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Abstract

incorporated instead.

are useful for practical applications.

Background: Secondary structures prediction of proteins is important to many protein structure modeling
applications. Correct prediction of secondary structures can significantly reduce the degrees of freedom in protein
tertiary structure modeling and therefore reduces the difficulty of obtaining high resolution 3D models.

Methods: In this work, we investigate a template-based approach to enhance 8-state secondary structure
prediction accuracy. We construct structural templates from known protein structures with certain sequence
similarity. The structural templates are then incorporated as features with sequence and evolutionary information to
train two-stage neural networks. In case of structural templates absence, heuristic structural information is

Results: After applying the template-based 8-state secondary structure prediction method, the 7-fold cross-
validated Q8 accuracy is 78.85%. Even templates from structures with only 20%~30% sequence similarity can help
improve the 8-state prediction accuracy. More importantly, when good templates are available, the prediction
accuracy of less frequent secondary structures, such as 3-10 helices, turns, and bends, are highly improved, which

Conclusions: Our computational results show that the templates containing structural information are effective
features to enhance 8-state secondary structure predictions. Our prediction algorithm is implemented on a web
server named “C8-SCORPION" available at: http://hpcr.cs.odu.edu/c8scorpion.

Background

An important intermediate step in modeling the three-
dimensional structure of a protein is to accurately predict
its secondary structures [1]. Most often, the secondary
structures are classified into three general states, i.e.,
helices (H), strands (E), and coils (C). Correspondingly,
success of secondary structure prediction is typically
measured by the Q3 (3-state) accuracy. Many machine
learning methods, including statistics analysis, neural net-
works, hidden Markov chain, support vector machines,
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have been developed to predict secondary structures.
Correspondingly, there are many secondary structure
prediction servers available, including GOR4 [2], PSI-
Pred [3], PHD [4], SAM [5], Porter [6], JPred [7], SPINE
[8], SSPRO [9], NETSURF [10], and many others. The
modern secondary structure prediction servers can gener-
ate prediction results with close to 80% Q3 accuracy.
Compared to the general three secondary structure
states, the DSSP program [11] has more detailed classifica-
tions by assigning secondary structures to eight states,
including 3-10 helix (G), a-helix (H), n-helix (I), B-stand
(E), bridge (B), turn (T), bend (S), and others (C). The
8-state secondary structures convey more precise struc-
tural information than 3-state, which is particularly
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important for a variety of applications. For example, accu-
rate 8-state secondary structures predictions can restrict
the variations of backbone dihedral angles within a small
range according to the Ramachandran plots [12] and thus
reduce the search space in template-free protein tertiary
structure modeling. Moreover, differentiations among
3-10 helix, o.-helix, and mn-helix in secondary structure pre-
diction aid to assign residues and fit protein structure
models in cryo-electron microscopy density maps [13].
Unfortunately, most of the secondary structure prediction
software packages or servers only provide 3-state
predictions.

To the best of our knowledge, very few methods have
been developed for the 8-state secondary structure predic-
tion. Pollastri et al. [9] extended their 3-state prediction
method to SSpro8 for 8-state secondary structure predic-
tion. The reported Q8 accuracy of SSpro8 is 62-63% [9].
A more recent prediction method of the 8-state,
RaptorXss8, developed by Wang et al [14], has reported
67.9% Q8 accuracy through the use of conditional neural
field (CNF) models. Table 1 shows the prediction accuracy
of RaptorXss8 on several popularly used secondary struc-
ture prediction benchmarks, including CB513, CASP9,
Manesh215, and Carugo338. Although nearly 70% Q8
accuracy is achieved, the prediction accuracies of different
states vary significantly. In particular, the prediction accu-
racy of G, [, B, and S are very low, mainly due to the fact
of their relatively infrequent appearance in protein data
banks (PDB), whose distribution is shown in Figure 1. The
low prediction accuracies in these states limit the applica-
tion of 8-state secondary structure prediction in practice.

Most current secondary structure perdition methods do
not rely on similarity to known protein structures; in other
words, these methods are de novo, where the secondary
structure prediction is based on sequence information
only. However, we cannot neglect the fact that many
protein sequences have some degree of similarity among
themselves. Actually, over half of all known protein
sequences have some detectable similarity (higher than
25%) to one or more sequences of known structures
[15,16]. Around 75% was reported as the percentage of
those newly deposited protein structures in the PDB data-
base showing significant similarity to previous deposited
structures. Consequently, taking advantage of structural
similarity of proteins with sequence similarity may lead to
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significant improvement of protein structure prediction. In
fact, the latest version of porter [6] has used homology-
based templates for 3-state secondary structure prediction
[16]. Porter has been reported to achieve prediction accu-
racy improvement when known structures with >30%
sequence similarity are available and even reach theoretical
upper bound of secondary structure prediction when such
sequence similarity is higher than 50%.

In this paper, we investigate the template-based method
for 8-state secondary structure prediction. We extract
structural information from known structures of chains
with certain sequence similarity to build structural tem-
plates. Then, the structural information contained in the
templates is incorporated (as features) together with
sequence and evolutionary information for neural network
training and validation.

In the case where structural information from the struc-
tural template is not available for a residue, context-based
scores estimating the favorability of that residue adopting
a secondary structure conformation in the presence of its
neighbors in sequence are used instead. The fundamental
idea of the context-based scores is based on the fact that
the formation of secondary structure exhibit strong local
dependency, particularly, residues in a protein sequence

Table 1 Prediction Accuracy of RaptorXss8 on Benchmarks of CB513, CASP9, Manesh215, and Carugo338.

Qs Qu Q Qe Qg Qs Qr Qc Qs
CB513 17.54 89.96 0.00 77.68 0.09 15.87 48.02 63.29 65.59
CASP9 20.58 92.90 0.00 81.64 0.00 18.11 5145 59.37 69.31
Manesh215 1843 90.22 0.00 79.60 032 17.80 51.28 63.73 67.69
Carugo338 19.20 89.91 0.00 7945 044 17.14 50.11 63.36 66.64

Prediction accuracies for 3-10 helices (G), m-helices (1), B-bridges (B), and bends (T) are particularly low due to their low appearance frequencies.
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are strongly correlated in different sequence positions in
coils, B-sheets, 310 helices, o.-helices, and m-helices. We
extract statistics to derive context-based scores from a
large training data set. These context-based scores are
then incorporated as sequence-structure features together
with sequence, template, and evolutionary information in
neural network training process for 8-state secondary
structure prediction.

We test our template-based 8-state prediction method
on several popularly used benchmarks including CB513,
Manesh215, and Carugo338 as well as the CASP9 targets.
The prediction accuracies for the eight states are
analyzed.

Methods

The protein data sets

We use the protein chain dataset Cull5547 generated by
the PISCES server [17] on 10/21/2011 for neural network
training and Cull16633 for context-based scores genera-
tion. Cull5547 contains 5,547 protein chains with at most
25% sequence identity and 2.0A resolution cutoff, and
Cull16633 contains 16,633 protein chains with at most
50% sequence identity and 3.0A resolution cutoff. We
eliminate very short chains, whose lengths are less than 40
residues, since the PSI-BLAST program [18] is usually
unable to generate profiles for very short sequences, and
very large chains whose lengths are greater than 1,000
residues. We also eliminate residue samples with undeter-
mined secondary structures.

Public benchmarks, including CB513 [19], Manesh215
[20], Carugo338 [21], and the recent CASP9 targets [22],
that are popularly employed as benchmarks for 3-state
secondary structure predictions, are used to benchmark
our method in 8-state predictions.
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Template construction

Figure 2 illustrates the procedure of constructing struc-
tural templates. First of all, for a given protein sequence
target, PSI-BLAST is used to search against the NR
(Non-Redundant) database with E-value = 0.001 and at
most 3 iterations to generate the PSSM (Position Specific
Scoring Matrix) data. Then, the PSSM is used to search
against the Protein Data Bank (PDB [23]) for alignments
with E-value = 10.0. If known structures are available in
PDB, their 8-state assignments are determined by the
DSSP program and then a structural template is built for
the correspondent residue positions. Among the list of
templates constructed, we select the top one that is less
than 95% sequence similarity, according to PSI-BLAST
ranking.

Encoding
We use a window size of 15 residues for input encodings.
Each residue is represented with 20 values from the
PSSM (Position-Specific Scoring Matrix) data, 1 extra
input to indicate if the residue window overlaps C- or
N-terminal, 1 value for degree of similarity, and 8 values
for structural information from template or context-
based secondary structure scores [24]. Hence, a total
number of 450 values are used to describe each residue
Figure 3 shows an example of encoding residues in a
protein sequence. For a residue with available structural
information in the template, the corresponding secondary
structure state is set to 1 while the other states are set to
0. At the same time, the degree of similarity is set for the
sequence similarity. On the other hand, if the structural
information for a residue is not available in the template,
the degree of similarity is set to zero and the context-
based scores are incorporated instead. The context-based
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Figure 3 Encoding for template-based 8-state secondary structure prediction.
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scores are statistics-based pseudo-potentials to specify the
favorability of a residue adopting a certain secondary
structure in its amino acid context [24].

Context-based scores

The types and conformations of nearby residues play
a critical role in secondary structure conformation that a
residue may adopt [24]. In particular, the hydrogen bonds
between residues at positions i and i + 3, i and i + 4, and §
and i + 5 lead to the formation of 3-10-helices, a-helices,
and t-helices, respectively. Residues in contacting parallel
or anti-parallel 3-sheets are connected by hydrogen bonds
in alternative positions. Moreover, the formation of inter-
actions within coils beyond nearest neighbors appears not
to contribute with statistical significance in determining
coil structure [27]. Hence, correlations among residues
provide significant information in predicting secondary
structure.

In this method, we will extract statistics of singlets (R;),
doublets (R;Risr), and triplets (RiRi.k, Risr,) residues at
different relative positions from protein sequences in
Cull16633 dataset. These statistics represent estimations
of the probabilities of residues adopting a specific struc-
tural state when none, one, or two of their neighbors in
context are taken into consideration, respectively.

The observed probabilities of the i residue R; in a sing-
let (R;), doublet (R;Rj,r), and triplet (R;Rjsr, Risk, ) adopting
a specific structural state C; are respectively estimated by

Nobs(CiIRi)
Pops (Ci|R;) = ,
obs( 1| 1) Nobs(Ri)
Nubs(ci/ RiRi+k)

,and
Nobs (RiRi+k)

Pops (Ci|RiRi,1,) =

Novs(Cis RiRivtey Riste, )

Pobs (Ci|RiRi+k1Ri+k2) - Nobs(RiRi+k Risi )
1 2

Here Nops(Ci, Ri), Novs(Ci, RiRisr), and
Nobs(Ci, RiRisi, Risi,) are the weighted observed number
of singlet (R;), doublet (R;Ri:r), and triplet (R;Ri., Risk,)
with R; adopting conformation C; in the protein structure
database. Nops(Ri), Nobs(RiRisr), and Nops(RiRisr, Risk,) are
the weighted observed number of singlets, doublets, and
triplets. The observed numbers will be calculated as

Nops(Ri) = > > PSSM; (R;),

Protein  j

Nops(RiRisi) = D D PSSM; (R;) * PSSM; (Ri1.)

Protein  j

Nobs(RiRi+k| R,‘+k2) = Z Z PSSM]' (Ri) * PSSMj (Ri+k,) * PSSM]‘ (Ri+k1) ’
Protein  j

C;=Ci
Nops(Ci,Ri) = Y > PSSM; (R),

Protein  j

G=Ci
Nops(Ci, RiRiik) = )~ >~ PSSM; (R;) * PSSM; (Ri,1) , and
Protein j

Nobs(Ci, RiRisie, Risk,) = WZ» C’f PSSM; (R;) * PSSM; (Risk, ) * PSSM; (Rist, ) ,
woin ]
where PSSM; (R;) is the PSSM frequency for residue
type R; at the jth position of a protein sequence.
Correspondently, the context-dependent pseudo-
potentials are generated using the derived statistics of cor-
relations between each residue and its nearby neighbors
based on Sippl’s potentials of mean force method [25].
According to the inverse-Boltzmann theorem, we calculate
the mean-force potential Usinger (Ri, Ci) for a singlet
residue R; adopting structural state Cj,

Pobs (Ci|Ri)

U. C;,R;) = —RTIn .
g (Ci, R) Py (GiIR)
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Here R is gas constant, T is temperature, and Prf (Ci|R;)
is the referenced probability. In our method, we will
employ the conditional probability approach described in
[28] to estimate the referenced probability by

C)'=C,‘
Preg (GilRi) = 3= Nobs(Cjo Rj)/ 2- Novs(R;).-
j j

Similarly, the mean-force potentials Ugoupter (Ci, RiRisk)
and Upiprer (Ci, RiRi+k1Ri+k2) for residue adopting struc-
tural state are

Pops (CilRiRi11:) Pre (CilRy)

Ugoupier (Ci, RiRii) = —RTlIn
oot A T Pyef (CilRiRisk) Pops (CilRy)

and

Paps (Cil RiRist Rivk,) Prey (CilRiRisk; ) Pref (Cil RiRisie, ) Povs (CilRy)

Ugiptet (Cis RiRisk, Risk,) = —RTIn ,
mpe (Co RiBi i) Pug (CilRiRict, Riste) Poss (CilRiRivie) Pos (CilRiRist, ) Pref (GilR)

with the corresponding referenced probabilities,

C] = Ci
Rj+k = R,‘ +k
Prp (GilRiRist) = 32 Novs(Gji RiRjure)/ 3 Novs(RiRji),
! ]
and
Gi=GCi
Rjekey = Risy
Rjit, = Rist,
Pres (Ci|RiR,‘+kl Ri+k2) = Z

Nabs(Cjo RiRjiry Rjsey )/ 3= Nobs (RiRjute Rjk, )
j j

respectively.
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Then, the context-dependent pseudo-potential for R;
will be

> Uipler (Ciy RiRisk, Rty ) -

ks

U (Ci, Ri) = Usingler (Ci, Ri) + Y- Udouvter (Ci, RiRisk) +
%

These pseudo-potentials are incorporated as context-
based scores representing sequence-structure features in
neural network training when structural information
from templates is not available.

Neural network model

We incorporate two phases of standard feed-forward
neural network training for the 8-state secondary structure
prediction. The first phase is the primary sequence-
structure prediction and the second phase is the structure-
structure refinement. The numbers of hidden nodes in the
first and second networks are 225 and 68, respectively.
Figure 4 shows the encoding diagram and the two-phase
neural network architecture. Each neural network is
trained to predict the secondary structure state of a residue
in the middle of the residue window.

Performance measures

The prediction accuracy is calculated as the average of
the seven prediction scores. We use both Q8 and SOV8
(Segment overlap [26]) scores to measure the qualities
of our 8-state secondary structure predictions.

N-fold cross validation
To obtain a reliable estimate of the 8-state secondary
structure prediction accuracy, we use 7-fold cross

protein chain
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validation on Cull5547. We randomly divide the chains
in Cull5547 into 7 subsets with approximately the same
size, such that five subsets are used for training, one for
testing, and one for validation.

Results

Upon the selection of the best alignment with similarity
less than 95% for all protein chains in the Cull5547
dataset, the final Q8 seven-fold cross validated accuracy
after applying the template-based 8-state prediction
reaches 78.85%. Table 2 lists the Q8 and SOV8 accura-
cies of 7-fold cross validation for each state.

Table 3 compares the Q8 and SOV8 accuracy of using
predictions with and without templates on benchmarks
of CB513, CASP9, Manesh215, and Carugo338. Clearly,
when homology structural information is available, the
8-state prediction accuracy is significantly improved. It is
also interesting to find that when structural templates are
used, the 8-state prediction accuracy improvement in
CASP9 is much less than the other benchmark sets. This
is due to the fact that in the CASP9 experiment, targets
are deliberately selected to have relatively low similarity
to sequences with existing structures in PDB.

Figure 5 shows the distribution of the prediction accu-
racy as a function of sequence similarity in levels in
CB513, CASP9, Manesh215, Carugo338 as well as
Cull5574 in cross-validation. Without surprise, the better
templates with higher sequence similarity level, the more
accurate the prediction results are. More importantly,
even templates with only 20%~30% sequence similarity
can improve the prediction accuracy by near 5% in various
benchmark sets compared to predicted results without
templates.

Figure 6 uses the A chain of protein 1BTN as an exam-
ple to demonstrate the effectiveness of template-based
8-state secondary structure prediction. Prediction without
template has 73.6% Q8 accuracy. The best template found
in PDB has 61% sequence similarity. Under the guidance
of the structural template, the mispredicted helix segment
and bend segment in template-less prediction (highlighted
in Figure 6) are corrected, which leads to overall 89.6% Q8
accuracy.

Discussion

As shown in Table 1, the prediction accuracies for dif-
ferent states vary largely due to the very unbalanced
appearing frequencies of the eight states in protein
structures. In this paper, we are particularly interested in
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Table 3 Comparison between 8-state predictions with
and without template on CB513, CASP9, Manesh215, and
Carugo338.

Qs SOVg
No- With- No- With-
Template Template Template Template
CB513 67.22 79.39 67.66 80.64
CASP9 7154 76.36 7347 78.15
Manesh215 69.71 81.10 70.79 82.99
Carugo338 6844 80.39 69.50 81.95

the effectiveness of structural templates in improving the
prediction accuracies of those states with low accuracy in
prediction without templates. From Cull5547, we create
five subsets of chains that have structural templates with
similarity level in intervals of (0%, 10%), (10%, 20%),
(20%, 40%), (40%, 70%), and (70%, 95%), respectively.
Then, 7-fold neural network trainings are carried out for
each subset and the average cross validation prediction
accuracy for each state is reported in Table 4.

For a-helices (H), the prediction accuracy using tem-
plates with very low sequence similarity (0%, 10%] is
already rather high (92.05%), mainly because there are
sufficient number of a-helix samples available and the
formation of a-helix is mainly result from local interac-
tions. Anyway, the structural templates help refine the
o-helix predictions with slight accuracy improvements.
When structural templates with 40% or better similarity
are available, the prediction accuracy of B-sheets (E) is
also improved to above 90%, reaching the theoretical
upper bound in secondary structure prediction. 40%+
similarity templates also significantly improve the
accuracies of 3-10 helices (G) and bends (S) from 20%+
to 50%+. Similar but not as significant improvements
are found in turns (T) and coils (C). However, the pre-
diction results for bridges (B) and m-helices (I) are dis-
appointing. Only when templates with very high
similarity (>70%) are available, we can obtain 44% pre-
diction accuracy in bridges (B). The prediction accuracy
for m-helices (I) is still 0%. This is mainly due to the
facts that m-helices are extremely rare (0.02%) and -
helices (I) are often misclassified into a-helices (H).

Conclusions

We describe a template-based approach to enhance 8-
state secondary structure prediction accuracy in this
paper. Our computational results show that the

Table 2 7-fold cross-validation accuracy in template-based 8-state prediction.

G H | E B S T C Overall
Qg 4399 9248 0.00 88.30 27.86 4346 64.18 7551 78.85
SOVg 4796 95.19 0.00 92.77 27.57 4532 66.64 7145 80.10
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secondary structure templates, even obtained from
sequence with only 20%~30% sequence similarity, can
help improve the 8-state prediction accuracy. Overall,
78.85% Q8 accuracy and 80.10% SOV8 accuracy are
achieved in 7-fold cross validation. The effectiveness of
using structural information in templates has been

demonstrated on popular benchmarks including CB513,
CASP9, Manesh215, and Carugo338. More importantly,
when good templates are available, the prediction accu-
racy of less frequent secondary structure states, such as
3-10 helices, turns, and bends, are highly improved,
which are suitable for practical use in applications.
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Table 4 Comparison of 7-fold cross validation prediction
accuracies in eight states when templates with different
sequence similarities are used.

(0,101 (10,20] (20, 40] (40, 70] (70, 95]
# of chains 4,426 4,215 3,204 1,437 1,133
Qy 92.05 92.70 93.60 94.97 95.94
Qc 2207 2393 35.09 55.03 69.44
Q 0.00 0.00 0.00 0.00 0.00
Qe 8337 84.53 86.59 90.16 9361
Qs 1.53 359 7.24 22.30 44.26
Qr 53.35 55.34 60.89 69.66 77.06
Qs 22.83 2641 3519 54.09 7340
Qc 66.55 67.84 7181 79.56 86.80
Qs 7133 7301 76.29 82.11 88.01

A webserver (C8-Scorpion) implementing 8-state
secondary structure prediction is currently available at
http://hpcr.cs.odu.edu/c8scorpion.
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