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Abstract

Background: Prioritization methods have become an useful tool for mining large amounts of data to suggest
promising hypotheses in early research stages. Particularly, network-based prioritization tools use a network
representation for the interactions between different biological entities to identify novel indirect relationships.
However, current network-based prioritization tools are strongly tailored to specific domains of interest (e.g. gene-
disease prioritization) and they do not allow to consider networks with more than two types of entities (e.g. genes
and diseases). Therefore, the direct application of these methods to accomplish new prioritization tasks is limited.

Results: This work presents ProphNet, a generic network-based prioritization tool that allows to integrate an arbitrary
number of interrelated biological entities to accomplish any prioritization task. We tested the performance of ProphNet
in comparison with leading network-based prioritization methods, namely rcNet and DomainRBF, for gene-disease and
domain-disease prioritization, respectively. The results obtained by ProphNet show a significant improvement in terms of
sensitivity and specificity for both tasks. We also applied ProphNet to disease-gene prioritization on Alzheimer, Diabetes
Mellitus Type 2 and Breast Cancer to validate the results and identify putative candidate genes involved in these diseases.

Conclusions: ProphNet works on top of any heterogeneous network by integrating information of different types
of biological entities to rank entities of a specific type according to their degree of relationship with a query set of
entities of another type. Our method works by propagating information across data networks and measuring
the correlation between the propagated values for a query and a target sets of entities. ProphNet is available at:
http://genome2.ugr.es/prophnet. A Matlab implementation of the algorithm is also available at the website.

Background
The advancements in high-throughput technologies such
as DNA sequencing, linkage analysis, association studies
and expression arrays have fostered the research towards
an effective personalized medicine. To this end, the inte-
gration of pieces of evidence of different nature derived
from diverse data sources is required, together with algo-
rithms able to mine these data and identify novel biological
facts of relevance. Networks have been shown to be an use-
ful representation for combining heterogeneous biological
data. Currently, there is a huge availability of large molecu-
lar networks such as protein-protein interaction (PPI)

networks, which model interactions between proteins.
Many methods have been proposed in the literature to
represent and mine knowledge from biological networks
[1]. For example, [2] proposes to apply text-mining in
OMIM to generate a similarity network for human diseases
and [3] builds a gene network based on the results of
microarray experiments. These approaches have led to the
emergence of new methods that exploit and integrate dif-
ferent data sources into networks in a variety of ways [4].
Inferring new knowledge from existent networks is usually
based on “guilt-by-association” [5]. This extensively vali-
dated principle states that biological entities which are
associated or interacting in a network are more likely to
share a common function. This principle allows to infer
new relationships from already known interactions.
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In this context with massive amounts of highly intercon-
nected data is where prioritization methods are required.
Prioritization tools are based on computational approaches
that use information retrieved from diverse sources in order
to obtain ranked lists of candidate biological elements
(genes, proteins, diseases, etc.) related with a certain target
element. Gene-disease prioritization, in which genes are
ranked according to their relevance to a disease of interest
(or vice versa), is the most popular prioritization task, and
many methods have been proposed in the recent literature
to accomplish this task [6]. Most of these methods focus on
the analysis of phenotype and PPI networks for gene-disease
prioritization. These methods weight the arcs connecting
two proteins or phenotypes according to a measure of the
similarity between them. CIPHER [7] computes correlation
coefficients based on linear regressions of phenotype and
PPI profiles. PRINCE [8] computes the relevance of a gene
by using network propagation methods. RWRH [9] scores
genes and diseases using a random walk approach on PPI
and phenotypes networks. rcNet [10] proposes a methodol-
ogy for prioritization of candidate genes based on propagat-
ing node values and measuring the degree of correlation
between two sets of nodes, one in the PPI/gene network
and one in the phenotype network. Network-based gene-
disease prioritization methods have been proven to provide
better results than previous approaches [11-15].
Apart from gene-disease prioritization, other methods

have been proposed to perform a prioritization of other
biological entities. DomainRBF [16] performs a prioritiza-
tion of protein domains for diseases using Bayesian linear
regression. This method assumes a key role for protein
domains in diseases as shown by previous studies [17].
Domains are basic structural and functional units of pro-
teins, which in turn are composed of multiple structural
domains, each one closely linked to a specific function.
Although DomainRBF exploits the functional role of
protein domains in phenotypes, it does not explore
the simultaneous integration of PPI, domain and pheno-
type networks for gene or disease prioritization. Despite
the good performance obtained by the mentioned priori-
tization methods, they have clear limitations. First, exist-
ing network-based prioritization methods do not allow
to consider more than two types of networks for
performing the prioritization (e.g. gene and disease net-
works in rcNet and domain and disease networks in
domainRBF). Only non-network-based methods have
succeeded in integrating more than two different types of
entities for prioritization. For example, Endeavour [13]
performs an independent prioritization of different enti-
ties using multiple heterogeneous generic data sources
which are integrated on a single global ranking using
order statistics. However, previously mentioned network-
based methods have been shown to outperform this
method using a lower amount of data sources [7].

Second, existing prioritization methods are strongly tai-
lored to a specific domain of interest (for example gene-
disease prioritization for rcNet and protein domain-disease
prioritization for domainRBF, respectively). In our opinion,
these two drawbacks dramatically limit the applicability of
these methods to other prioritization tasks and do not
allow to improve the results by integrating information
about other types of related entities.
In this work we present ProphNet, a generic prioriti-

zation method that outperforms previous methods by
integrating and propagating information in an arbitrary
number of heterogeneous data networks. Our method is
generic since it allows to prioritize biological entities of
any type with respect to biological entities of another
type. Therefore, the user can customize the goal of the
prioritization task (disease-gene, domain-disease, drug-
disease, etc.). Furthermore, the user is not restricted to
the use of only two entities, and can integrate as many
biological networks as desired.
To compare the results obtained by ProphNet with those

obtained by state-of-the-art methods, such as rcNet and
domainRBF, we applied ProphNet to the prioritization of
genes-diseases and domains-diseases, respectively, on a
network built as the integration of protein domain, PPI
and phenotype networks. ProphNet measures the influence
of a query set of biological entities of a certain type (e.g.
genes or diseases) in a target set of entities of another type
(e.g. diseases or genes, respectively). To this end, the algo-
rithm uses a graph representation as shown in Figure 1. In
this representation, each node corresponds to a biological
entity of a domain of interest (gene/protein, disease, pro-
tein domain, etc.), and the arcs between two nodes are
labelled with a weight representing the strength of the rela-
tionship between the connected entities. These weights are
derived from different databases and other biological
sources and their interpretation varies depending on the

Figure 1 Problem Overview. Our problem is to determine how
related the query set and the target set are based on known
relations between elements.
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type of the connected entities and the final goal of the
study (e.g. physical/structural similarity, regulatory depen-
dence, similar functional roles, etc.). In our algorithm, the
arc weights for each network are compiled in an adjacency
matrix. The nodes of the graph are also labelled with a
value (in [0, 1]), representing the degree of association to
the query or the target set. There are two kinds of net-
works: a) networks representing interactions or similarities
between entities of the same type, and b) networks repre-
senting interactions or similarities between entities of dif-
ferent type. Type b) networks are used to interconnect type
a) networks.
The method we propose allows to propagate node values

through paths along different data networks (representing
different biological entities) in order to derive new infor-
mation from the existing knowledge. This value propaga-
tion is performed in two directions. First, values are
propagated within and between networks, through all
the possible paths connecting the query set network to the
target set network (not reaching the target set network).
Second, values are also propagated within the target set
network, starting from the target nodes. Both propagation
processes follow the principle that the higher the weight of
the arc between two entities is, the more similar the value
of these two nodes should be. Therefore, these two label
propagation processes derive a final graph in which the
value assigned to a node represents its degree of relation
with the query or target set, respectively. Finally, we mea-
sure the degree of relationship between the query and tar-
get sets by computing the correlation between the values
assigned to the nodes in the target network and those
assigned to their neighbour nodes in other networks, as
proposed in previous works with good results for different
prioritization tasks [7,10]. This process is explained in
detail in the following section.
This article is organized as follows. The method and the

data sources are described in detail in section Methods. To
validate the proposed methodology we integrate protein
domain, PPI and phenotype networks and compare the
results to those obtained by rcNet for gene prioritization
and DomainRBF for domain prioritization. These results
are presented in the Results section and show a significant
improvement in terms of sensitivity and specificity. Proph-
Net is also applied to several case studies (namely Alzhei-
mer, Diabetes Mellitus Type 2 and Breast Cancer) to
identify putative candidate genes involved in these dis-
eases. The results of these tests can be found in the section
Case Studies. Finally, some conclusions and future work
are presented.

Methods
Let D be a set of graphs (also referred to as networks)
defined as Di = (Vi, Ei) for i = 1, ..., n, where Vi is a set of

vertices which represent biological entities from a specific
domain satisfying Vi ∩ Vj = ∅, ∀i, j such that i ≠ j. Each
node vik (with k = 1, ..., |Vi|) in Di is labelled with a
value Ψ(vik), initially set to zero, that indicates the degree
of relationship to the query or target set, depending on
the network vik belongs to. Ei is a set of weighted undir-
ected arcs representing relationships, similarities or inter-
actions between elements of Vi. The values of the nodes
change while the weights of the arcs remain constant
during the entire process. Let R be a set of graphs defined
as Rij = (Vi ∪ Vj, Cij), where Cij is a set of weighted undir-
ected arcs representing relationships, similarities or inter-
actions between elements of Vi and Vj, with i, j ∈ 1, ..., n
and i ≠ j. Therefore, Rij describes the relationships
between the biological entities from two different net-
works: Di and Dj.
We define the heterogeneous global graph G as G =

(D, R). Let the graph Dq ∈ D be the query network and
let Dt ∈ D be the target network. Given the global
graph G, our goal is to find the degree of association
between a set of nodes Q ⊆ Vq called the query set and
a set of nodes T ⊆ Vt called the target set.
The initial values for the nodes in the query set are set

to 1 (Ψ(vqi) = 1 for all nodes vqi ∈ Q), while the rest of
the nodes are set to 0 (Ψ(vqj) = 0 for nodes vqj ∈ Vq - Q).
The target network is initialized in the same way, but
considering the nodes in Vt and T. The rest of nodes in
G are initially set to 0.
As we explain below in more detail, our method per-

forms a propagation within networks pumping informa-
tion between nodes. This process is based on the Flow
Propagation algorithm [18,19], which uses the normal-
ized Laplacian matrix to propagate labels between nodes
in a network. The normalization takes into account the
degree of each node to limit the bias toward annotations
from high-degree nodes. This normalization is also criti-
cal for convergence. The Flow Propagation algorithm is
similar to a Random Walk with Restart, basically differ-
ing in the normalization process that guides the propa-
gation [19].
Let N be the non-normalized adjacency matrix of a net-

work in G. Since G = (D, R) and graphs in R are bipartite
(i.e. the adjacency matrices of graphs in R are not
squared), let assume N has r rows and c columns. A nor-
malization for N can be computed as:

norm(N) = D1
GND2

G,

where D1
G and D2

G are diagonal matrices where each
component is defined as:

D1
Gjj

=
1√(∑c
k=1 Njk

)
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for j = 1, .., r, and

D2
Gkk

=
1√(∑r
j=1 Njk

)

for k = 1, .., c.
We define M = {Mi | Mi = norm(Di) where i = 1, .., |D|}

as the set of normalized squared adjacency matrices of
graphs in D. Similarly, we define S = {Si | Si = norm(Ri)
where i = 1, .., |R|} as the set of normalized adjacency
matrices of bipartite graphs in R.
Let pi = {pi1, ..., pij, ..., pil} be a path composed of net-

works from D connecting Dq and Dt, satisfying pij ∈ D,
pi1 = Dq, pil = Dt and pij ≠ pik, ∀j ≠ k. To compute the
degree of association between the query and target sets,
we first propagate values from the query set within the
query network, and from the target set within the target
network, as described in Section Value propagation
inside networks. Next, we identify all the possible paths
P = {p1, ..., p|P|} connecting the query network to the
target network. Figure 2 shows an example of a global
graph G composed of five different networks or
domains, with three different paths connecting the
query network to the target network. Since the number
of networks is usually reduced, the computation of all
the paths connecting Dq and Dt can be accomplished by
a brute force algorithm. For each computed path pi, we
propagate information from pij to the following network
pi( j+1) in the path, as described in Section Value propa-
gation between networks. Then we propagate informa-
tion within the network pi( j+1), where j = 1, 2, ..., l - 2.

The propagation continues until it has been performed
within the network pi(l-1) in the path.
Finally, after performing this propagation through each

path in P, we correlate the values of the nodes in Dt

against the values of the nodes in pi(l-1) directly connected
to those in Dt, for all the paths pi ∈ P. This step is
described in Section Value correlation between networks.
The obtained correlation value determines the degree of
relationship between the query set and the target set.
Although measuring the degree of relationship

between the query and target sets by correlating node
values seems less intuitive than continuing the propaga-
tion of node values from the neighbours networks to
the target nodes, the former approach has been shown
to perform better than the latter (see Additional file 1).
Therefore, it was selected as the measure of similarity in
our method. This approach was proposed in previous
network-based prioritization methods with good results
for different prioritization tasks [7,10]. In order to
accomplish prioritization tasks, in which only the query
set Q ∈ Vq and the target network Vt are provided by
the user, we embed this pipeline into an iterative pro-
cess to score each node in the target network according
to its relationship with Q. This process is described in
Section Prioritization process.

Value propagation inside networks
Several propagation methods have been proposed to
compute the similarity or distance between nodes within
a graph [4]. Methods based on local neighbourhood or
shortest paths fail in capturing global interactions, in
contrast to global methods that take into account the

Figure 2 Example of path computation. Example of computed paths. Three paths have been obtained connecting the query network to the
target network.
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entire network topology [20]. ProphNet implements a
flow propagation approach [18,19] that uses a network’s
global information to perform a propagation of the
values assigned to the nodes within this network. To
carry out this propagation process within a network Dk,
we first define the prior information set Z as those ver-
tices vkj with Ψ(vkj) ≠ 0. Therefore, the prior information
set matches Q when propagating values within the query
network, and the prior information set matches T when
propagating values within the target network. The value
Ψ(vkj) of each node vkj in Z (j ∈ [1, |Vk|]) is normalized as:

�(vkj) =
�(vkj)∑

vkx∈Vk�(vkx)

Let x0 be a vector compiling the values initially
assigned to each node in Dk, and x̂ a vector with the
values assigned to each node in Dk after performing
the propagation within Dk. To calculate x̂ we need to
solve the following optimization problem:

min
x̂

∑
i,j

Mki,j(x̂i − x̂j)2 +
1 − α

α

∑
i

(x̂i − x0i)
2

where Mk is the network’s normalized adjacency
matrix. The closed-form solution of this equation is:

x̂ = (1 − α)(I − αMk)−1x0.

This linear system can be solved exactly. However,
there exists an iterative algorithm for solving this system
which is faster for large networks [21]:

xi+1 = αMkxi + (1 − α)x0

with i starting from 0. This algorithm implements an
iterative process where each node propagates its node
value to its neighbours, based on the weights of the arc
connecting them. The parameter a ∈ [0, 1] determines
the importance of the prior information set.
In order to further speed up this iterative process, we

define the following stopping criterion: |xi - xi+1| ≤ �.
This allows to stop the iterative process when it has
almost converged, without the need of full convergence.
Experimental tests (results not shown) prove that the
best performance is obtained for � ≤ 10-3.
For convenience, we refer to x̂kj as the vector obtained

after convergence, where each component represents
the value assigned to each node in the network Dk after
performing the propagation within Dk, as part of a pro-
pagation process through the path pj. Since the propaga-
tion values within the query and target networks are not
affected by the propagation processes through the paths
in P, we define x̂q as the vector obtained after propagat-
ing nodes values within the query network, and x̂t as the

vector obtained after propagating nodes values within
the target network.

Value propagation between networks
Given a network Di whose vertices are already assigned
a value according to x̂il, we further propagate these
values to the next network Dj in the current path pl,
with Dj ≠ Dt. Since Di and Dj are connected by Rij, the
information is propagated from the nodes of Di to the
nodes of Dj across the edges of Rij by assigning each
node vjk from Dj a value computed as the mean of the
nodes from Di the node vjk is connected with. This
expression is formalized as:

�(vjk) =

∑ vix∈neigi(vjk)�(vix)
|neigi(vjk)|

where neigi(vjk) is the set of nodes from Di that are
directly connected to vjk according to Rij. A thresholding
step is applied to this propagation process, since detailed
experimentation suggested that nodes with very low values
add noise to the process and reduce the performance (see
Additional file 2). To this end, a parameter g ∈ (0, 1] is
included in the process so that the ⌈|Vj|(1 - g)⌉ lowest
node values from Dj after the propagation are updated to
Ψ(vjk) = 0. The rest of the node values are not changed.

Value correlation between networks
After the propagation process through one path finishes,
the nodes in the networks which are adjacent to the tar-
get network present values that determine their degree
of relationship to the query set. Also, the nodes in the
target network are assigned a value that determines the
degree of relationship with the target set. We can indir-
ectly measure the relationship between the query set
and the target set by measuring the similarity between
the values of the nodes in the target network and those
that are directly connected to them in adjacent net-
works. This can be calculated by simultaneously corre-
lating these node values as derived by the propagation
processes through all the different paths. For each path
pi with length l a vector x̄i is computed as:

x̄i = Sax̂(l−1)i

where Sa is the normalized adjacency matrix of R(l-1)(l)

and x̂(l−1)i is the vector obtained after propagating
values inside the network Dl-1.
Since the values of the target network after the propa-

gation process are represented by x̂t, we define the
vector t̄ as:

t̄ = concat

|P| times︷ ︸︸ ︷
(x̂t, . . . , x̂t)
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and the vector x̄ as:

x̄ = concat(x̄i) ∀i ∈ [1, |P|]
where concat means concatenation. Both x̄ and t̄ are

the same size.
Finally, the correlation value which derives a measure

for the relationship between the query and target sets is
computed as:

s = corr
(
x̄, t̄

)
where corr is Pearson’s Correlation.

Prioritization process
In order to obtain a prioritized list of targets for a
query set of nodes, we have to follow an iterative
approach. For each target network node vte, we set it
as the target set T and compute the correlation value s
as described in the previous section (we called this
correlation se since it is computed for T = {vte}). Once
this correlation value has been computed for each tar-
get network node, these nodes are sorted in decreasing
order according to their se value. Target nodes with
high values of se are supposed to be strongly related to
the query set. The entire algorithm is described in the
pseudocode Algorithm 1
Algorithm 1 ProphNet
prioritize(G: global graph, Q: query set, Dq: query net-

work, Dt: target network)
Propagate values within Dq

P: Compute the list of paths from Dq to Dt in G
for each path pi = {pi1, ..., pij, ..., pil} in P do

for each network pij in the path pi from pi1 to
pi(l-1) do

Propagate values from pij to pi(j+1)
Propagate values within pi(j+1)

end for
Store the values of Di(l-1) after propagation

through path pi as x̂i(l−1)

end for
for each entity e ∈ Vt in the target network Dt do
Set target set T = {e}
Propagate values within Dt

Compute correlation coefficient se using the
stored x̂i(l−1) for each path pi.

end for
L: Sort all entities e ∈ Vt by their se values in des-

cending order
return L

Prioritization example
To facilitate the understanding of the algorithm, the
Figure 3 shows a step-by-step representation of the
ProphNet propagation processes. This figure shows two

examples of a prioritization task involving three net-
works or domains, with the elements of each network
represented by circles, squares and diamonds, respec-
tively. For simplicity and clarity, node values are repre-
sented using a grey color scale (from white representing
value 0 to black representing value 1) and the weight of
an arc is represented by its line width. In the two exam-
ples, the prioritization task involves the same target set
but different query sets. The query and target sets con-
tain only one element in both cases, which is initially
(step 1) set to 1 (black). Node values are propagated
from the query nodes within the query network (step 2),
and from the target nodes within the target network
(step 3). There are two paths connecting the query net-
work and the target network in these examples (circles-
squares and circles-diamond-squares, respectively).
Values from the query network are then iteratively pro-
pagated to adjacent non-target networks. Since the
query network is directly connected to the target net-
work in one of the paths, this step (step 4) is only
applied to the path which includes an intermediate net-
work (diamonds). Then, the propagation is performed
within this intermediate network (step 5). This propaga-
tion continues until all the networks in all the paths
connecting the query and target sets have been reached.
Finally, we measure the strength of the connection
between the query and the target sets as the correlation
between the values assigned to the nodes in the target
network and the values assigned to their neighbours
from other networks (step 6).
Figure 3a shows an example in which the values pro-

pagated from the query and target sets are highly corre-
lated, suggesting a strong relationship between them.
On the other hand, Figure 3b shows an example with
low correlation values, which suggests that query and
target sets are not related.

Algorithm complexity
The time complexity of the algorithm shown in the
pseudocode Algorithm 1 can be determined by aggregat-
ing the time complexity of each task it is composed of.
Let n be the number of nodes in a network and m the
number of networks in the global graph G. The task of
propagating values within a network is O(n3). The pro-
pagation of values between networks is O(n2). The com-
putation of the correlation coefficient for one path is
O(n3). The number of paths is bounded by m! and their
length by m. Therefore, the computational complexity
of ProphNet is bounded by O(m! × m × n3). Despite
this high complexity, typical execution times are a few
seconds since the value of m is usually small in real
applications. A summary of ProphNet execution times
and memory usage for the experiments shown in this
paper can be found in Additional file 3.
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Results
As two specific case studies, we have applied ProphNet to
prioritize candidate genes and protein domains associated
to diseases. ProphNet has been compared with rcNet for
gene-disease prioritization and with DomainRBF for
domain-disease prioritization, since these methods were
recently proposed and reported better results than pre-
vious methods [10,16]. ProphNet was run on a global
graph composed of diseases, genes and protein-domains
interconnected networks, while rcNet and DomainRBF
were run on a genes-diseases and domains-diseases net-
works, respectively, as proposed by their authors. It is
important to note that the ProphNet base case execution
using only the gene and disease networks would obtain
the same results than rcNet. The data sources used are
described in detail in Section Data sources.
We tested the performance of the different methods on

several leave-one-out (LOO) cross-validation experiments
and for predicting new associations recently added to
OMIM. To measure the performance of the different
prioritization methods, we used Receiver Operating Char-
acteristic (ROC) curves. ROC curves plot the true positive
rate vs. the false positive rate at various threshold settings.
The area under the ROC curve (AUC) was also computed.
Finally, the average ranking position of the true target in
the prioritized lists obtained by each method was also

computed and normalized by dividing by the total number
of elements in the list (5080 diseases in this case). We also
computed p-values for comparing the average ranking
values using two-tailed t-tests and the Bonferroni
correction.
For the results reported for ProphNet, a was set to

0.9, the error threshold in the flow propagation was set
to � = 10-5 and g = 0.00375. For rcNet, we set the para-
meters to the values providing better results according
to the authors: a = 0.9, b = 0.9 and � = 10-5 [10] and
used the enumeration-correlation based version.

Data sources
The disease phenotype network has been extracted from
OMIM [22] using text mining techniques as described
in [2]. Also, to perform a fair comparison of the results
to those reported by rcNet, we used a version of OMIM
from May, 2007 [10]. The obtained disease network
contains 5080 OMIM disease phenotypes. The arcs are
weighted with a value in the range [0, 1]. This weight
measures the similarity between two phenotypes as the
inverse of the distance between the feature vectors
obtained by counting the occurrences of each term from
the anatomy and disease sections of the Medical Subject
Headings Vocabulary (MeSH) in the description text for
the corresponding entries in OMIM. The obtained

Figure 3 Examples of step-by-step ProphNet runs. Step-by-step runs of ProphNet in two global graphs for the same target set but different
query sets. Figure (a) shows an example in which propagated values from the query and target sets show a high correlation and therefore they
seem to be related. In figure (b) propagated values from the query and target sets show low correlation, thus suggesting a weak relationship.
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disease network contains a total of 19,729 weighted
interactions.
The gene network has been obtained from the Human

Protein Reference Database (HPRD [23]). This protein-
protein interaction network contains 32,331 unique inter-
actions between 8,919 proteins. The network connecting
genes and phenotypes has been extracted directly from
OMIM (phenotype-gene relationship fields) obtaining
1,393 relationships.
The domain network has been derived from DOMINE

[24] and InterDom [25] containing 48,778 unique relations
between 5,490 domains. Relations between domains and
genes were extracted from pFam [26]. Relations between
domains and phenotypes have been extracted from Pfam
and annotations of nsSNPs in the UniProt database [27].
The three networks (genes, protein domains and dis-

eases) have simultaneously been used in the experiments
performed with ProphNet. RcNet was executed using only
the gene and disease networks, since this method does not
allow to integrate more than two networks. DomainRBF
was run on the domain and disease networks due to the
same limitations.

Gene-disease validation
To check whether the prioritization methods rcNet and
ProphNet were able to retrieve a known relationship

between a gene and a disease, we performed a leave-
one-out cross-validation using gene-phenotype relations
from OMIM. For each gene-phenotype relation reported
in OMIM, we run the two algorithms on a network in
which the explicit arc connecting the gene and pheno-
type of interest was removed. The gene of interest was
set as the query set and the methods were asked to rank
all the phenotypes associated to this query set.
The obtained ROC curves are shown in Figure 4. AUC

values and avg. rank values for the target disease are dis-
played in Table 1. We can see that ProphNet outper-
forms rcNet in this test, ranking the target phenotype in
a significantly higher position (corrected p-value < 0.05),
with lower standard deviation and obtaining better AUC
values. The high difference in terms of AUC value (over
10%) also suggests that the achieved improvement is not
due to ProphNet prioritizing a little better those targets
poorly prioritized by rcNet, but these targets being
prioritized at the top by our method while they are
poorly prioritized by rcNet. It is also important to note
that, although a high percentage of the cases were prior-
itized in the top of the ranking, we found some results
that were really worse ranked by both methods, signifi-
cantly increasing the mean ranking and setting it far
from the top 1 position. This also applies to experi-
ments described in the following two sections.

Figure 4 ROC curves ProphNet vs. rcNet. ROC curves for gene-disease prioritizations with ProphNet and rcNet.
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Gene-disease validation with new OMIM associations
Another validation that we have performed is predicting
new associations between phenotypes and genes in 387
case studies from new entries added to OMIM between
May 2007 and May 2010, since these relationships are not
reported in the datasets used in our study. Each case study
consists of a phenotype and a set of genes (mostly only
one) associated with it. Results of the comparison can be
seen in Figure 4. AUC values are shown in Table 1. The
results show that our algorithm clearly outperforms rcNet
(corrected p-value < 0.05) predicting new relationships
not explicitly represented in the data network.

Domain-disease validation
To prove that our algorithm not only prioritizes genes, but
can prioritize other biological entities, we have performed a
leave-one-out domain-disease validation test. For each rela-
tion between a domain and a phenotype in our datasets, we
run the prioritization methods on a global network in
which the direct arc connecting the protein domain and
phenotype of interest was removed. The domain of interest
was set as the query set and the methods were asked to
rank all the phenotypes associated to this query set.
Our method has been compared with domainRBF for

this task, since this method has been recently proposed for
domain-disease prioritization and builds the phenotype-
domain network using the same data sources considered
in this study. We set the parameters of domainRBF testing
for best performance. A diffusion kernel was selected to
compute distances in interactions matrices. B0 and V0

were set to 0 and 1, respectively.
Results show that our method significantly improves the

results provided by domainRBF for disease-domain priori-
tization (corrected p-value < 0.05). The highest difference
in performance is around AUC 10%, which suggests that
our method prioritizes more target phenotypes in the top
of the ranking. ROC curves for this comparison can be
seen in Figure 5.

Robustness analysis
We carried out several experiments to test the robustness
of ProphNet to parameter variation. First, we checked

that varying the parameter a, which controls the impor-
tance of prior information in label propagation, does not
significantly affect performance, as previous works sug-
gested for other methods [10,18]. Values ranging between
0.5 and 0.9 reported similar performance for ProphNet,
but best result were obtained with a set to 0.9.
Second, we tested the impact of varying the parameter

g in the results. g was used to limit the propagation of
noise in the label propagation between different net-
works. The experiments showed that, although for any
value of g (in [0, 1]) ProphNet reported a good perfor-
mance, the best results were obtained for g in [0.002,
0.004].
Results from these experiments can be found in Addi-

tional file 2.

Case studies
In order to show the applicability of the proposed
method on real case studies, we have used it for gene-
disease prioritization of some multifactorial disorders
such as Alzheimer Disease, Diabetes Mellitus Type 2
and Breast Cancer, using the data sources described in
section Data sources. Parameters were set to those
which reported better results in the validation experi-
ments (a = 0.9, g = 0.00375 and � = 10-5). A list of the
genes ranked in the top positions for each disease are
shown in Table 2, together with their assigned score. A
detailed discussion about the role of these genes in the
associated diseases can also be found in Additional file 4.
A full list can be obtained by running the tool at the
ProphNet website.
Results for Alzheimer Disease
Our method was used to prioritize genes related to Alz-
heimer Disease (MIM:104300). Table 2 shows genes
ranked in the top positions which were previously
known (OMIM records) to be connected with Alzhei-
mer, such as APP and PSEN2. Furthermore, new rela-
tionships not explicitly reported in OMIM are suggested
by analysing other genes in the top 10. For example,
MAPT was ranked 3th in the obtained prioritized list.
This gene provides the instructions for making a protein
called tau that can be found throughout the nervous sys-
tem (including neurons of the brain) so it has been asso-
ciated with Alzheimer [28]. PSEN1, with known relations
to Alzheimer type 3 [29] was ranked 4th. TREM2 was
ranked 5th, suggesting an important role in Alzheimer as
shown by some population studies [30,31]. HD/HTT was
ranked 6th, and although this gene has not yet been
directly associated with Alzheimer, it has been shown to
affect Huntington’s disease [32]. More details about the
other genes in the top 10 are provided in Additional file 4.
Results for Diabetes Mellitus Type 2
Our method was used to prioritize genes related to
Diabetes Mellitus (DM) Type 2 (MIM:125853). Genes

Table 1 Tests results

Test Method AUC Normalized
mean ranking (Std.Dev)

Gene-disease ProphNet 0.9393 0.0609 (0.1597)

LOO rcNet 0.80572 0.1944 (0.2448)

Gene-disease ProphNet 0.80717 0.1930 (0.2618)

new associations rcNet 0.71636 0.2835 (0.2907)

Domain-disease ProphNet 0.9319 0.0683 (0.1537)

LOO domainRBF 0.8678 0.1322 (0.2361)

Performance comparison for leave-one-out cross-validation prioritization
experiments using OMIM.
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previously known to be connected with the disease, accord-
ing to OMIM records, are: IRS1, INSR, IPF1, SLC2A4,
PPP1R3A and TCF1, all ranked in the top 6 of the obtained
prioritized list of genes. New putative candidate genes were
discovered in the top 10. PLN (ranked 7th) was not related
to Diabetes in the corresponding OMIM entry, however

[33] reports a role of PLN in diabetic cardiomyopathy.
HADHSC was ranked 8th since it has been related to
Hyperinsulinemic hypoglycemia [34,35]. The inferred rela-
tionship between Diabetes and LEPRE1 (ranked 9th) can-
not be derived from the published literature and further
studies are required to study the possible connections of

Figure 5 ROC curves ProphNet vs. domainRBF. ROC curves for domain-disease prioritizations with ProphNet and domainRBF.

Table 2 Ranking positions and assigned scores for top prioritized genes for each case study

Alzheimer Disease (MIM:104300)

Gene Rank Score Gene Rank Score Gene Rank Score Gene Rank Score

APP* 1 0.6639 PSEN1 4 0.1946 CST3 7 0.1511 SNCA 10 0.1276

PSEN2* 2 0.5462 TREM2 5 0.1700 ITM2B 8 0.1468 APOE 11 0.1141

MAPT 3 0.2531 HD/HTT 6 0.1585 TYROBP 9 0.1296 NCSTN 12 0.1114

Diabetes Mellitus Type 2 (MIM:125853)

Gene Rank Score Gene Rank Score Gene Rank Score Gene Rank Score

IRS1* 1 0.4744 INSR* 5 0.2950 LEPRE1 9 0.0976 ABCC8 37 0.0456

PPP1R3A* 2 0.4660 TCF1* 6 0.2168 LEPREL4 10 0.0976

SLC2A4* 3 0.4194 PLN 7 0.1164 NEUROD1 14 0.0905

IPF1* 4 0.3308 HADHSC 8 0.0976 KCNJ11 30 0.0595

Breast Cancer (MIM:114480)

Gene Rank Score Gene Rank Score Gene Rank Score Gene Rank Score

BRCA1* 1 0.5019 PIK3CA* 5 0.3199 ELAC2 9 0.1038 ATM 13 0.0934

RAD51* 2 0.4919 MSH2 6 0.1636 RAD51AP1 10 0.1031 CHEK2 29 0.0551

BRCA2* 3 0.4813 RB1 7 0.1607 RAD54L 11 0.1031

NBN/NBS1* 4 0.3547 TP53 8 0.1307 FANCD2 12 0.1017

Gene symbol, rank position and assigned score for genes in the top of the ranking for each case study. Entries marked with asterisks were directly connected by
an arc to the disease of interest in the data network.
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this gene to DM. Other interesting genes were ranked high,
such as KCNJ11, ranked 30th, which presents polymorph-
isms that confer susceptibility to Diabetes mellitus type 2
[36]; or ABCC8, ranked 37th, whose mutations increase
the risk of diabetes as suggested by [37].
Results for Breast Cancer
We performed a prioritization for Breast cancer
(MIM:114480). Previously known genes related to this dis-
ease according to OMIM are: BRCA1, RAD51, BRCA2,
NBN and PIK3CA, all included in the top 5 returned by
ProphNet for this disease.
New relations not explicitly represented in the data net-

work were discovered in the top ranking. Defects in MSH2
(ranked 6th) can cause different types of cancer as pointed
out by [38]. RB1 (ranked 7th) and TP53 (ranked 8th) act
as tumour suppressors [39]. ELAC2 (ranked 9th) has not
been associated with breast cancer but with prostate can-
cer [40]. RAD51AP1 (10th) is closely related with RAD51
(2nd) [41]. RAD54L (11th) plays an important role repair-
ing and recombining DNA in mammalian cells [42].
FANCD2 (12th) interacts with the BRCA1 and BRCA2
genes in the DNA repair process to reduce the risk of
breast cancer [43]. ATM (13th) has been associated with
the disease in various studies [44]. Other relevant genes
were found below in the top list, such as CHEK2 (ranked
29th), also associated to propensity to suffer breast cancer
as shown by [45].

Conclusion
In this paper we have introduced ProphNet, a novel
network-based method that allows to accomplish any
prioritization task from a network representing the corre-
sponding data interactions. Our method is flexible and
can be run on a graph composed of an arbitrary number
of data networks representing biological entities of differ-
ent type. This paper illustrates how to run ProphNet to
perform gene-disease and domain-disease prioritization
tasks, and provides experimental evidence that ProphNet
outperforms other prioritization algorithms specifically
designed for these tasks. A ProphNet web application has
also been developed as a result of this work (the user
guide can be found in Additional file 5).
The results obtained by ProphNet on real case studies

on Alzheimer, DM and Breast Cancer show the potential
of the method to suggest putative candidate genes to be
involved in a disease. A detailed analysis of the literature
also allowed us to validate the results provided by the
algorithm, since many of the top ranked genes were
already known to be related to the diseases. We consider
that prioritization methods are useful for assisting scien-
tists at early research stages and to formulate novel
hypotheses of interest.
The extensive experimentation also allowed us to

study the indirect influence of considering protein

domains for the prioritization of candidate genes and
diseases. Results show that the addition of domain inter-
actions produces an obvious improvement with respect
to existent algorithms, revealing the importance of this
source of information (barely used before in this task).
In the future, one of our main goals is to see how our
method behaves in other prioritization problems and
using different entities and sources of data not covered
in this work. Furthermore, we plan to study in more
detail the quality of the datasets and their influence on
performance, and apply new methods of propagation to
try to improve the results.

Additional material

Additional file 1: Performance comparison using propagation and
correlation. Performance of the obtained results using correlation or
propagation in the last step of the algorithm.

Additional file 2: Robustness Analysis Results. Robustness test results
varying g threshold.

Additional file 3: ProphNet execution times and memory usage.
ProphNet execution times and memory usage for the experiments
reported in this work.

Additional file 4: Top 50 genes. ProphNet’s top 50 ranked genes for
Alzheimer’s Disease, Breast Cancer and Diabetes Mellitus Type 2.

Additional file 5: ProphNet User Guide. ProphNet web tool user guide.

List of abbreviations used
AUC: Area Under the Curve; DM: Diabetes Mellitus; LOO: Leave-One-Out; PPI:
Protein-Protein Interaction; ROC: Receiver Operating Characteristic.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VM developed the ProphNet prioritization algorithm, carried out the
experiments and wrote the paper. CC and AB guided and supervised the
project and participated in writing the paper. All authors read and approved
the final manuscript.

Acknowledgements
This work was part of projects P08-TIC-4299 of J. A., Sevilla and TIN2009-
13489 of DGICT, Madrid. It was also supported by Plan Propio de
Investigación, University of Granada.

Declarations
Funding for publication of the article was contributed by project TIN2009-
13489 of DGICT, Madrid.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 1, 2014: Integrated Bio-Search: Selected Works from the 12th
International Workshop on Network Tools and Applications in Biology
(NETTAB 2012). The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S1.

Published: 10 January 2014

References
1. Barabási AL, Gulbahce N, Loscalzo J: Network medicine: a network-based

approach to human disease. Nat Rev Genet 2011, 12:56-68.
2. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA: A text-

mining analysis of the human phenome. Eur J Hum Genet 2006,
14(5):535-542.

Martínez et al. BMC Bioinformatics 2014, 15(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/15/S1/S5

Page 11 of 13

http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S5-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S5-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S5-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S5-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S5-S5.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S1


3. Wang Y, Joshi T, Zhang XS, Xu D, Chen L: Inferring gene regulatory
networks from multiple microarray datasets. Bioinformatics 2006,
22(19):2413-2420.

4. Wang X, Gulbahce N, Yu H: Network-based methods for human disease
gene prediction. Brief Funct Genomics 2011, 10(5):280-293.

5. Wilkie GS, Schirmer EC: Guilt by Association The Nuclear Envelope
Proteome and Disease. Mol Cell Proteomics 2006, 5(10):1865-1875.

6. Moreau Y, Tranchevent LC: Computational tools for prioritizing candidate
genes: boosting disease gene discovery. Nat Rev Genet 2012, 13:523-536.

7. Wu X, Jiang R, Zhang MQ, Li S: Network-based global inference of human
disease genes. Mol Syst Biol 2008, 4:189.

8. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R: Associating genes and
protein complexes with disease via network propagation. PLoS Comput
Biol 2010, 6:e1000641.

9. Li Y, Patra JC: Genome-wide inferring gene-phenotype relationship by
walking on the heterogeneous network. Bioinformatics 2010, 26(9):1219-1224.

10. Hwang T, Zhang W, Xie M, Liu J, Kuang R: Inferring disease and gene set
associations with rank coherence in networks. Bioinformatics 2011,
27(19):2692-2699.

11. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS: Speeding disease
gene discovery by sequence based candidate prioritization. BMC Bioinf
2005, 6:55.

12. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS: SUSPECTS: enabling
fast and effective prioritization of positional candidates. Bioinformatics
2006, 22(6):773-774.

13. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F,
Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y:
Gene prioritization through genomic data fusion. Nat Biotechnol 2006,
24(5):537-544.

14. Gaulton KJ, Mohlke KL, Vision TJ: A computational system to select
candidate genes for complex human traits. Bioinformatics 2007,
23(9):1132-1140.

15. Martínez V, Cano C, Blanco A: Network-based gene-disease prioritization
using PROPHNET. EMBnet journal 2012, 18(B):38-40.

16. Zhang W, Chen Y, Sun F, Jiang R: DomainRBF: a Bayesian regression
approach to the prioritization of candidate domains for complex
diseases. BMC Syst Biol 2011, 5:55.

17. Wang W, Zhang W, Jiang R, Luan Y: Prioritisation of associations between
protein domains and complex diseases using domain-domain
interaction networks. IET Syst Biol 2010, 4(3):212-222.

18. Vanunu O, Sharan R: A propagation based algorithm for inferring
genedisease associations. German Conference on Bioinformatics 2008,
54-62.

19. Navlakha S, Kingsford C: The power of protein interaction networks for
associating genes with diseases. Bioinformatics 2010, 26(8):1057-1063.

20. Köhler S, Bauer S, Horn D, Robinson PN: Walking the interactome for
prioritization of candidate disease genes. Am J Hum Genet 2008,
82(4):949.

21. Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B: Learning with local
and global consistency. Advances in Neural Information Processing Systems
16 MIT Press; 2004, 321-328.

22. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA: Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human
genes and genetic disorders. Nucleic Acids Res 2005, 33(suppl 1):
D514-D517.

23. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK,
Surendranath V, Niranjan V, Muthusamy B, Gandhi T, Gronborg M,
Ibarrola N, Deshpande N, Shanker K, Shivashankar H, Rashmi B, Ramya M,
Zhao Z, Chandrika K, Padma N, Harsha H, Yatish A, Kavitha M, Menezes M,
Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S,
Joy M, et al: Development of human protein reference database as an
initial platform for approaching systems biology in humans. Genome Res
2003, 13(10):2363-2371.

24. Raghavachari B, Tasneem A, Przytycka TM, Jothi R: DOMINE: a database of
protein domain interactions. Nucleic Acids Res 2008, 36(suppl 1):
D656-D661.

25. Ng SK, Zhang Z, Tan SH, Lin K: InterDom: a database of putative
interacting protein domains for validating predicted protein interactions
and complexes. Nucleic Acids Res 2003, 31:251-254.

26. Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V,
Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR,

Sonnhammer ELL, Bateman A: Pfam: clans, web tools and services. Nucleic
Acids Res 2006, 34(suppl 1):D247-D251.

27. Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ,
McGarvey P, Gasteiger E: Infrastructure for the life sciences: design and
implementation of the UniProt website. BMC Bioinf 2009, 10:136.

28. Kwok JBJ, Loy CT, Hamilton G, Lau E, Hallupp M, Williams J, Owen MJ,
Broe GA, Tang N, Lam L, Powell JF, Lovestone S, Schofield PR: Glycogen
synthase kinase-3β and tau genes interact in Alzheimer’s disease. Ann
Neurol 2008, 64(4):446-454.

29. Van Duijn C, Cruts M, Theuns J, Van Gassen G, Backhovens H, van den
Broeck M, Wehnert A, Serneels S, Hofman A, Van Broeckhoven C: Genetic
association of the presenilin-1 regulatory region with early-onset
Alzheimer’s disease in a population-based sample. Eur J Hum Genet 1999,
7(7):801.

30. Fenoglio C, Galimberti D, Piccio L, Scalabrini D, Panina P, Buonsanti C,
Venturelli E, Lovati C, Forloni G, Mariani C, Bresolin N, Scarpini E: Absence
of TREM2 polymorphisms in patients with Alzheimer’s disease and
Frontotemporal Lobar Degeneration. Neurosci Lett 2007, 411(2):133-137.

31. Melchior B, Garcia AE, Hsiung BK, Lo KM, Doose JM, Thrash JC, Stalder AK,
Staufenbiel M, Neumann H, Carson MJ: Dual induction of TREM2 and
tolerance-related transcript, Tmem176b, in amyloid transgenic mice:
implications for vaccine-based therapies for Alzheimer’s disease. ASN
neuro 2010, 2(3).

32. Aziz N, Jurgens C, Landwehrmeyer G, van Roon-Mom W, Van Ommen G,
Stijnen T, Roos R: Normal and mutant HTT interact to affect clinical
severity and progression in Huntington disease. Neurology 2009,
73(16):1280-1285.

33. Wold LE, Ceylan-Isik AF, Fang CX, Yang X, Li SY, Sreejayan N, Privratsky JR,
Ren J: Metallothionein alleviates cardiac dysfunction in streptozotocin-
induced diabetes: Role of Ca2+ cycling proteins, NADPH oxidase, poly
(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radical
Biol Med 2006, 40(8):1419-1429.

34. Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U, Njølstad PR, Jellum E,
Søvik O: Familial hyperinsulinemic hypoglycemia caused by a defect in
the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 2004,
53:221-227.

35. van Hove EC, Hansen T, Dekker JM, Reiling E, Nijpels G, Jørgensen T, Borch-
Johnsen K, Hamid YH, Heine RJ, Pedersen O, Maassen JA, Hart LM: The
HADHSC Gene Encoding Short-Chain l-3-Hydroxyacyl-CoA
Dehydrogenase (SCHAD) and Type 2 Diabetes Susceptibility The
DAMAGE Study. Diabetes 2006, 55(11):3193-3196.

36. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G,
Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT,
Frayling TM: Large-scale association studies of variants in genes
encoding the pancreatic β-cell KATP channel subunits Kir6. 2 (KCNJ11)
and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated
with type 2 diabetes. Diabetes 2003, 52(2):568-572.

37. Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R,
Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P: Activating mutations in the
ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 2006,
355(5):456-466.

38. Westenend PJ, Schütte R, Hoogmans MM, Wagner A, Dinjens WN: Breast
cancer in an MSH2 gene mutation carrier. Hum Pathol 2005,
36(12):1322-1326.

39. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC,
Mandell J, Lee MK, Ciernikova S, Foretova L, Soucek P, King MC: Spectrum
of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk
of breast cancer. JAMA 2006, 295(12):1379-1388.

40. Rökman A, Ikonen T, Mononen N, Autio V, Matikainen MP, Koivisto PA,
Tammela TL, Kallioniemi OP, Schleutker J: ELAC2/HPC2 involvement in
hereditary and sporadic prostate cancer. Cancer Res 2001,
61(16):6038-6041.

41. Buterin T, Koch C, Naegeli H: Convergent transcriptional profiles induced
by endogenous estrogen and distinct xenoestrogens in breast cancer
cells. Carcinogenesis 2006, 27(8):1567-1578.

42. Naderi A, Teschendorff A, Barbosa-Morais N, Pinder S, Green A, Powe D,
Robertson J, Aparicio S, Ellis I, Brenton J, Caldas C: A gene-expression
signature to predict survival in breast cancer across independent data
sets. Oncogene 2006, 26(10):1507-1516.

43. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S,
Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S,

Martínez et al. BMC Bioinformatics 2014, 15(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/15/S1/S5

Page 12 of 13



Evans DG, Eccles D, Easton DF, Stratton MR: PALB2, which encodes a
BRCA2-interacting protein, is a breast cancer susceptibility gene.
Nat Genet 2006, 39(2):165-167.

44. Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen X, Donn K,
Cummings M, Nyholt D, Jenkins MA, Scott C, Pupo GM, Dörk T, Bendix R,
Kirk J, Tucker K, McCredie MRE, Hopper JL, Sambrook J, Mann GJ,
Khanna KK: Dominant negative ATM mutations in breast cancer families.
J Natl Cancer Inst 2002, 94(3):205-215.

45. Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O,
Tamminen A, Kononen J, Aittomäki K, Heikkilä P, Holli K, Blomqvist C,
Bartek J, Kallioniemi OP, Nevanlinna H: A CHEK2 genetic variant
contributing to a substantial fraction of familial breast cancer. Am J Hum
Genet 2002, 71(2):432-438.

doi:10.1186/1471-2105-15-S1-S5
Cite this article as: Martínez et al.: ProphNet: A generic prioritization
method through propagation of information. BMC Bioinformatics 2014
15(Suppl 1):S5.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Martínez et al. BMC Bioinformatics 2014, 15(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/15/S1/S5

Page 13 of 13


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Value propagation inside networks
	Value propagation between networks
	Value correlation between networks
	Prioritization process
	Prioritization example
	Algorithm complexity

	Results
	Data sources
	Gene-disease validation
	Gene-disease validation with new OMIM associations
	Domain-disease validation
	Robustness analysis
	Case studies
	Results for Alzheimer Disease
	Results for Diabetes Mellitus Type 2
	Results for Breast Cancer


	Conclusion
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

