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Abstract

Background: We present a physically-based computational model of the light sheet fluorescence microscope (LSFM).
Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image
formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens
that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-
plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic
characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen.

Results: We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed
from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed,
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and the results of the fluorescence model were quantitatively validated against the fluorescence brightness
equation and characteristic emission spectra of different fluorescent dyes.

Background

Light sheet fluorescence microscopy is a significant non-
destructive imaging technique with growing importance
for neurobiology. It is used to reconstruct and build
detailed three-dimensional atlases of entire brains at cel-
lular resolution, see e.g. [1] for application to a zebrafish
brain. Compared to widefield fluorescence or confocal
microscopes, this technology is capable of scanning
thick transparent tissue samples tagged with fluorescent
substances with minimal damaging effects such as
phototoxicity and photobleaching [2,3]. The recent
advancements in LSFM techniques have turned it out to
be an extremely convenient tool for optical sectioning
large and clarified specimens to reconstruct their struc-
tural aspects [4,5].

Whole brain datasets at cellular resolution open novel
avenues for quantitative analysis and provide valuable
input to detailed computational modeling of brain tis-
sue. A good understanding of the microscopy optical
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components and the fluorescence effects is crucial for
properly interpreting the resulting images. Once the
optical path is understood and the physics of the light
passage and fluorescence are carefully modeled, it is
possible to go one step further: starting from a compu-
tational brain tissue specimen one can forward compute
the resulting images of a simulated LSFM. Such an in
silico [6] microscope using physics simulations is poten-
tially useful in neurobiology for accurate validation of
computational brain models against biological data mea-
sured in the wet laboratory. Moreover, this system can
have significant application in other research fields such
as microscopy and image processing. For instance, it
can be employed as a virtual imaging platform to predict
the performance of different microscopic setups for
given experimental conditions. Furthermore, it can be
utilized to systematically assess the quality of automated
image processing algorithms and workflows used for
quantitative analysis.

We propose a computational model of the LSFM to
generate unbiased physically-plausible fluorescent
images adhering to the energy conservation law, aiming
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to making them comparable to those produced by the
actual imaging system. Using Monte Carlo ray tracing
and physical principles of geometric optics, our model
simulates the image formation process in the LSFM
including its main components: the illumination system,
the acquisition system and light interaction with fluores-
cent volumetric models that reflect the content of real
biological specimens.

We also introduce a new model for rendering fluores-
cent volumes using the intrinsic characteristics of fluor-
escent dyes and then evaluate the accuracy of this
model in comparison to the fluorescence brightness
equation (FBE) and the emission spectra measured in
the laboratory.

Related models in computational microscopy

Although there are no previous reported investigations for
simulating the imaging pipeline of the LSFM, several
research studies have presented other computational
simulators for creating synthetic images produced by simi-
lar microscopes. The models developed in these studies
can be classified using Ferwerda’s definition of realism in
synthetic image generation into physically-plausible and
visually-plausible models [7].

To model an optical microscope on a physically-plausi-
ble basis, it is necessary to simulate the main light phe-
nomena that contribute to the image formation process
such as absorption, scattering, reflection, refraction, dif-
fraction and fluorescence. This simulation computes the
amount of light being detected by the imaging sensors of
the microscope relying on the principles of conservation
of energy. In contrast, visually plausibility can be
achieved by creating a synthetic image that has the same
visual appearance of the real one using statistical shape
modeling, color manipulation, and image processing fil-
ters with controllable parameters. For example, visual
plausibility of fluorescence can be achieved by modifying
the colors of a non-fluorescent object to mimic an image
produced by a fluorescence microscope. In turn, visually-
plausible microscopy models cannot be reliably used for
systematically validating an in-silico tissue construction
process. Nevertheless, they can be very helpful for evalu-
ating the quality of automated post-processing workflows
that are used for the analysis of various image stacks pro-
duced by different kinds of microscopes.

Svoboda et al. followed this approach and presented a
multi-stage visually-plausible model for simulating the
image acquisition process of the conventional fluores-
cence microscope [8]. This model was used to assess the
performance of their automated segmentation techniques
that have been developed to analyse realistic fluorescent
image stacks. Lehmussola et al. designed a computational
framework for simulating microscopic fluorescent images
of cell populations [9,10]. This framework was developed
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to compare the performance of several analysis methods
for automated image cytometry. A similar workflow has
been presented by Malm et al. to simulate the bright-
field microscope [11]. It was used to generate synthetic
cervical smears images to validate the analysis of large-
scale screening algorithms of cervical cancer and mam-
mography images.

Building computational models for simulating micro-
scopic optical pipelines on a physical basis is relatively
complex and requires a lot of design and implementation
considerations. Kagalwala et al. developed a computational
model of the image formation process of the differential
interference contrast (DIC) microscope that can simulate
the variations of the phase of the light waves transmitted
through the specimen [12-14]. They used polarized ray
tracing [15] and approximations of the diffraction artifacts
to compute the light propagation through the specimen
and the optical elements of the microscope, presenting a
first step to combine the concepts of computer graphics
and physics for serving computational biology. This model
was applied later to reconstruct the optical properties of
unknown three-dimensional biological specimen [16-18].
Preza et al. proposed another imaging model of the DIC
microscope under partially-coherent illumination [19].
Dye et al. presented a similar ray-tracing-based model to
simulate the imaging of three-dimensional translucent
specimen lit with incoherent light [20]. Their model was
also used to address the inverse problem of reconstructing
the characteristics of unknown volumetric specimen.
Based on the same principle, Sierra et al. presented a sim-
plified model of phase propagation within a transparent
specimen using the point spread function (PSF) to repre-
sent the optical transmission response of the phase con-
trast microscope (PCM) [21]. Tanev et al. presented
another model for the PCM based on finite-difference
time-domain simulation and a realistic three-dimensional
model of the biological cell [22].

In principle, fluorescence microscopes can be modeled
relying on the same methods described by Kagalwala [12]
and Dye [20], however, due to the absence of convenient
and intuitive mathematical models of fluorescence in
computer graphics, there is no existence for physically-
based models for the fluorescence microscope in general
and the LSFM in particular.

The following section briefly reviews the existing
fluorescence modeling contributions in computer gra-
phics to date. In the methods section, we explain the
formalism of these models and their limitations that
motivated us to develop and present our fluorescence
model and the in silico LSFM in consequence.

Prior work in fluorescence modelling
There are numerous research studies in computer gra-
phics that simulate light transport in participating media
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[23]. The majority of these studies modeled several light
phenomena that are interpreted by the ray theory of light
such as absorption, scattering, reflection and refraction.
We found no deep investigations of modeling fluorescence
in the literature. Fluorescence was ignored for several rea-
sons, including its little practical value for rendering nat-
ural scenes, and the absence of convenient spectral
rendering frameworks that could handle fluorescence effi-
ciently [24,25].

Glassner presented the first steps towards a correct
formulation of the rendering equation to account for
fluorescence emission in participating media [26]. The
formalism of this model has not reflected the distinct
properties of the fluorescent media. Cerezo et al. [27,28]
and Gutierrez et al. [29,30] developed further extensions
to Glassner’s model to account for these properties for
the purpose of rendering the fluorescent pigments in
the ocean. These extensions were limited in two aspects:
they ignored the actual spectral profiles of the fluores-
cent materials, and they were not validated against theo-
retical laws nor experimental measurements. Our
fluorescence extension is presented to fill this gap.

Other extensions for Glassner’s model have been formu-
lated to treat the fluorescence as a surface phenomenon
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using re-radiation matrices [24,31-34], but the discussion
of these models is out of scope.

Methods (LSFM modeling)
LSFM description
An optimal LSFM generates a stack of fluorescent optical
sections from a clarified brain tissue using a fixed thin
sheet of light that intersects a moving specimen. Fluores-
cence excitation and detection are split into two perpen-
dicular and decoupled light paths. The illumination plane
excites the fluorescent targets within the specimen. The
emitted fluorescence is collected by an objective lens
(detection objective) and projected to the charged couple
device (CCD) camera of the detection unit using a tube
lens. The LSFM generates high axial resolution optical
sections because the illumination unit is synchronized
with the acquisition unit, aligning the light sheet with the
focal plane of the detection objective. A set of filter cubes
is installed between the CCD and the detection objective
to eliminate the light contributions caused by elastic scat-
tering [2]. A top view diagram of the main components
and bench setup of the LSFM is shown in Figure 1.

A physically-plausible simulation of the LSFM requires
accurate modelling of the illumination and acquisition
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Figure 1 A simplified top view diagram of the LSFM showing its main components and relative optical setup. The close up highlights
the approximate rectangular profile of a Gaussian sheet intersection with the specimen.
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stages of the system in addition to modeling the light inter-
action with fluorescent-tagged specimen volumetric mod-
els. Based on geometric optics and the laws of conservation
of energy, our simulation uses Monte Carlo ray tracing to
compute a fluorescent image that accurately reflects the
light propagation in the LSFM. The model takes into con-
sideration the basic optical setup and operational aspects of
the microscope as well as the light-specimen interaction.
However, the current state of the model ignores wave
effects, mainly diffraction, interference and polarization.

lllumination unit model

The core of the illumination system guides a single-wave-
length laser beam into the optical path of the LSFM via a
set of optical elements including mirrors, beam splitters,
and optical fibers. Using a beam expander, cylindrical lens
(typically with a focal length = 150 mm), and an objective
lens (illumination objective), this illumination unit
expands the input laser beam into a thin light plane (typi-
cally 2 - 15 ym thick) that is aligned with the focal plane
of the objective lens in the detection unit. Although the
light sheet can be produced without the illumination
objective, the presence of this element is crucial to remove
the aberrations caused by the cylindrical lens, and thus
improving the quality of the generated light sheet.

The simulation of the entire illumination unit on an ele-
ment-by-element basis starting from the laser source and
until the generation of the light sheet is computationally
expensive and practically infeasible. An alternative way for
performing this simulation is the direct modeling of the dif-
ferent aspects of the resulting light sheet and ignoring the
complexity of its underlying generation mechanisms. These
aspects include its spatial extent, geometric profile, power
distribution, and wavelength. Traditional LSFMs use Gaus-
sian beam illumination to excite the specimen. The geome-
try, illumination profiles, and field of view (FOV) of the
Gaussian light sheet depend on the diameter of the input
laser beam and the numeric aperture (NA) of the illumina-
tion objective. This sheet has a hyperbolic light profile with
a Gaussian intensity distribution that is perpendicular to
the propagation direction. A fundamental limitation of this
illumination scheme is the rapid divergence of the beam
(edges are 41% thicker than the beam waist) that prevents
the creation of a uniform thin light sheet with large FOV,
see Figure 1. The object positioned within the area of the
beam waist is sectioned by a light sheet of almost a con-
stant thickness. Consequently, a focused Gaussian beam
can be fairly approximated by a rectangular profile [35].
This issue was resolved in advanced LSFMs that
have replaced the Gaussian illumination with propagation-
invariant Bessel [36] and Airy [37] beams that can yield the
same axial resolution and tenfold larger FOV.

Based on the approximation of the Gaussian beam,
we have modeled the light sheet by a thin rectangular
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directional area light with uniform illumination intensity
profile and a single excitation wavelength. This model
does not have any constraints for LSFMs with Airy and
Bessel illuminations, but it is only valid for Gaussian
beams when the illumination objective has high NA and
small FOV. However, if the lateral dimension of the spe-
cimen is relatively small, the approximation of the light
sheet model is still effective [38].

Modelling light-specimen interaction

When the illumination plane excites the different
fluorescent targets in the specimen, they emit isotropi-
cally in all the directions. The spectral power distribu-
tion (SPD) of the emitted fluorescence does not only
depend on the power of the exciting light sheet, but it
also depends on the intrinsic properties of the fluores-
cent materials (fluorophores) attached to these targets,
the concentration of the fluorophores in the tissue,
and the wavelength of the exiting laser beam [39].

A physically-based simulation of the interaction
between the light and fluorescent specimen model is
subject to the existence of a rendering system capable of
handling inelastic volume scattering events. Further-
more, it has to accurately calculate the emission SPD
profiles in terms of the parameters of the input laser
beam and fluorophores embedded in tissue.

We have developed an extension to Glassner’s fluores-
cence model to account for the intrinsic characteristics of
the fluorophores including their excitation and emission
spectra, extinction coefficients and quantum yield. This
extension, discussed in the following section, does not
account for quenching nor photobleaching. Table 1 gives
a summary of all the relevant terms used in this article.

Table 1. Summary for all the important symbols
appeared in the text

Aex Excitation wavelength

A Emission wavelength

p Point in the 3D space

Ps Point on the detector surface
@ Incoming direction

' Scattering direction

S Source term of the RTE

fox Fluorophore excitation spectrum

forn Fluorophore emission spectrum

Lye Radiance emitted from point p

L Incoming radiance to point p

/ Light flux

Ipn Light flux density

(oA Scattering coefficient
Absorption cross section

p Phase function

[0} Quantum yield
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Our fluorescene extension

The radiative transfer equation (RTE) governs the trans-
fer of energy in the participating media [25]. The source
term S(p, w) of the RTE is defined by Equation (1)
where L. is the self-emitted radiance at direction w, o;
and p are the scattering coefficient and phase function
of the medium respectively, and Li(p, o) is the incom-
ing radiance from direction ' at point p, see Figure 2.

S(p, @) =Lye (p, ®) + [Us(p, o) /sz" p(p, @, ®)Li (p, ) dw/] (1)

This equation takes into account emission, absorption,
and elastic scattering events only. Glassner has extended
this equation to account for inelastic scattering by add-
ing a term called fluorescence efficiency Py (p, L I Acy)
that reflects the energy redistribution for each emission-
excitation wavelength pair and an integration of the
radiance over all the visible wavelengths of the spectrum
R, [26]. His extension was limited to the correct formu-
lation of the full radiative transfer equation (FRTE),
shown in Equation (2), but he did not give enough ela-
boration on the fluorescence efficiency term.

S(p, @, 4) = Lye(p, @, 2)+
0., | / o o)D) i) ()
Rv b Q47r
Li(p, @', Aex) do’ dAex]

An extensive discussion of this term was presented
later by Cerezo et al. [27,28] and Gutierrez et al. [29,30]

—Elastic Scattering
Li(wia )‘)
S(p7 w, A) Li ((;Jé, )\)

Li(wé’ )‘)

— Inelastic Scattering (Fluorescence)
L; (wi ) /\/1)
S(p,(d,)\) Li(wé, /2)

Li(wéa IS)

Figure 2 Simple representation for elastic and inelastic
scattering events at a point p.
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to simulate the inelastic scattering of ocean waters. In
this discussion, the fluorescence efficiency term was
redefined as the wavelength redistribution function f,
(Aex» M) that represents the efficiency of the energy
transfer between the different wavelengths in terms of
the excitation A., and emission wavelengths A. This
function, Equation (3), was expressed by an absorption
function g,(Aex), a fluorescence emission function /,(1),
the quantum vyield ¢(p), and the wavelength pair.

s ) = () Bo(2) $(p) 2 ®

The absorption function was assumed to be a binary
response that is equal to 1 only if 370 <A, <690 and zero
otherwise. Moreover, the fluorescence emission function
h,(L) was oversimplified by the Gaussian function shown
in Equation (5), where A is the maximum emission wave-
length and A is the wavelength standard deviation.

1,if 370 < dex < 690

8p(fex) = [O, otherwise ) )
1 (2 —40)?

hy(2) = exp —2 %) 5)

V2 h, 2(4s)?

In fact, this model is not valid to accurately express
the fluorescence emission in terms of the spectral char-
acteristics of the fluorescent material used in a real
experiment. Our extension is presented in Equation (6)
to overcome this limit. The energy transfer from excita-
tion wavelength A., to the emission wavelength A is pri-
marily determined by the relative contribution of the
excitation spectrum f., at A,. The emission power at A
is scaled by the emission spectrum f,,,, at A and the
quantum yield ¢ of the material. Finally, due to the iso-
tropic emission, the phase function of the inelastic term
is substituted by 1/4n. Putting all the terms together,
our extended fluorescence model can be described by
Equation (7), where the term F (p) is the binary fluores-
cence function that is equal to 1 if the point p is fluor-
escent and 0 otherwise. This equation is the basis of our
simulation of the light sheet interaction with the fluores-
cent tissue models of the specimen in our LSFM model.

Pr(p, 4 < Lex) = fex(Pr Aex)fem (P, 4) ¢ (P) (6)

S(p, @, 2) = Lye(p, @, A)+
[ o(p. ) /R V /Q (P ) fslp. 40) 60)

Li(p, @, Aex) do’ dlex] x F(p)+

[as(p, o) [ o0, ) Lto, ) dw/} x [1 = F(p)]

(7)
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Acquisition system model

There are two main lenses in the acquisition unit: the
detection objective that collects the emitted fluorescence
from the specimen across the entire FOV, and an infinity-
corrected tube lens that projects the intermediate image
on the CCD. The coupling between the two lenses form a
telecentric lens system that produces an orthographic view
of the acquired optical section. As shown in Figure 3, the
acquisition unit can be modeled by a thin lens ortho-
graphic camera with finite aperture to simulate the depth
of field effects [40,25]. This model provides an accurate
simulation of the image formation process in the real
microscope, however, its performance is subject to either
high sampling rates or importance sampling techniques of
the virtual lens to avoid a noisy image due to Monte Carlo
integration. The spectral filters are modeled with a trans-
parent layer of the same dimensions as the film, placed in
front of the camera. The acquisition module is synchro-
nized with the illumination stage to focus on the specimen
where the illumination sheet is applied.

System design and implementation
Our visualization system is composed of two cascaded
phases: (1) virtual specimen generation, and (2) optical
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section rendering. In the first phase, the brain tissue
model is prepared and converted into a volumetric
fluorescent-tagged virtual specimen. This tissue model is
extracted from a neural microcircuit composed of
around 31000 neuronal morphologies and their synaptic
connections. A detailed description of the microcircuit
building is discussed in [41].

The neuronal morphologies are converted into three-
dimensional polygonal mesh representations relying on
an automated method presented by Lasserre et al. [42].
The spatial information of the neurons are retrieved
from the microcircuit to reconstruct a tissue block com-
posed of a group of neurons. A fluorescent tag is
assigned to each neuron in this block, and finally, a
GPU-based solid voxelizer is employed to convert this
mesh-based block into the final virtual specimen.

After the generation of the neuronal tissue model, the
rendering stage simulates the optical sectioning process
of the LSFM. This stage requires a spectral rendering
engine that can represent the light radiance by SPDs
instead of the basic tri-stimulus RGB representation.
Several rendering systems have been developed recently
to meet this requirement such as LuxRender [43], Mit-
suba [44] and PBRT [45]. Our system was implemented
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Figure 3 Comparison between the acquisition system of the LSFM and our model. The coupling between the detection objective lens and
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on top of PBRT for various reasons including its main-
tainability, the presence of good documentation describ-
ing the entire architecture of the toolkit, and its
underlying implementation [25].

The light sheet model is implemented as a directional
area light source with rectangular shape, uniform illumi-
nation power and single excitation wavelength. The
characteristics of this virtual light sheet are defined by
the profile of the light sheet waist and the wavelength of
the laser unit used in the experiment.

The interaction of the synthetic light sheet and the
virtual specimen is implemented in a single scattering
fluorescence volume integrator that uses ray marching
to evaluate the integral of the radiative transfer equa-
tion. This integrator is extended from an existing imple-
mentation of a wavelength-independent single scattering
integrator that can only model elastic scattering events.
Our extension accounts for both elastic and inelastic
scattering events using a binary fluorescence coefficient
that is equal to one if the point sampled along the path
is fluorescent and zero otherwise. The fluorescence term
considers the distinct properties of different fluorescent

Page 7 of 13

materials represented by their emission and excitation
spectral profiles and their quantum yield.

The rendering of multiple fluorescent structures
embedded in a single volume object requires a different
design for the volume representation in PBRT. An anno-
tated fluorescent volume grid is implemented to add the
capability of rendering heterogeneous fluorescent struc-
tures. This grid stores at each voxel the spatial density
representing the concentration of the dye and an index
that refers to the intrinsic properties of this fluorescent
dye.

The acquisition system is implemented with an ortho-
graphic camera that has a finite aperture lens. The focal
plane of this virtual camera is synchronized with the
position of the light plane. This synchronization is man-
datory to obtain in-focus optical sections from the vir-
tual specimen when the thickness of the light sheet is
relatively small. A transparent two-dimensional plane
with the same dimensions of image plane is added
before the camera to model the emission filters in the
real microscope. A spectral validation framework was
integrated into PBRT to quantitatively measure the

voxelization.

Figure 4 Surface rendering of a neuronal mesh model extracted from a microcircuit reconstructed from the cortex of a young rat. The
size of this block is 100 um?. The virtual specimen was created by converting this model into a fluorescent tagged-volume using solid
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Figure 5 In silico optical sectioning. (Left) Synthetic optical sections generated from the GFP- (top), RFP- (middle), and CFP-tagged (bottom)
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emitted power spectrum in the scene as well as the
spectral radiance arriving at the film.

Results, validation and discussion
The results of our in silico LSFM have been demon-
strated on a block of 100 um® that was extracted from a
microcircuit of the somatosensory cortex of a two-weeks
old rat (Figure 4).

After the voxelization of this model, three virtual spe-
cimens were created and labeled with green fluorescent
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protein (GFP), red fluorescent protein (RFP), and cyan
fluorescent protein (CFP). These fluorophores were
selected due to their significant applications in neuro-
biology. Their intrinsic characteristics were obtained
from the fluorophore database found at [46].

A thin light sheet (5um) was used to sample the
model and generate high resolution optical sections for
each virtual specimen. The current structural limitations
of the tissue model do not allow to perform systematic
and quantitative comparisons between a synthetic and

Figure 6 Rendering an optical section from the GFP-tagged specimen with multiple light sheet thicknesses: (A) 5, (B) 7.5, (C) 10, and
(D) 12.5 um. The increased blur with thicker light sheets is due to the detection of out-of-focus light rays.
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real optical section. However, the spectral content of
each image is quantitatively analysed and compared to
the relative emission SPD of its corresponding fluoro-
phore. Figure 5 shows the result of rendering different
optical sections from the virtual specimens upon excita-
tion with their corresponding maximum excitation
wavelengths. The emission SPDs were computed for dif-
ferent excitation wavelengths between 355 and 561 nm.
The detected spectral densities with our rendering
workflow match the characteristic emission profiles of
the three fluorophores.

The axial resolution of the LSFM is inversely propor-
tional with the thickness of the illumination sheet due
to out-of-focus light contributions. The variation of the
light sheet thickness is addressed to evaluate the mod-
eling of the acquisition unit and its synchronization
with the illumination one. Figure 6 shows the effect of
increasing the thickness of the light sheet on the qual-
ity of the rendered optical section. The same optical
section from the GFP-tagged specimen is rendered at
four different light sheet thicknesses: 5, 7.5, 10, and
12.5 ym respectively.

Rendering performance

In general, the performance of rendering physically-
based images depends on several factors including the
sampling rate of the Monte Carlo integrator, the pixel
sampling density of the image (number of sample per
pixel) and the resolution of the image. High sampling
rates are crucial to reduce the Monte Carlo noise. The
rendering performance of our system depends on two
more parameters: the depth of the optical section and
the thickness of the light sheet. 32 samples per pixels
were used to render our results at resolution of 10247,
The rendering time of the synthetic optical sections in
Figures 6 and 5 varied between 103 and 120 minutes.

Fluorescence brightness validation

Although the distribution of the detected emission spec-
tra in our in silico experiments (Figure 5) matches the
exact emission profiles of the fluorescent dyes used in
reality, a quantitative measure of the total number of
detected photons is required to fully validate our fluor-
escence extension model defined by Equation (7) and to
verify the integrator implementation in PBRT. This vali-
dation is feasible if the virtual specimen is represented
by a homogeneous fluorescent media with defined
volume geometry. To simplify this procedure, the virtual
specimen was modeled by a three-dimensional homoge-
neous cube (2 um®) with low molecular absorption cross
section (3 x 1071° ¢m?). This cube was aligned to the
intersection point of the illumination and detection
axes. To ensure uniform and maximum excitation of
this testing volume, the dimensions of the light sheet
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Figure 7 The configuration and optical setup of the LSFM in
the validation experiment. S, F and L indicate the specimen, the
filter, and the lens with finite aperture.

were set to illuminate the entire cube. The emission was
recorded from two opposite directions to double check
the results. In theory, the recorded photon counts by the
two cameras should match, but they would slightly vary
due to Monte Carlo integration. The setup of our in
silico LSFM for this validation experiment is illustrated
in Figure 7.
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12

Emitted Photon Count
o]

| x1012
1 2 3 456 7 8 9 10

Incident Photon Count
Figure 8 Comparison between the number of photons
calculated from the FBE and those detected from the
simulation in PBRT using our fluorescence model.
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A

The laser intensity of the exciting light sheet was var-  absorption cross-section o, its quantum yield and the
ied between (1 - 10) x 10'* photons. The detected flux of the incident light beam I, where F (p) = ¢ I ¢.
photon count was integrated over the surface area of Assuming isotropic emission, the number of fluores-
the virtual sensor and compared against the total num-  cent photons measured at a two-dimensional plane facing
ber of fluorescent photons computed from the FBE [47].  any of the six planes of the cube can be computed from

The FBE expresses the fluorescence produced by a  Equation (8), where N is the concentration of fluorophore
fluorescent molecule F (p) in terms of its molecular in the volume, A is the surface area of the illumination
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sheet, [ is the path length of the excitation light in the
volume, I is the intensity of the illumination in number of
photons, and I, is the intensity flux density in photons
per cm®.

1
FFBE = 4— I¢A 05N¢Al
" (8)
=—1I1o;N¢l
4 os N ¢

The total detected number of fluorescent photons on
the virtual CCD surface F; is computed from the double
integral in Equation (9), where I(ps, A) is the SPD mea-
sured at each point on the surface p.

FS=/AS/RVI(pS, 1) d2 dA, )

Figure 8 shows the validation results of our testing
experiment. The total number of fluorescent photons
computed from the resulting images by Equation (9) is
compared against the FBE in Equation (8).

Conclusion and future work
We presented a complete computational model of the
LSFM, based on geometric optics and Monte Carlo ray
tracing to simulate the light transport in the pipeline of
the microscope. An extension to previous fluorescence
models was formulated and discussed to simulate the
light interaction with fluorescent specimens. This exten-
sion was validated by comparing the results obtained
with our rendering pipeline against the emission spectra
of different fluorescent dyes and the brightness equa-
tion. Our LSFM simulation was used to visualize differ-
ent fluorescent-tagged specimen models reconstructed
from a rat cortex. The modeling aspects of the illumina-
tion and acquisition units were qualitatively analysed by
varying the thickness of the illumination sheet and
observing the resolution of the resulting optical sections.
The code is released on GitHub at https://github.com/
BlueBrain/pbrt. Figure 9 presents an overview of the
entire system and shows all the simulation parameters.
We are working on extending the presented LSFM
model in several directions to improve its realism. A
special focus is given to simulating the missing diffrac-
tion artifacts within the ray tracer based on the reflec-
tance model proposed in [48]. The simplified model of
the light sheet will be improved to add the capability of
simulating the interaction between Gaussian light sheets
and wide specimen. To simulate the aberration caused
by the detection objective, the current thin lens model
in the acquisition system will be replaced by a realistic
camera model based on the work presented by [49] and
[50]. After adding these improvements, the performance
of the entire microscope will be evaluated and compared
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to realistic microscopic images. Although the current
tissue model limitations do not permit any quantitative
analysis between our synthetic images and the real ones,
we will use testing beads with pre-defined geometry to
perform this analysis. Accelerating the performance of
the system will be considered by reimplementing the
entire workflow on the GPU.

List of abbreviations used

3D: Three-dimensional; CCD: Charged Coupled Device; CFP: Cyan
Fluorescent Protein; DIC: Differential Interference Contrast; FBE: Fluorescence
Brightness Equation;FRTE: Full-Radiative Transfer Equation; FOV: Field of
View; GFP: Green Fluorescent Protein; GPU: Graphics Processing Unit; LSFM:
Light Sheet Fluorescence Microscopy; NA: Numeric Aperture; PBRT:
Physically-based Rendering Toolkit; PCM: Phase Contrast Microscopy; PSF:
Point Spread Function; RFP: Red Fluorescent Protein; RTE: Radiative Transfer
Equation; SPD: Spectral Power Distribution.
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