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Abstract

changes effectively.

Background: Protein structures are flexible and often show conformational changes upon binding to other
molecules to exert biological functions. As protein structures correlate with characteristic functions, structure
comparison allows classification and prediction of proteins of undefined functions. However, most comparison
methods treat proteins as rigid bodies and cannot retrieve similarities of proteins with large conformational

Results: In this paper, we propose a novel descriptor, local average distance (LAD), based on either the geodesic
distances (GDs) or Euclidean distances (EDs) for pairwise flexible protein structure comparison. The proposed
method was compared with 7 structural alignment methods and 7 shape descriptors on two datasets comprising
hinge bending motions from the MoIMovDB, and the results have shown that our method outperformed all other
methods regarding retrieving similar structures in terms of precision-recall curve, retrieval success rate, R-precision,
mean average precision and F;-measure.

Conclusions: Both ED- and GD-based LAD descriptors are effective to search deformed structures and overcome
the problems of self-connection caused by a large bending motion. We have also demonstrated that the ED-based
LAD is more robust than the GD-based descriptor. The proposed algorithm provides an alternative approach for
blasting structure database, discovering previously unknown conformational relationships, and reorganizing protein

structure classification.

Background

Protein structure comparison plays an important role in
predicting functions of novel proteins [1] and several
methods have been developed for pairwise [2-8] and mul-
tiple [9-16] comparisons. Most existing methods of struc-
ture comparison treat proteins as rigid bodies; however,
protein structures are flexible and conformationally
changeable in response to binding another molecules rela-
ting with biological functions such as immune protection,
enzymatic catalysis and cellular locomotion [17,18]. Such
structural variations caused rigid-body algorithms unable
to generate correct alignments or retrieve similar structures
with large deformations. Therefore, flexibility of proteins
should be taken into account when comparing structures
and searching for similarities to a query structure.
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Alignment methods

Flexible structure comparison has received much attention
in recent years. For instance, FlexProt found congruent
rigid fragment pairs between two proteins and the flexible
regions (hinges), and then a clustering procedure was per-
formed to join consecutive fragment pairs into congruent
domain pairs [19,20]. FATCAT connected aligned fragment
pairs based on a dynamic programming algorithm which
introduced penalty scores for gaps and twists between con-
secutive aligned fragment pairs [21]. Compared with Flex-
Prot, FATCAT generates alignments with less twists but
similar root mean square deviations (RMSDs) and lengths.
The TOPS++FATCAT algorithm reduced the number of
aligned fragment pairs during FATCAT comparison pro-
cesses by applying topological constraints obtained from
the alignment of secondary structure elements (SSEs) of
TOPS + [22]. Therefore, TOPS++FATCAT is more than 10
times faster compared to FATCAT. Both FlexProt and
FATCAT are sequential alignment algorithms thus unable
to identify non-sequential alignments. FASE [23] and
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FlexSnap [24] were designed to tackle the problem of non-
sequential flexible structure alignment. FASE compares
structures starting from aligned pairs of SSEs with an as-
sumption that an optimal superposition of pairs of struc-
tures must have at least one pair of well-aligned SSEs.
FlexSnap applies a greedy algorithm for connecting aligned
fragment pairs and possesses competitive results against
other state-of-the-art pairwise comparison methods. Matt,
one of the most popular and accurate flexible multiple
structure alignment methods, is also based on the approach
of chaining aligned fragment pairs which are allowed trans-
lations and rotations during assembling [25,26].

Non-alignment methods

The alignment/superposition based comparison methods
are inefficient for blasting similar structures from a struc-
ture database in real-time [27]. Therefore, several non-
alignment approaches based on different descriptors of
molecular shapes were proposed. These descriptors are
usually represented by histograms or vectors, and a simi-
larity score between two molecules is calculated from cor-
responding descriptors without any alignment [28,29]. For
example, Daras et al. applied the spherical trace transform
method to produce rotational invariant descriptor vectors
constituted by weighted geometry- and attribute-based
vectors for protein classification [30]. The 3D Zernike de-
scriptor represented a protein structure by 121 numbers
based on a series expansion of 3D functions for fast re-
trieval of similarities, and which demonstrated that low-
resolution structures were also applicable [27,31]. Abu
Deeb et al. proposed a global descriptor on protein sur-
face, and which was constructed from local patch descrip-
tors defined by residue-specific distance distributions
between Ca atoms and the numbers of pairwise residue
co-occurrences within each surface patch [32]. Yin et al
compared local surface of proteins by geometric finger-
prints of each surface patch [33]. A fingerprint consists of
60 (4 by 15) bins corresponding to the geodesic-distance-
dependent distribution of curvatures.

Nevertheless, most non-alignment methods treated
proteins as rigid bodies and neglected flexibility of pro-
tein conformations required for performing biological
functions. To confront the issue of flexibility, Liu and
Fang et al. proposed several histogram based descriptors
for flexible molecules comparison. For instance, a local
diameter descriptor for depicting the local characteristics
of boundary points [34], and another descriptor, inner
distance, defined as the shortest path between landmark
points [28,35]. Both methods are sensitive to self-connection
problems during molecular shape deformation. Accordingly,
an improved method named Diffusion Distance Shape De-
scriptor (DDSD) was proposed, which is based on an aver-
age distance instead of the shortest distance between two
landmark points [36]. Although DDSD is superior to local
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diameter, inner distance and other descriptors in terms of
retrieving similar protein structures, its performance is still
unsatisfied with an F;-measure of 37.04%.

Proposed method

Non-alignment or descriptor based approaches are gener-
ally fast enough to search a large database in a real-time
manner, but do not provide corresponding information of
residues which might provide crucial information for biol-
ogists. Combining the ideas of alignment and descriptor
based approaches, we propose a novel and efficient de-
scriptor called local average distance (LAD) which is based
on either geodesic distances (GDs) or Euclidean distances
(EDs) for pairwise flexible protein structure comparison.
Each protein structure is firstly transformed into its corre-
sponding LAD profile, and the similarity between two pro-
teins is calculated according to pairwise local alignment on
transformed profiles. The Hinge Atlas and Hinge Atlas Gold
datasets [37] from the MolMovDB [38] were employed to
evaluate the performance of proposed LAD descriptors and
to compare with several non-alignment and rigid/flexible
structure alignment methods.

Methods

The proposed protein structure comparison algorithm is
based on the LAD profile which is built from pairwise
residue distances (ED or GD) within a protein. The
workflow of generating profiles from atomic coordinates
of proteins is shown in Figure 1. The similarity between
two proteins is determined by a local pairwise alignment
of their corresponding LAD profiles. The core proce-
dures can be decomposed into triangular surface construc-
tion, surface simplification, ED/GD calculation, profile
construction and profile comparison. Details of each step
are introduced in the following sections.

Triangular surface construction and simplification

The solvent-accessible surface (SAS) [39] and solvent-
excluded surface [40,41] (SES, also known as molecular
surface or Connolly surface) are the most widely used
definitions for protein surface analysis. Each atom of a
protein is represented as a sphere with its van der Waals
radius. The SAS is traced out by the center of a solvent
probe sphere rolling over the spherical atoms, whereas
the SES is formed by the inward-facing surface of the
probe consisting of contact surface and re-entrant surface.
For a more complete description of both SAS and SES
please refer to [42]. Many algorithms have been developed
to build SAS and/or SES such as Gauss-Bonnet theorem
[43], level-set [44], alpha shape [45,46], beta shape [47],
Euclidean distance transform [48], ray-casting [49] et al.
[50-52]. One common area-based method defines a resi-
due as a surface residue if its surface area is greater than a
specific threshold [46,53]. The other area-based methods
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Figure 1 Flowchart of LAD profile generation for the protein 5rsa:A. (a) Yellow ribbons display the secondary structures and red spheres
represent the backbone atoms (N, Ca, C, O) of each residue. (b) The MSMS-

created by MeshLab. (d) and (e) are LAD profiles of the input protein for ED (LADgp) and GD (LADgp) respectively.
A\

generated triangular surface. (c) The simplified surface which is

consider a residue with relative solvent accessibility larger
than a threshold as a surface residue [54,55]. The relative
solvent accessibility is defined by taking a residue’s solvent-
accessible area divided by the maximum area of that resi-
due [56,57]. In recent years, novel atom-depth-based ap-
proaches were proposed as alternative ways to define
surface residues [58,59]. Different algorithms employed
various definitions of atom depth which could be defined
as the distance of an atom from the nearest water molecule
surrounding the protein, from the molecular surface, or
from its closest solvent-accessible neighbor [60].

The input for building an LAD profile is a standard PDB
file. Owing to the requirement of triangular surface meshes
for GD calculation, one of the most used and fastest sur-
face program, MSMS v2.6.1 [61], is applied to construct
triangular surface meshes from coordinates of all backbone
atoms of the protein (Figure 1la). All the parameters of
MSMS are remained as default settings. This tool usually

generates high resolution meshes (Figure 1b) for proteins.
However, it is time-consuming and memory exhausted
during the calculation of GDs among mesh vertices. To re-
duce the resolution of MSMS-generated meshes, an open
source tool, MeshLab v1.3.2 (http://meshlab.sourceforge.
net/), is adopted to downsample original meshes. The out-
puts of MSMS are converted into Polygon File Format
(Stanford Triangle Format) as MeshLab’s inputs. The algo-
rithm of Quadric edgecollapse, a variant of the well-known
quadric error metric algorithm [62] , is employed to sim-
plify meshes (Figure 1c). As a result, the face number of
each MSMS-generated mesh could be reduced by 85%
generally in this research.

Calculation of pairwise residue distances

The simplified meshes are then used to identify surface
residues, and the GDs and EDs of surface residue pairs
can be obtained. Each vertex of a simplified mesh
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belongs to the closest backbone atom of the protein. In
other words, an atom could possess more than one ver-
tex. We defined that the vertices belong to an atom as
the associated vertices of that atom. A residue is
regarded as a surface residue if its backbone atoms have
at least one vertex.

GD is the shortest path along the surface from source
to destination points. We adopted the previously pub-
lished open source program provided by Danil Kirsanov
(http://code.google.com/p/geodesic/) to calculate GDs
between any two vertices from simplified meshes. The
GD between two atoms, a; and a; is defined by taking
average of GDs from all associated vertices and repre-
sented as the following:

Yoy ep(ny)

GD(ﬂi,d]’) = MxN

where GD(a;, a)) is the average GD from the i™ atom to
the j™ atom, v and v/ represent the x™ vertex of the i
atom and the y™ vertex of the /™ atom respectively. The
symbols M and N indicate the number of vertices associ-
ated with the /™ atom and the /™ atom, and GD (¥, vly )
is the GD from vertex v} to vertex v]y . The atoms posses-
sing no associated vertices won’t be considered, hence
M and N must be strictly larger than zero. In contrast to
the measurement of GD, an ED between two atoms can
be easily obtained from their coordinates. Once the two
different distance measures between any two atoms are
obtained, the distance measures between any two resi-
dues can be calculated similarly by taking an average of
GDs or EDs from all associated backbone atoms.

Construction of LAD profiles

LAD is proposed to retain local characteristics of each
residue in sequential relationship. The LAD profile for a
protein consists of average distance values which are
built by employing a sliding window scanning from N-
to C-terminus. In this study, we have tried different odd
window sizes ranging from 3 to 21, and the window size
of 9 residues provided the best performance on the
training dataset (Dataset L from ADiDoS [63]). Hence, a
window size of 9 is applied to build all LAD profiles. We
have implemented two types of LAD profiles; one is
based on ED feature (LADgp, Figure 1d) and the other is
based on GD (LADgp, Figure 1e) feature. Given a resi-
due at position i (residue;) in the sequence, the LAD; for
the residue; is defined by taking average distance from
residue; to both side neighbouring residues within the
window.

LAD diversity
The pairwise structure comparison in this study is based
on evaluating the similarities of two LAD profiles from
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two individual proteins. A variation of Smith-Waterman
algorithm is performed to obtain the correspondence of
residues between two proteins by comparing LADs in-
stead of amino acid contents. The similarity score be-
tween two residues, residue; and residue;, for dynamic
programming is inversely proportional to the absolute
difference between LAD; and LAD;.

The similarity of two proteins is quantified by the result
of pairwise profile alignment. A novel scoring function
named as LAD diversity (LAD,;,) is proposed, which con-
siders the number of equivalent (aligned) residues (N,)
and the root-mean-square deviation (RMSD) of LADs for
aligned residues. The LAD,;, is defined in the following
equation where N and Ny are lengths of the query and
the subject proteins respectively. The symbols D and «a are
used to adjust the effect of RMSD on the LAD,;,. Since N,
must be less than or equal to N and N, the value of
LAD,;, is between 0 and 1, and smaller values represent
higher similarities.

N,

LADg, = 1-
a mean (N, Ns) [1 + (RM5D)]

Profile alignment of a similar structure pair tends to
hold a low RMSD and a large N,, and therefore results in
a low LAD,;,. For example, a domain swapping protein
pair illustrated in the section of self-connection problem
possessing (RMSD, LAD,;,) of (0.173, 0.0004) and (0.454,
0.02) for LADgp and LADgp respectively. Conversely, a
dissimilar structure pair possesses a high LAD,;, with a
large RMSD and a low N, simultaneously. Figure 2 shows
an instance of profile alignment for a non-homologous
protein pair which possesses different conformations, and
accordingly, the LADgp profiles obtained high values of
(RMSD, LAD,;,) as (1.601, 0.955) compared to the previ-
ous example.

Variables D and a were trained by the Dataset L [63]
which contains 706 known domain swapping homologous
pairs (Lds), 487 common homologous pairs (Lck) and 640
non-homologous pairs (Lnh) of protein structures. Both
Lds and Lch were considered as a positive dataset in which
each pair was anticipated possessing low LAD,;, values.
Conversely, Lnh was considered as a negative dataset
which was expected possessing high LAD,;, values for
each pairs. Let Lds_o5 and Lch. g5 denote the number of
pairs whose LAD,;, is less than 0.5 for both Lds and Lch.
The Lnh. (5 represents the number of pairs whose LAD ;,
is larger than or equal to 0.5. We have evaluated D ranging
from 0.1 to 20 with an interval of 0.1, and a range of 1 to
5 with an interval of 0.5 for a. Hence, a total of 1800
(200 x 9) combinations of D and a were evaluated and the
one with maximum Lds_g5 + Lchogs + Lnhs o5 was selected.
Finally, (D, @) = (1, 4.5) and (D, a) = (1.1, 5) were selected
for LADgp and LADgp, respectively.
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Figure 2 An example of LADgp, profile alignment for a non-homologous protein pair. Owing to conformations of both structures are
significantly different, their LADgp profiles could not be aligned properly, and therefore resulted in a high LAD;,. (@) Cartoon representation for
the non-homologous protein pair of Twwa:X (green) and 1kOy:C (blue). (b) The pairwise alignment result of LADgp profiles for both structures.
The x-axis represents the serial numbers of residue pair and the y-axis denotes LAD values.

Structural diversity

There are many different ways to measure protein struc-
tural similarity of aligned results, and many of them have
been reviewed in [1]. According to our previous research
[63], the structure diversity (Struct,;,) [64] showed superior
performances on distinguishing homologous proteins from
non-homologous ones upon various structural comparison
methods. Therefore, Struct,;,, was employed in this study
to compare existing rigid/flexible structural alignment tools
with our proposed method. Struct,;, is defined as:

RMSD

1.5
NE
mean(NQ,Ns))

where RMSD is the root mean square deviation of the
distances between the aligned Ca atoms. Like LAD,;,
structural alignment of a similar structure pair tends to
have both low RMSD and large N,, and low Struct .

Struct g, =

Testing datasets

There were two testing datasets applied in this research to
validate our method and compare with existing methods.
The first one is Hinge Atlas dataset which contains 2791
protein structures of 214 non-redundant morphs exhibit-
ing hinge bending motions. The lengths of proteins range
from 28 to 994 residues. A morph is a group of structures
(9 to 32) comprising two homologous proteins with differ-
ent conformations and several interpolated structures be-
tween these two initial structures. About 97% of morphs
in the dataset possess three or less hinge points. Figure 3
shows an example of morph with a large conformational
change for the protein GroEL containing 524 residues.
Neither LADgp and LADgp descriptors are sensitive to
the deformation, especially for LADgp. The second dataset

provided by Liu et al. was a subset of Hinge Atlas [37] and
Hinge Atlas Gold datasets, and which was applied in the
previous study [36]. The Liu’s dataset contains 382 protein
structures of 27 groups with large degrees of conform-
ational changes.

Results

Comparison with structural alignment methods

LAD descriptors were compared with 2 rigid and 5 flex-
ible structural alignment methods on the Hinge Atlas
dataset in terms of retrieving similar structures which
belong to the same group (morph) as the query struc-
ture. The first structure in each group was regarded as
the representative for that group, and the remaining
2577 proteins were considered as query structures. Each
query protein compared with 214 representatives, and
there were a total of 551478 (2577 x 214) pairwise com-
parisons. The results for each query were sorted accord-
ing to the diversity scores (LAD,;, or Structy,), and it
was regarded as a successful retrieval if the representa-
tive belonging to the same group as query proteins was
ranked at the first place. The retrieval performance for
LAD and other structural alignment methods on the
Hinge Atlas dataset were summarized in Table 1. The
results have shown that LADgp and LADgp performed
better than other methods and achieved retrieval success
rates of 97.1% and 95% respectively. The structural align-
ment methods generated unsatisfied alignment results
even though the relevant structures were successfully re-
trieved at the first place. For example, all methods ranked
the relevant structure of ff0 at the top position for the
query structure of ff9 from the morph group of va2eznA-
115bA, and it is a domain-swapped dimer of Cyanovirin-N
(Figure 4a). In this case, LADgp, LADgp, FlexProt, FlexS-
nap and jFATCAT (Figure 4b) could align the protein pair



Wang et al. BMC Bioinformatics 2014, 15:95
http://www.biomedcentral.com/1471-2105/15/95

Page 6 of 13

< 11t
@ 10F
£ 9
g s
8 7

6

5

4

3

2 b

1 b

% 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

Residue Index

18

)

16 |

| i ‘

‘ A i

13 /

12t | 1 / ’} r
gl Il L L n ‘ \ |
o 10 i IN\R A el i AW "‘17'4“‘.'5.‘ \,\‘\' h ’ "}" |‘ ‘!. I . A ‘,] k "‘_u‘" “ ( of
E : i /\‘I"‘l v 11; uI tli ‘w-;L' l\l,’ "x ‘\ “¢ 'l."{ ’J‘ “: .J’ ‘L Y vlr; ¥ ‘.‘J"‘ l\\-
g e Y LR T W Woowr VALY L L |
a 7F

6

sl

4|

3t

2 b

1L

o . . . .

o

20 40 60 80 160 lZID 1;0 léﬂ léﬂ Z(‘)D 2‘20 2;10
Residue Index

Figure 3 A morph for the protein GroEL in the Hinge Atlas dataset. There are 20 structures in this morph (morph id is 805511-5128)

containing 4 hinge residues: 191G, 192 M, 372A and 373G. (a) and (d) are the first and last proteins in the morphing group respectively. (b) is

the 7t interpolated structure and (c) for the 14" structure. (e) and (f) represent the LADgp and LADgp profiles for the four structures of the

same protein and both profiles are insensitive to the conformational changes. The x-axis represents the serial numbers of residues and the y-axis

denotes LAD values. Figures (a)-(d) were generated by PyMOL (http://www.pymol.org/), and (e)-(f) by Highcharts (http://www.highcharts.com/).
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completely, but FASE (Figure 4c), Fast (Figure 4d), Matt-Rigid
(Figure 4e) and Matt-Flexible (Figure 4f) only aligned
half portion of the structure.

In addition to the measure of successful retrieval rates, we
also evaluated the performances for the Hinge Atlas dataset
based on the precision-recall curve of 11-point interpolated
average precision which is a common measurement in

information retrieval systems [65]. It should be noted that
the 214 representatives were treated as query structures in-
dividually, and each of them compared with the remaining
2577 structures in order to search structures belonging to
the same group. A precision rate is the fraction of retrieved
structures that are relevant to the query protein, and a recall
rate is the fraction of relevant structures that are successfully
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Table 1 Retrieval performances of 2577 queries for
different methods on the Hinge Atlas dataset

Method Number of successful retrieval Success rate (%)

LADgp 2502 97.1
LADgp 2447 950
Matt-Flexible 2342 90.9
FlexSnap 2329 904
FASE 2282 886
JFATCAT 2241 870
FAST" 2234 86.7
Matt-Rigid” 2185 84.8
FlexProt 2167 84.1

"Rigid alignment method.
The results are ordered by the success rates and show that both LADgp and
LADgp outperform other methods.

retrieved. Precision and recall rates are defined in the follow-
ing equations:

Precision P
ision = ——
TP + FP
TP
Recall = ———
T IP N
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True positive (7P) is the number of successful retrieved
structures; false positive (FP) represents the number of in-
accurately retrieved structures; false negative (FN) denotes
the number of structures belonging to the same group as
query but not being retrieved. The interpolated precision
for a specific recall r is defined as the maximum precision
over any recall r'>r [65]. For each query, a set of 11 inter-
polated precisions at 11 recall levels (0, 0.1, 0.2 ... 1) were
determined, then averages of interpolated precisions for
214 queries at each level were calculated. According to
the precision-recall curves (see Figure 5), both LADgp and
LADgp outperformed other methods since they possessed
larger area under the curve.

R-Precision and Mean Average Precision (MAP) are
the other common quantitative measures for evaluating
overall performance of information retrieval systems. If
there are total R relevant structures for a query, R-Preci-
sion is defined as the number of relevant structures in
the top R retrieved structures divided by R. For a query,
Average Precision is an average of precisions for each
relevant structure. MAP is defined as the mean of the
Average Precisions for a set of queries. For more details
of calculating these measures please refer to [65]. The

Figure 4 An example of successful retrieval but with poor structure alignments. The structure pair is from the morphing group of va2eznA-115bA in
the Hinge Atlas dataset. (@) The open-form (green, ff9) and closed-form (blue, ff0) of Cyanovirin-N. (b) to (f) are structure alignments generated by JFATCAT, FASE, Fast,
Matt-Rigid and Matt-Flexible respectively. The non-aligned regions are colored by gray. Al methods ranked the dosed-form of Cyanovirin-N at the top of 214 representative
structures when the openform of Cyanovirin-N as a query; nevertheless, FASE, Fast, Maitt-Rigid and Matt-Flexible only aligned half portion of the query protein.
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Figure 5 Precision-recall curves of 11-point interpolated average precision for different methods on the Hinge Atlas dataset. The top
blue and orange curves represent LADgp and LADgp respectively, and show that both LAD methods provide the best performance.

Table 2 Retrieval performances of 214 queries for

different methods on the Hinge Atlas dataset

Method Average R-precision (%) Mean average precision (%)
LADgp 95.54 96.67
LADcp 93.53 94.95
Matt-Flexible 87.55 89.62
FlexSnap 86.97 89.71
FASE 84.97 87.40
JFATCAT 83.36 86.23
FAST 82.81 86.16
Matt-Rigid 82.24 85.33
FlexProt 87.14 89.98

average R-Precision and MAP of 214 queries for diffe-
rent methods are shown in Table 2. The results have
shown that both LADgp and LADgp performed superior
to other methods, and LADgp achieves an average of
95.54% for R-Precision and 96.67% for MAP.

Comparison with non-alignment methods

The Liu’s dataset was employed to compare LAD de-
scriptor with non-alignment methods. In order to com-
pare with the results in [36], only the top 64 retrieved
structures for each query were used to compute the pre-
cision and recall rates. The F;-measure is the harmonic
mean of recall and precision rates defined as:

2 x Precision x Recall

Fi-measure = —
Precision + Recall
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where the maximum value is 1. In contrast to the arith-
metic mean, both precision and recall rates need to be
high to obtain a high F;-measure. The retrieval perform-
ance of F;-measure is listed in Table 3. LADgp and
LAD¢p achieved 43.27% and 43.18% of F,-measure re-
spectively and outperformed the other 7 non-alignment
methods with a highest F;-measure of 37.04%.

Discussion

Self-connection problem

Figure 6 is an example of bona fide domain swapping pro-
tein pair holding self-connection on surface caused by a
large hinge bending motion. The difficulty is that a self-
connection leads to topology changes, hence the inner dis-
tance method considering all landmark points cannot solve
this problem [35,36]. However, this type of deformation can
be overcome by our proposed descriptor especially for
LADgp approach since an LAD only considers the local
geometric properties which are not sensitive to global top-
ology changes. Figure 6d and Figure 6e have shown a high
consistency of LADgp and LADgp profiles between open-
form (PDB code: 1a2w, chain A) and close-form (PDB
code: 5rsa, chain A) of Ribonuclease A respectively. It is ob-
vious that LADgp is more consistent than LAD¢p in this
case, but both LAD,;, are close to zero representing highly
similar conformations. The (RMSD, LAD,;,) for LADgp is
(0.173, 0.0004) and (0.454, 0.02) for LADgp.

In general, LAD descriptors are insensitive to self-
connection cases; however, an LADgp, profile is sometimes
not consistent at the location of self-connecting regions.
Given another domain swapping example in Figure 6, an
open-form Ribonuclease A (PDB code: 1jsO, chain A)
changes to a closed-form (PDB code: 3di8, chain A). The
swapped domain (yellow surface) bends and intertwines with
the protein body (blue surface) via conformational changes
of highly flexible hinge loops (red surface) (see Figure 7a and
Figure 7b). In Figure 7c, it is obvious that the LADgp, varies
slightly between the open- and close-form states from H105

Table 3 Comparison with non-alignment methods on
Liu’s dataset

Method F,-measure (%)
LADgp 4327
LADgp 4318
Diffusion distance (DD) 37.04
Inner distance (ID) 35.83
Shape distribution (SD) 2840
Euclidean distance (ED) 28381
Solid angle histogram (SAH) 25.69
Geodesic distance (GD) 2642
Spherical harmonic descriptor (SHD) 2393

The results are taken from [36] except LADgp and LADgp.
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to A109 residues (magenta rectangle). In contrast, the
LADgp of close-form state is higher than that of open-form
state at corresponding highlighted regions (see Figure 7d).
For a detailed illustration, it can be imagined a path from
the residue H105 to its +3 position (V108). When the
swapped domain locates apart from the protein body in the
open-form state, the GD between these two residues is the
shortest path along the white surface. The GD and ED be-
tween the two residues in the open-form state are 11.12 A
and 10.37 A respectively. However, the path was changed
while the swapped domain bending to the body and inter-
twining with the white surface region forming a self-
connection case. The GD is increased significantly due to
an additional mountain (yellow region in Figure 7b)
obstructing the original path from residue H105 to V108.
The ED maintained high similarity since its path directly
passed through the mountain instead of along on the sur-
face. The GD and ED between the two residues of the
close-form state are 16.77 A and 9.57 respectively. This
phenomenon is the main reason why an LADgp descrip-
tor more sensitive to the topological changes than LADgp,.

Differences between the previous and proposed ED/GD
based methods

In previous studies [34-36], ED and GD were shown to be
sensitive to shape deformation and not feasible for flexible
molecular shape comparison. However, it is interesting that
relying on the proposed LAD methods, both features be-
come insensitive to topological changes and reveal deform-
ation invariant properties to tackle with the flexibility
problems. The reason for sensitive ED and GD features in
previous studies is that both distances were computed
among all global landmark points. On the contrary, the
LAD exploits the characterization of local geometric fea-
tures for each residue and its neighbouring residues. There-
fore, ED and GD features become much less sensitive to
global topological changes.

Computational time

Pairwise comparison of LAD profiles was performed by
a modification of Smith-Waterman algorithm and pos-
sessed the same time complexity. The goal of a sequence
alignment problem is to identify the correspondence of
residues between two given proteins, while a structure
alignment emphasizes on finding both an alignment and
a spatial superposition. Possible combinations of corre-
sponding residues are countable while possibilities of
special superposition are innumerable. Therefore, the
computational complexity of the proposed algorithm is
inherently less than most commonly used structure
alignment methods [66]. The LAD algorithm was imple-
mented by C# .NET running on an Intel Core i5-2500
3.3GHz computer with 16GB ram. According to the
551478 pairwise comparisons mentioned in the result
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Figure 6 An example of self-connection case for domain swapping proteins of 1a2w:A and 5rsa:A. The yellow part of open-form
Ribonuclease A (PDB code: 1a2w, chain A) swaps toward the protein body to form a closed-form (PDB code: 5rsa, chain A). (a) The structural
alignment of 1Ta2w:A (green) and 5rsa:A (blue); the hinge loops are highlighted in red. The backbone surfaces of 1a2w: A (b) and 5rsa:A (c) are
different due to domain swapped and self-connected formation. However, LADgy, (d) and LADgp (e) profiles for both structures

remain consistent.

section, it only cost an average computational time of
3.896 and 4.828 milliseconds per comparison for LADgp
and LADgp profiles respectively.

specific sliding window. Here, GD and ED were used to
build LADgp and LADgp, profiles. The idea of LAD im-
proves the ED- and GD-based descriptors which were
previously shown to be sensitive to molecular shape de-

Conclusions formation, in particular to topologically structural changes.

We proposed a novel profile-based alignment method,
named LAD, for pairwise flexible protein structure com-
parison. It can be constructed in a sense of any kind of
spatial measures of local neighbouring residues within a

The effectiveness of LAD descriptor has been evaluated on
two datasets of hinge bending motions from the Mol-
MovDB. Our methods are robust to deformed flexible mo-
lecules and achieve good performance regarding assignment
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Figure 7 lllustrating the variation between LADgp and LADgp, for a self-connection case.The 3D domain-swapped Ribonuclease A consists
of a protein body (green/blue surface), a hinge loop (red surface) and a swapped domain (yellow surface). (a) The open-form Ribonuclease A
(PDB code: 1js0, chain A) (b) The domain-swapped closed homolog of (a) (PDB code: 3di8, chain A). (c) and (d) are LADgp and LADgp profiles of
both closed- and open-form structures respectively. The red solid curve of (a) and (b) denotes a GD path, which is the shortest path along the
surface (white surface region) connecting two residues H105 and V108 (red spheres). The residues from H105 to A109 of both proteins are shown
as magenta sticks and highlighted within a magenta box in (c) and (d). The black dashed line of (a) and (b) indicates the ED path between the
residues H105 and V108. Note that the magenta box has shown that the LADgp profile is more sensitive at the topological changed locations
than the LADgp profile.

of the queries to different classes of molecules with confor-
mational changes, and the results have shown superior

was also explained. Required computational time for pair-
wise LADgp/LADgp profile comparisons was analyzed to

performance compared to existing alignment- and non-
alignment-based tools. Finally, the reasons of LAD
descriptor being insensitive to flexible proteins with self-
connection circumstance was described by taking 3D do-
main swapping cases as examples, and further discussion
of LADgp possessing more robust properties than LADgp

demonstrate its feasibility for constructing an on-line struc-
ture comparison system. The proposed descriptor is indeed
effective in retrieving deformed proteins and it could be an
alternative approach for database search, discovery of
previously unknown conformational relationships, and
reorganization of protein structure classification.
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Availability of supporting data

The training and testing datasets for our method can be
obtained from previously published papers by Chu CH
[63] and Flores SC [37,38].
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