
M (Met) 0.0017 0.0725 0.0000 0.0282 02477
F (Phe) 0.6997 04713 0.0765 0.7890 0.5818
Y (Tyr) 0.0023 0.5245 0.0000 0.8318 0.0938
W (Trp) 0.0889 0.9443 0.0244 05782 0.1221
Isoe.Point 0.0425 05190 05190 0.0425 03221
gravy 0.0672 0.0010 0.0000 0.0672 0.0514
Aliph. Index 0.0086 0.0000 0.0000 0.0086 0.8550

Values under p-value under 0.05 are writen in bold. IC = 95%, HO = Difference in means is cero. Hi = Difference in means is not equal to zero. Metalloproteinases
epitopes = ME, Neurotoxin epitopes = NE, Metalloproteinase proteins = MP, Neurotoxin proteins = NP, Random = Random sequences.

phenomena which was evidenced in the amino acids
composition found in epitopes for papilloma viruses [22].
The PCP based methods have been explored in detail for
epitope prediction [40] with some limitations in terms of
specificity and precision as seen in models for SVM with
AUC values of 0.85 for amino acid composition and 0.58,
where the accuracy never surpass 0.8 [26].

Our study suggests an improvement in performance
when a single epitope group is targeted, resulting in AUC
and accuracy superior to 0.9. We included groups of
amino acids based on type of charge and lateral chain
due to the the concept of amino acids working coopera-
tively in protein:protein interfaces [41]. Our results indi-
cate that these amino acid groups such as hydrophobic,

Table 3. Performance of all data mining methods showed
in AUC and accuracy

Matrix PCP PSS PCP+PSS
Models AUC Accuracy AUC Accuracy AUC Accuracy
SVM 1 1 1 1 1 1
MLR 0.986 0.952 0.655 0.714 1 1
DT 0.957 0.962 0.921 0.943 0.943 0.952
NB 0.8 0.838 0.521 0.667 0.793 0.838
KM 0493 0.667 0.509 0.681 0.507 0.667

Table 4. Properties used by the classification models

until 8° order out of 39

Classification Model: Linear Multiple

Regression

Order PCP PSS PCP+PSS

10 Statistic of N Z-fit Statistic of E
20 Statistic of Q ASA Statistic C Atoms
30 Statistic of S RSA Statistic of N
40 Statistic of T Strand index Statistic of Q
50 Uncharged STNQ Helix index Statistic of S
6° Special CGP Coil index Statistic of T
7° Statistic H Atoms - Uncharged STNQ
8° Statistic C Atoms - Statistic H Atoms

Classification Model: Decision Tree

Order pcP Pss

10 Statistic of K Z-fit

20 Statistic of D RSA

30 Statistic of M ASA

40 Statistic S Atoms Strand index
50 Statistic of | Coil index
6° Statistic of W -

70 Statistic of Y -

80 Isoelectric point -

PCP+PSS
Statistic of K
Statistic of D
Statistic of M

Statistic S Atoms
Statistic of |
Statistic of W
Coil index
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polar, or special amino acids (CGP), do not posses signifi-
cance for the prediction models by themselves but may
add value when combined with single amino acid
statistics.

The secondary structure of epitopes was also investi-
gated by several authors [42-44], and epitopes are in
general reported to have significantly less strands and
helices and significantly more loops compared to the
rest of the antigen [8,38]. The over-representation of
loops is small but significant and in agreement with the
perception that protein-protein binding sites are flexible
regions [41]. The overall secondary structure of epitopes
has been reported to been different from regular pro-
tein-protein interfaces [23] based on crystals available
on the PDB indicating some structural particularities of
the Ab-Ag interaction [45]. These particularities could
be also family restrictred which could be interesting to
explore with computational methods despite of having
an accuracy of 79% when predicted from sequence [46]
but the DT outcome showed no real relevance in PSS
features when applied to epitope classification. The
inclusion of predicted secondary structure as commonly
done [40] could be a source of misleading results for
the prediction, issue which has been reviewed briefly in
the literature [47].

The features that characterize each epitope’s group
could represent the complementary data needed to
improve epitope prediction. For example, when adding
evolutionary information to the prediction the perfor-
mance was improved [48] despite recent studies that
explain no relation exits between epitope and antigens
sequences [28]. Therefore, we showed that a wide range
of data mining methods including support vector
machine [21], decision tree [48], regression [26] and
Naive Bayer classifier had similar successful results
bringing some light to the question of which character-
istics are important for these epitope groups. It’s impor-
tant to note that we used amino acid percentage [4] in
comparison with some recent epitope prediction meth-
ods that prefer propensities [12]. The data normalization
made in the present study are based on the assumption
that each feature is equally relevant for any protein
sequence based analysis [9]. We also demonstrate that
despite the method, it was possible to classify the stu-
died groups, pointing out the importance of the quality
of the used data [49].

Conclusions

Our study indicates that linear epitopes that belong a sin-
gle protein family share common properties but different
when compared to epitopes from different families, as
demonstrated for neurotoxins and metalloproteinases.
We confirmed our hypothesis with five different data
mining algorithms, probabilistic and non probabilistic,
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showing similar results except for Kmeans. The proposed
models allowed to separate the studied groups from ran-
dom sequences based on Uniprot statistics. The models
based only in PCP features were enough to show and
identify the differences between epitope groups. There-
fore, we demonstrate that considering the epitope’s pro-
tein family can reveal unseen patterns within epitope
groups that could be used to improve epitope discovery.

Additional material

Aditional file 1: The datasets composed of the sequences used in
this work is available in this .csv file, containing four columns. First
column shows the pubmedID of the paper from which the sequence
was extracted. The second column contains the sequence. The third
collumn contain the sequence IDs from genebank, uniprot or pdb,
databases. The fourth column contains the class of the sequences which
can be neurotoxin, metalloproteinase or random. The column separator
in this .csv file is a standart semicolon *;".
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