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Abstract

Background: RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact
of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted
us to develop spliceR, an R package for classification of alternative splicing and prediction of coding potential.

Results: spliceR uses the full-length transcript output from RNA-seq assemblers to detect single or multiple exon
skipping, alternative donor and acceptor sites, intron retention, alternative first or last exon usage, and mutually
exclusive exon events. For each of these events spliceR also annotates the genomic coordinates of the differentially
spliced elements, facilitating downstream sequence analysis. For each transcript isoform fraction values are
calculated to identify transcript switching between conditions. Lastly, spliceR predicts the coding potential,
as well as the potential nonsense mediated decay (NMD) sensitivity of each transcript.

Conclusions: spliceR is an easy-to-use tool that extends the usability of RNA-seq and assembly technologies
by allowing greater depth of annotation of RNA-seq data. spliceR is implemented as an R package and is freely
available from the Bioconductor repository (http://www.bioconductor.org/packages/2.13/bioc/html/spliceR.html).
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Background
Alternative splicing is one of the most important RNA
modifications, leading to protein diversification and
contributing to the complexity of higher organisms [1].
Recent advances in RNA sequencing (RNA-seq), com-
bined with modern RNA-seq assembly software such as
Cufflinks [2], allows for high-resolution profiling of the
RNA landscape. The technological and computational
advances enables identification of a catalog of distinctly
spliced transcripts originating from the same transcrip-
tion unit/gene. These full-length transcripts are however
underutilized, in part because it is difficult to predict the
functional impact of alternate transcription events lead-
ing to the different transcripts. In addition to the poten-
tial for impact on protein domains, alternate splicing
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may also alter RNA processing, stability and localization.
Nonsense mediated decay (NMD) is tightly linked to al-
ternate splicing, and the mechanism by which even small
changes in alternative splicing can result in degradation
via NMD is well described [3]. To predict splicing events
that may lead to these functional changes, it is necessary
to classify the type of event as well as annotate the gen-
omic position of the regions that are differentially spliced.
Such classifications also enable systematic follow-up ana-
lyses, such as sequence analysis of the differentially
spliced regions to infer the underlying mechanisms.
However, at present there are no available tools that
adequately perform these analyses. Existing methods,
including MISO [4], Astalavista [5] and DiffSplice [6],
do not output the genomic coordinates of differentially
spliced regions [4,7-11], have insufficient classification
of alternative splicing (i.e., only a subset of alternative
splicing classes are supported) [4-11], or cannot assess
novel features [4,7,8,12]. Furthermore, none of the
existing tools for analyzing alternative splicing support
NMD predictions [4-12].
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This prompted us to develop the R package spliceR. spli-
ceR uses the full-length transcripts created by RNA-seq
assemblers to detect single- and multiple exon skipping/
inclusion (ESI, MESI), alternative donor and acceptor sites
(A5, A3), intron retention (IR), alternative first or last
exon usage (ATSS, ATTS), and mutually exclusive exon
events (MEE). spliceR annotates the genomic coordi-
nates of the differentially spliced elements, facilitating
downstream sequence analysis. Finally, spliceR predicts
the coding potential of transcripts, calculates untrans-
lated region (UTR) and open reading frame (ORF)
lengths and predicts whether transcripts are NMD-
sensitive based on compatible annotated start codon
positions and their downstream ORF.
Implementation
Retrieval of data
spliceR is implemented as an R package and is freely
available from the Bioconductor repository (http://www.
bioconductor.org/packages/2.13/bioc/html/spliceR.html).
It is based on standard Bioconductor [13] classes such as
GRanges, allowing for full flexibility and modularity, and
support for all species and versions supported in the
Bioconductor annotation packages. An example dataset
is included to allow easy exploration of the package.
spliceR is compatible with the output from any full-

length RNA-seq assembler, but was designed to integrate
with Cufflinks and includes a dedicated function that
retrieves all relevant information from the SQL database
generated by Cufflinks axillary R package cummeRbund.
In future versions new functions dedicated to import
data from other RNA-seq assemblers will be introduced.
The R code for a standard workflow based on Cufflinks
data is illustrated in Figure 1. A workflow using output
from other full-length RNA-seq assemblers is provided
in the spliceR Bioconductor documentation.
# A) Retrieve data from Cufflinks
cuffDB <- readCufflinks(dir='./cuffdiff_outp
merge/merged.gtf’) # create SQL database via

mySpliceRList <- prepareCuff(cuffDB)  # Extr

# B) Identify ORFs and annotate PTCs in tran
require("BSgenome.Hsapiens.UCSC.hg19",charac

ucscCDS <- getCDS(selectedGenome="hg19", rep

mySpliceRList <- annotatePTC(mySpliceRList, 

# C) Analyze alternative splicing in transcr
mySpliceRList <- spliceR(mySpliceRList, comp

# D) Create GTF file
generateGTF(mySpliceRList, filters="isoOK", 

Figure 1 The R code for a standard spliceR analysis. The R code neces
R code to generate a spliceRList from Cuffdiff output. B-D) The R code for
Classification of alternative splicing
For each gene, spliceR constructs the hypothetical pre-
RNA based on the exon information from all transcripts
originating from that gene. Subsequently, all transcripts
are compared to this hypothetical pre-RNA in a pairwise
manner, and alternative splicing events are classified and
annotated (see Figure 2 for a schematic overview).
Alternatively, spliceR can be configured to use the most
expressed transcript as the reference transcript instead of
the theoretical pre-RNA. This may be useful in perturb-
ation scenarios where investigators are interested in devi-
ation from normal conditions. For statistical assessment of
differential splicing, users can access the transcript fidelity
status and P-values of Cufflinks, or can easily apply other
R-packages that are tailored for this purpose, including
edgeR [14], deseq [15], and baySeq [16].
Isoform fraction values
For each transcript and condition, spliceR calculates an
isoform fraction (IF) value, which is calculated as (tran-
script expression) / (gene expression) *100 to represent
the contribution of a transcript to the expression of the
parent gene. Furthermore delta-IF (dIF) values, which
measure the absolute change in IF values between condi-
tions, are also calculated. Since these dIF values measure
changes in relative abundance of isoforms within a gene,
they are well suited for identifying and analyzing changes
in the isoform usage. Such analysis does however require
that the expression values of transcripts and genes have
been normalized to length, sequencing depths, and pos-
sibly other biases, a standard feature of the Cufflinks
FPKM (fragments per kilobase of transcript per million
fragments sequenced) metric. For data from other assem-
blers, the user may need to accommodate this require-
ment manually. These IF values are highly dependent
on the underlying data quality and relative expression
ut/', rebuild=TRUE, gtfFile=‘./cuff-
 cummeRbund

act data from SQL database

scripts
ter.only = TRUE) # load genome sequence

oName="UCSC")  # Get annotated ORFs

ucscCDS, Hsapiens)  # Analyze ORFs

ipts
areTo='preTranscript', filters= 'isoOK')

filePrefix=’./outputPaht/outputName’) 

sary to run a standard spliceR analysis based on Cuffdiff output. A) The
making a standard spliceR analysis.
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Event type No. of events

Exon skipping/inclusion
(ESI)

1,619

Mult. exon skipping/inclusion
(MESI)

190 

Intron retention
(IR)

   256

Alternative 5’ splice site
(A5)

   755

Alternative 3’ splice site
(A3)

   733

Alternative transcription start site
(ATSS)

  1,381

Alternative transcription termination 
site
(ATTS)

  1,125

Mutually exclusive exons
(MEE)

  22

All events   6,121

Figure 2 Number of individual alternative splicing events identified. A schematic structure of each alternative splicing type, along with the
associated name, abbreviation and the number of classified events in Usp49 KD RNA seq data.

Vitting-Seerup et al. BMC Bioinformatics 2014, 15:81 Page 3 of 7
http://www.biomedcentral.com/1471-2105/15/81
strengths, and should be viewed as a helpful ranking stat-
istic for identifying changes in alternative splicing between
conditions.

Analysis of coding potential
spliceR retrieves the genomic exon sequences of each
transcript from one of the Bioconductor annotation files.
ORF annotation is then retrieved from the UCSC Gen-
ome Browser repository either from RefSeq, UCSC or
Ensembl, as specified by the user. Alternatively, a cus-
tom ORF-table can be supplied. For each transcript, the
most upstream compatible start codon is identified, the
downstream sequence is translated, and the relative pos-
ition of the first in-frame stop codon and the distance to
the final exon-exon junction is recorded and returned to
the user. Transcripts are marked NMD-sensitive if the
stop codon falls more than 50 nt upstream of the final
exon-exon junction, indicating a pre-mature stop codon
(PTC). This is based on the literature consensus [17],
however this setting is user-configurable. The position of
the start codon is also annotated, which, in combination
with the found stop codon and the annotated transcript
lengths, enables users to calculate 5′UTR lengths, ORF
lengths and 3′UTR lengths. In future versions, we plan
to include alternative methods of coding region predic-
tion, such as the logistic regression model implemented
in the program CPAT [18].

Visualization and data integration tools
The spliceR package generates a GTF file that can be
uploaded to the UCSC genome browser, to help users
visualize transcripts and to allow for integration of the
RNA-seq analysis with external annotation sources. This
spliceR GTF file has two main advantages over the cor-
responding GTF file generated by Cufflinks’ Cuffmerge
tool: Firstly, spliceR’s optional filters uses stringent
criteria, e.g. requiring that the transcript should be
expressed, or that Cufflinks marks the transcript decon-
volution as successful. In our experience, this removes
up to 80% of transcripts originally predicted to belong to
the same gene in the Cufflinks GTF file (data not
shown), making the GTF file generated by spliceR more
suitable for visual analysis.
Secondly, spliceR can color-code transcripts according

to their expression level within the parent gene. This
feature facilitates easy visualization of changes in gene
and transcript expression both within and between
conditions.
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The tabulated output of spliceR facilitates a number of
downstream analyses, including identification of tran-
scripts that exhibit major changes between samples, the
ability to filter the output for specific splicing classes, as
well as sequence analysis in or around regions that are
spliced in or out between samples. Examples include
detection of enriched motifs, or identification of protein
domains, miRNA response elements or localization sig-
nals that are spliced in or out. spliceR facilitates these
types of analyses by outputting the genomic coordinates
of each alternatively spliced element.

Results and discussion
To show the power and versatility of spliceR we reana-
lyzed the publically available RNA-seq dataset from
Zhang et al. [19], which compared two experimental
conditions: the human colorectal cell line HT116 with
and without a siRNA directed towards Usp49, a histone
H2B deubiquitinase. To compare our approach with the
original analysis, we used the original Cufflinks data
(GEO: GSE38100). Transcripts successfully deconvo-
luted by cufflinks were used as the input into spliceR.
The resulting dataset contained 5,496 single-transcript
genes, and 1,867 multi-transcript genes. Combined,
the multi-transcripts genes were predicted to express
4,612 unique transcripts 2.47 transcripts per gene). The
analysis and results presented here are based on only
five lines of R code, (modified to hg18), shown in
Figure 1B-D, which illustrates the power and ease-of-
use of spliceR. For reference, the spliceR analysis took
~30 minutes on a typical laptop (MacBook Pro 2.5Ghz
i5, 8 GB RAM).

Splicing pattern and transcript structure
To validate the transcripts generated by Cufflinks, the
two first and two last nucleotides of all introns, corre-
sponding to the locations of splice site consensus se-
quences, were extracted from both the transcripts
generated by Cufflinks as well as reference transcripts
from RefSeq and Gencode. The extracted dinucleotides
were then compared to the canonical splicing motifs and
the percentage of dinucleotides agreeing with the clas-
sical splice site motif was analyzed (Table 1). The tran-
scripts predicted by Cufflinks were spliced in accordance
Table 1 Frequency of splice site consensus sequences

Usp49 RNA-seq Gencode Refseq

5′ end (GT) 93.23 89.72 92.08

3′ end (AG) 93.70 90.64 92.71

The two first and last nucleotides, corresponding to the splice site consensus
sequences, were extracted from all exons originating from the RNA-seq data,
Gencode, and RefSeq. The percentage of dinucleotides identical to the canon-
ical motif was calculated.
with the hyper-conserved splicing motifs as frequently as
transcripts originating from RefSeq or Gencode. To
further validate the transcripts obtained though Cufflinks
we used Cufflinks’ cuffcompare tool (v 2.1.1) against all
RefSeq transcripts. This showed that the sensitivity and
specificity for both introns and exons detection are high
(always over 0.91 and 0.81, respectively, and typically
much higher) (Table 2). These two analyses indicate that
that the splicing pattern and transcript structure observed
in the Cufflinks derived transcripts are of high quality and
suitable for further analyses.

Alternative splicing and NMD
From the Usp49 KD dataset spliceR identified a total
of 6,121 alternative splicing events (Additional file 1:
Table S1), distributed across the different splicing classes
shown in Figure 2. spliceR found 8,179 (80.9%) tran-
scripts without a PTC (PTC-), 642 (6,4%) transcripts
with a PTC (PTC+) while 1,287 (12.7%) transcripts did
not have any annotated compatible start codons. Similar
fractions of transcripts were predicted to be NMD sensi-
tive when all transcripts from RefSeq (8.2%) and Gen-
code (9.7%) were analyzed with spliceR, indicating that a
non-neglectable fraction of transcripts could be NMD
sensitive. By using spliceR’s annotation of start and stop
codons, the length of both 5′UTRs, 3′UTRs and ORFs
were analyzed, but no changes between conditions were
found (data not shown).

Splicing efficiency
Zhang and colleagues reported that a subset of tran-
scripts were enriched for intron retention following
Usp49 depletion [19], leading to the hypothesis that
Usp49 KD reduced the splicing efficiency of pre-RNA
molecules. If Usp49 KD impaired splicing efficiency, an
increase in the relative abundance of transcripts with IR
when comparing WT and KD would be expected. Since
the relative abundance of transcripts is measured by IF
values, we tested this hypothesis by comparing the dis-
tributions of IF values from the subset of transcripts
with IR (Figure 3). This analysis shows that transcripts
with IR had no global changes in their relative abun-
dance (P = 0.71, Mann–Whitney U test) indicating that
the global splicing efficiency was unchanged. This type
Table 2 Comparison of the analyzed transcripts to RefSeq

WT GTF Usp49KD GTF

Sensitivity Specificity Sensitivity Specificity

Exon level 97.90 89.20 98.00 88.70

Intron level 96.40 97.00 96.40 96.90

Intron chain level 91.70 81.90 91.80 81.90

Cufflinks’ cuffcompare tool (v. 2.1.1.) was used to compare RefSeq to the
obtained transcripts and the sensitivity and specificity (as defined [20]) for
exons, introns, and intron chains are shown.
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Figure 3 Relative abundance of transcripts. All NMD + transcripts (bottom) and all transcripts with IR (top) was extracted and the density
distributions of the IF values from WT and Usp49 KD were plotted.
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of analysis could however be used to analyze changes in
isoform usage in any subset of transcripts that the user
could find interesting, for example all NMD sensitive
transcripts (Figure 3).

Transcript switching
We next assessed transcripts whose relative abundance
was altered by the Usp49KD, by filtering for genes that
had both a large positive and large negative dIF value
(corresponding to a binary transcript-switch). 183 high
confidence transcript switches were found: in 18 instances
(~9.8%), an NMD-negative transcript was down-regulated
while a NMD-sensitive transcript was up-regulated. This
Window Position
Scale
chr5:

Human Mar. 2006 (NCBI36/h
10 kb

179,170,000 179,175

NM_001142299
              NM_003900

NM_001142299
              NM_003900

Transcripts

Transcript

SQSTM1
SQSTM1

PB1
ZZ

Pfam

Figure 4 Example of transcript switching. Screen shot from the UCSC g
gene. The two top tracks show transcripts generated by the generateGTF()
expressed at higher levels. The two bottom tracks indicate RefSeq genes (t
illustrates that failing to assess the NMD sensitivity can
lead to overestimation of the number of functionally
relevant transcript switches.
The transcript switch in the SQSTM1 gene (Figure 4)

illustrates the utility of integrating the spliceR data with
information in the UCSC genome browser to identify
functional changes conferred by alternate splicing. Visual
inspection of the isoform switch was possible by upload-
ing the GTF file generated by spliceR. As seen in
Figure 4, KD of Usp49 caused a switch from the long
transcript predicted to contain a truncated PB1 domain,
to the short transcript predicted to encode an intact PB1
domain.
g18)   chr5:179,165,749-179,186,542 (20,794 bp)
hg18

,000 179,180,000 179,185,000

RefSeq Genes

 generated by SpliceR - WT

s generated by SpliceR - KO

SQSTM1

 Domains in UCSC Genes

enome browser showing the transcript switch found in the SQSTM1
function for WT (top) and Usp49KD (bottom). Darker transcripts are
op) and protein domains identified via Pfam [21] respectively (bottom).
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Conclusion
Here, we have introduced the R package spliceR, which
increases the usability and power of RNA-seq and
assembly technologies by providing a full overview of
alternative splicing events and protein coding potential
of transcripts. spliceR is flexible and easily integrated in
existing workflows, supports input and output of stand-
ard Bioconductor data types, and enables investigators
to perform many different downstream analyses of both
transcript abundance and differentially spliced elements.
We demonstrate the power and versatility of spliceR by
showing how new conclusions can be made from
existing RNA-seq data.
Availability and requirements
SpliceR is implemented as an R package, is freely available
from the Bioconductor repository and can be installed
simply by copy/pasting two lines into an R console.

� Project name: spliceR
� Project home page: http://www.bioconductor.org/

packages/2.13/bioc/html/spliceR.html
� Operating system(s): Platform independent
� Programming language: R and C
� Other requirements: R v 3.0.2 or higher
� License: GPL
� Any restrictions to use by non-academics:

No limitations
Additional file

Additional file 1: Table S1. Tabulated output of the spliceR analysis.
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