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Abstract

Background: Next-generation sequencing (NGS) enables rapid production of billions of bases at a relatively low cost.
Mapping reads from next-generation sequencers to a given reference genome is an important first step in many
sequencing applications. Popular read mappers, such as Bowtie and BWA, are optimized to return top one or a few
candidate locations of each read. However, identifying all mapping locations of each read, instead of just one or a few,
is also important in some sequencing applications such as ChIP-seq for discovering binding sites in repeat regions,
and RNA-seq for transcript abundance estimation.

Results: Here we present Hobbes2, a software package designed for fast and accurate alignment of NGS reads and
specialized in identifying all mapping locations of each read. Hobbes2 efficiently identifies all mapping locations of
reads using a novel technique that utilizes additional prefix q-grams to improve filtering. We extensively compare
Hobbes2 with state-of-the-art read mappers, and show that Hobbes2 can be an order of magnitude faster than other
read mappers while consuming less memory space and achieving similar accuracy.

Conclusions: We propose Hobbes2 to improve the accuracy of read mapping, specialized in identifying all mapping
locations of each read. Hobbes2 is implemented in C++, and the source code is freely available for download at
http://hobbes.ics.uci.edu.
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Background
DNA sequencing has become an indispensable tool for
basic biomedical research, understanding disease mecha-
nisms, and developing new and personalized treatments.
Recent advances in next-generation sequencing (NGS)
technologies, such as those from Illumina and Life Tech-
nologies, have enabled the rapid production of billions of
bases at relatively low cost. However, the reads returned
by NGS sequencers are usually short (in the range of 35
to 150 bps), and it is left to computational algorithms to
extract information from these reads.
In many applications, mapping reads to a given ref-

erence genome sequence is an important first step in
analysis of sequencing data. Popular read mapping pro-
grams, such as Bowtie [1], Bowtie2 [2], and BWA [3], aim
at identifying one or a few top mapping locations for each
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read. This mapping strategy works well for many applica-
tions, and leads to a significant improvement in mapping
speed compared to programs aiming at identifying all can-
didate locations. However, in many applications, it is often
more desirable to identify all candidate locations of reads.
(We will call programs that can identify all candidate loca-
tions all mappers). For instance, in ChIP-seq experiments,
many binding sites are located in the repeat regions of
the genomes, and therefore, using read mappers return-
ing only one or a few mapping locations might miss many
binding peaks located within these repeat regions [4]. In
RNA-seq transcript abundance quantification, due to the
presence of multiple transcript isoforms caused by alter-
native splicing, it is critical for a read mapper to return
all possible mapping locations. Otherwise, the accuracy of
the transcript abundance estimation can be significantly
compromised [5,6].
As the sequencing technology is progressing toward

producing longer reads, it is also very important to sup-
port insertion/deletion (indel) errors, which are caused
by sequencing errors and/or genetic variations. Hobbes
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[7] is a software package proposed to identify all map-
ping locations of a read. It generates candidate locations
efficiently using inverted lists of non-overlapping q-grams
with the help of bit vectors. In the presence of indel errors,
however, bit vectors may filter out true locations, which
negatively affects the accuracy of the results. Moreover,
Hobbes may require a large amount of memory space
for bit vectors. Recently developed all mappers, such as
RazerS3 [8] and Masai [9], have focused on supporting
indel errors and improved the performance in terms of
accuracy and mapping time. RazerS3 can generate accu-
rate mapping results by controlling mapping sensitiv-
ity based on its error-estimation technique. However, it
requires a lot of time to produce high-quality results.
Masai reduces mapping time significantly by building an
index on input reads and simultaneously generating can-
didate locations for multiple reads. However, Masai does
not support multi-threading since it builds an index on
input reads and it is not straightforward to split input
reads so that they can be processed by multiple threads.
In this paper, we present Hobbes2, a software pack-

age designed to return all mapping locations of long
reads (e.g., 100bp or 150bp) containing indel errors as
well as mismatch errors. Hobbes2 is built on top of
Hobbes but significantly improves the performance in all
aspects. Instead of using bit vectors, Hobbes2 makes use
of another inverted list of an additional q-gram to fil-
ter out false positives during the generation of candidate
locations. The filtering based on the additional q-gram
captures all true locations while we can produce substan-
tially fewer candidate locations. By eliminating bit vectors
from memory, this approach also greatly saves memory
consumption. Hobbes2 aligns reads one by one and natu-
rally scales well in a multi-threaded environment. Because
read mappers map a tremendous number of reads, good
multi-thread support is extremely important in read align-
ment. Through experimental comparisons, we show that
Hobbes2 is an order of magnitude faster than the best
all mappers, RazerS3 and Masai, while consuming less
memory space and achieving a similar accuracy.
In the following sections, we briefly describe existing

gram-based approaches to solve the read mapping prob-
lem and introduce our approach with analysis. Then, we
present how to handle indel errors with the proposed
approach. We finally discuss the implementation issues
to integrate the proposed technique with the existing
Hobbes package.

Methods
After we summarize q-gram-based approaches for map-
ping reads to a given reference genome sequence, we
propose a filtering technique using an additional prefix q-
gram.We first restrict our discussion to the read-mapping
problem with mismatch errors only. Then we explain how

to extend the proposed technique to support indel errors
in a separate section.

Generating candidate locations using q-grams
A q-gram of a genome sequence s is a subsequence of s
of length q. The set of locationally overlapping q-grams
of s, which is denoted by G(s), is obtained by sliding a
window of length q over the bases of s. For example, the
overlapping 3-gram set of a sequence s = ACCTACCT is
G(s) = {ACC,CCT,CTA,TAC,ACC,CCT}. Note that we use
an ordered multiset for q-grams, where the same q-grams
are distinguished by their locations in a sequence. Because
a base of a sequence is included in at most q overlapping q-
grams of the sequence, a substitution of one base modifies
at most q overlapping q-grams of a sequence. Therefore,
if the maximum allowed mismatch errors between two
sequences of r and s are k bases, they should share at least
the following number of common overlapping q-grams
(this technique is known as count filtering [10]).

T = max{|G(r)|, |G(s)|} − k · q. (1)

As we look for a genome subsequence s whose length is
the same as a read r, we can simplify Equation 1 as follows
(because |G(r)| = |G(s)|).

T = |G(r)| − k · q = |r| − q + 1 − k · q. (2)

Many techniques generate candidate locations using
inverted-list structures of overlapping q-grams of a ref-
erence genome sequence. An inverted list of a q-gram g,
denoted by I(g), is a list of locations within a genome
sequence where the q-gram occurs. For instance, the
inverted list of 3-gram CCT in our previous example is
I(CCT) = {1, 4} because CCT occurs at locations 1 and
4 in the sequence ACCTACCT. To map q-grams into their
corresponding inverted lists, an inverted index is built
on overlapping q-grams of a genome sequence. Given a
read r and a Hamming distance threshold k (or a maxi-
mum number of allowed mismatches k), we can generate
candidate locations using an inverted index of a genome
sequence as follows. First, we decompose r into overlap-
ping q-grams. For each q-gram g in G(r) and its relative
location l in r, we retrieve an inverted list I(g) by looking
up the inverted index with the search key g. Because I(g)
contains starting locations of the q-gram g in the genome
sequence, we need to modify I(g) by subtracting l from
each element in I(g) to find the locations of genome sub-
sequences containing g. We call a modified inverted list a
normalized inverted list and denote it by In(g). We finally
select those locations as candidates that appear in at least
T normalized inverted lists.
Figure 1 shows an example of a reference genome

sequence and its 5-gram inverted index, which is taken
from ([7]). To map a read r = ACGGTCTTCCCTACGGT
with Hamming distance threshold k = 2 and T = 17 −
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Figure 1 Excerpt of a reference sequence and a portion of its 5-gram inverted index. The inverted lists of the 5-grams ACGGT, CGGTC, and
ACCCT are shown, each containing a sorted list of locations in the reference sequence where the respective 5-gram appears.

5 + 1 − 2 · 5 = 3, we first look up the read’s 5-grams in
the inverted index. Notice that only the grams ACGGT and
CGGTC (underlined in the read) are present in the index.
We traverse their inverted lists, and normalize each ele-
ment relative to the location of the corresponding gram in
the read. For example, the 5-gram CGGTC appears at loca-
tion 1 in the read, so the relative location of the element
on CGGTC’s inverted list is 106 − 1 = 105.
In this way, we can count how many times the read’s

grams are contained in the subsequence of the reference
sequence starting at a fixed location (location 105, in this
example). The gram ACGGT appears twice in the read, and
we treat each occurrence as a separate list. Its appear-
ance at location 0 yields a normalized list of {105 − 0 =
105, 118 − 0 = 118}, and a normalized list {105 − 13 =
92, 118 − 13 = 105} for location 13. Next, we count the
number of occurrences of each element on the normalized
lists. The locations 92 and 118 are pruned according to
the count filtering, because their number of occurrences
do not meet the lower bound of T = 3. Location 105 has
a count of 3, and therefore it is a candidate answer whose
Hamming distance to the read still needs to be computed.
In most techniques, the naïve count filtering method

is not directly used to generate candidates because it
requires scanning all inverted lists of overlapping q-grams
in a read. To map a 100bp read using an 11-gram inverted
index, for example, we need to scan 100 − 11 + 1 =
90 inverted lists. Moreover, some inverted lists are usu-
ally very long and this method would incur prohibitive
scanning costs. Instead, a simple variation of the count
filtering known as the prefix filtering [11] is widely used
for generating candidates. Because a candidate genome
subsequence s needs to contain T q-grams of a read r
according to the count filtering, smust contain at least one
q-gram among |G(r)| − (T − 1) = k · q + 1 q-grams in
G(r). Given an inverted index of a genome sequence, we
retrieve and normalize inverted lists of k · q + 1 q-grams
in G(r) and then generate candidates by taking the union
of locations in the normalized inverted lists. To minimize
the number of candidates, we sort q-grams inG(r) by their

frequencies in the reference genome and take k · q+ 1 low
frequency q-grams (which are called prefix q-grams).
Recent techniques [7,12,13] have focused on deriv-

ing a tight lower bound of the number of prefix q-
grams. The basic idea behind these techniques is to use
non-overlapping q-grams [14] of a read. If we use non-
overlapping q-grams, a substitution of one base of a read
affects only one q-gram. Hence, if a genome subsequence
s is different from a read r within k mismatches, the
overlapping q-gram set of s will contain at least one non-
overlapping q-gram among k+1 non-overlapping q-grams
of r. Based on the observation, we can generate candidates
as follows.We first select k+1 non-overlapping q-grams in
G(r). From the inverted index of overlapping q-grams of a
reference genome sequence, we then retrieve inverted lists
of the selected q-grams and normalize them. We finally
produce candidates by taking the union of locations in the
normalized inverted lists. Existing techniques use the sum
of frequencies of q-grams to estimate the union size of
inverted lists. Hobbes proposed a dynamic programming
algorithm to select prefix q-grams based on the following
recurrence so as to minimize the sum of frequencies of
selected q-grams [7].

M(i, j) = min

{
M(i, j − 1)
M(i − 1, j) + L[ j + (i − 1) · q] .len,

(3)

where i ≤ k+1, 1 ≤ j ≤ |G(r)|−k ·q, L[n] .len is the length
of the inverted list of the nth q-gram in G(r), andM(i, j) is
a lower bound on the sum of the lengths of the inverted
lists of i non-overlapping grams starting from a location
no greater than j + (i − 1) · q. In Equation 3, M(0, j) is
initialized to zero and M(i, 0) is initialized to infinity and
the goal is to computeM(k + 1, |G(r)| − k · q).

Exploiting an additional prefix q-gram of a read
Despite of the effort of the recent work, the number of
candidates generated by using optimal prefix selection is
still too large to refine and/or verify directly. Thus, it is
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important to further filter out false positives while gen-
erating candidates. Hobbes attaches a bit vector to each
element in an inverted list and makes use of bit vectors to
remove false positives while generating candidates. How-
ever, bit vectors greatly increase the size of an inverted
index and thus consume a lot of memory space. In this
paper, we propose a powerful and memory efficient fil-
tering method. The proposed method does not require
additional memory space while it can still filter out more
false positives than bit vectors. Our technique is based on
the following lemma.

Lemma 1 (Additional prefix). Given an inverted index
of a genome sequence and a read with a Hamming dis-
tance threshold k, suppose we select k + 2 non-overlapping
q-grams from the read. If we retrieve inverted lists of the
selected k + 2 q-grams from the index, we can select
those locations as candidates that come from at least two
normalized inverted lists.

The intuition of the lemma is that the set of overlap-
ping q-grams in a candidate genome subsequence s must
contain at least 2 q-grams among k + 2 non-overlapping
q-grams in a read r, because otherwise the difference
between r and s would be larger than k bases. We analyze
the lemma more precisely using an example as follows.
Assume a Hamming distance threshold k is 1 and we
select k + 2 non-overlapping q-grams S = {g1, g2, g3} from
a read. If we enumerate all possible subsets of S whose car-
dinality is k+1 = 2, we obtain three subsets, S1 = {g1, g2},
S2 = {g1, g3}, and S3 = {g2, g3}. As described in the previ-
ous section, we can generate candidates using any of three
subsets. LetC(Si) be∪g∈Si In( g), the set of candidates gen-
erated using a subset Si of S. If a candidate location is
a true mapping, it should be contained in all of C(S1),
C(S2), and C(S3). Therefore, we can generate refined can-
didates by taking the intersection of C(S1), C(S2), and

C(S3). According to this observation, we formulate the set
of candidates as

(In(g1)∪ In(g2))∩ (In(g1)∪ In(g3))∩ (n(g2)∪ In(g3)).

Using the distributive, associative, absorption, and idem-
potent properties of sets, we can rewrite the formula
to

(In(g1)∩ In(g2))∪ (In(g1)∩ In(g3))∪ (In(g2)∩ In(g3)),

which is illustrated in a diagram in Figure 2(a). If we com-
pare it with the candidate set generated by k + 1 prefix
q-grams g1 and g2, which is depicted in Figure 2(b), we can
see that an additional prefix q-gram g3 plays a significant
role of filtering out false positives.
Given inverted lists of k + 2 prefix q-grams, in gen-

eral, we can generate candidates by taking the union of
pairwise intersections of the inverted lists. That is, each
inverted list is intersected k + 1 times. However, we do
not need to scan each inverted list k + 1 times to generate
candidates. Instead, we can use an algorithm that merges
all inverted lists by scanning each of them once and
selects those locations that appears at least 2 times accord-
ing to Lemma 1 [see Additional file 1 for the candidate
generation algorithm].
Now, we discuss how to select k + 2 non-overlapping

prefix q-grams. We first consider finding optimal k + 2
non-overlapping q-grams, with which we produce the
minimum number of candidates. Given a read r with k
errors, let n = G(r) = |r| − q + 1 and m = k + 2. The
number of possible combinations of k+2 non-overlapping
q-grams can be calculated by the following recurrence.

f (n,m) = f (n − q,m − 1) + f (n − 1,m), (4)

a b
Figure 2 Filtering effect of an additional prefix q-gram. Gray-scaled areas indicate candidates. (a) An additional prefix q-gram g3 plays an
important role of filtering out a number of false positives in E and F. (b) If we use k+1 = 2 q-grams, g1 and g2, muchmore candidates are generated.
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where m ≥ 1, f (n, 1) = n, and f (n,m) = 0 if n ≤ 0. By
solving the recurrence, we obtain

f (n,m) =
(
n − (q − 1) × (m − 1)

m

)
(5)

=
(|r| − (q − 1) × (k + 2)

k + 2

)
. (6)

For a 100bp read with 5 errors, there are
(30
7
) =

2, 035, 800 combinations of k + 2 = 7 non-overlapping
11-grams. We may find an optimal k + 2 non-overlapping
q-grams by estimating the size of unions of intersections
of inverted lists for each combination. However, this naïve
evaluation incurs prohibitive computing time and is not
practical.
In this paper, we develop a heuristic approach to select

good k + 2 non-overlapping prefix q-grams. We make
the following two assumptions. The first assumption is
that the union size of inverted lists is proportional to
the sum of their sizes. It is worthwhile to note that all
techniques based on the prefix filtering make use of this
assumption in minimizing the number of candidates. The
second is that candidate locations contained in a nor-
malized inverted list are independently distributed and
uniformly random.We define the probability of the occur-
rence of a q-gram g in a subsequence be P(g) = |In(g)|/N ,
where N is the total number of subsequences in a refer-
ence genome. For any two q-grams of gx and gy, we can
estimate |In(gx)∩ In(gy)| ≈ P(gx) ·P(gy) ·N by the second
assumption. Given k + 2 prefix q-grams of g1, . . . , gk+2,
we calculate the union size of pairwise intersections of the
inverted lists of the q-grams as

|
⋃

In(gx) ∩ In(gy)| ∝ N ·
∑

P(gx) · P(gy), (7)

where 1 ≤ x ≤ k + 2, 1 ≤ y ≤ k + 2, and x 	= y. Note
that we sum intersection sizes to calculate the union size
according to the first assumption. Hence, we canminimize
| ⋃ In(gx) ∩ In(gy)| by minimizing

∑
P(gx) · P(gy) = 1

2
({

k+2∑
i=1

P(gi)}2 −
k+2∑
i=1

P(gi)2). (8)

For simplicity, we use an upper bound by dropping∑k+2
i=1 P( gi)2 in Equation 8 and find prefix q-grams that

minimize
∑k+2

i=1 P( gi). By selecting k + 2 prefix q-grams
such that the sum of frequencies of the selected q-grams
is minimized, we can minimize

∑k+2
i=1 P( gi) since P( gi) =

In( gi)/N . Therefore, we reuse the recurrence in Equation
3 to select k + 2 prefix q-grams and compute M(k +
2, |G(r)|−k ·q) using the dynamic programming algorithm
proposed in Hobbes. Note that our approach guarantees
that the scanning costs of selected k + 2 inverted lists are
minimized.

Our heuristic solution could accidentally select a poor
combination of k + 2 prefix q-grams. However, we can
expect that the proposed technique will generate fewer
candidates, since it takes intersections of inverted lists as
illustrated in Figure 2(a) while previous techniques merely
take the union of inverted lists for generating candidates.
In all experiments we ran, we observed that our solu-
tion was always better than the k + 1 prefix scheme [see
Additional file 1: Figure S1 for experimental comparison
between k + 1 and k + 2 prefix schemes].
Lemma 1 can be generalized by using k + c non-

overlapping q-grams. That is, we can select those loca-
tions as candidates that come from at least c normalized
inverted lists of k + c non-overlapping q-grams of a read.
However, we focus only on the specific case of c = 2
(as described in Lemma 1) for the following reasons.
We observed that only the first additional prefix q-gram
brings a substantial improvement and the effects of addi-
tional q-grams other than the first one are not significant
[see Additional file 1: Figure S2 for the experimental
results of different c values]. As we increase c, we may lose
chances to select low frequency q-grams and as a result,
the cost of scanning inverted lists would eventually out-
weigh the savings from reducing the number of candidate
locations. Moreover, supporting indels will be more com-
plicated. Thus, we believe that it is not worthwhile to try
to find an optimal c value in practice.

Supporting insertions and deletions
If we use an edit distance threshold (i.e., we allow not only
substitutions but also insertions and deletions of bases) for
mapping a read, indels introduce two potential problems
to the above described technique. In this section, we dis-
cuss these two potential problems and describe how to fix
them. The first potential problem is caused by insertions
or deletions occurred between two matched q-grams. In
the proposed technique, a candidate genome subsequence
s needs to contain at least two q-grams in a read r, where
each of which must appear at the same location in both
r and s. In case of edit distance constraints, however,
the proposed technique could filter out a valid candidate
s, since indels between two matched q-grams make the
locations of the q-grams in r different from those in s.
For example, consider a genome sequence

Sg = CCAGTAATGCTGTTG . . . and a read r =
AGTAATCTGTTG. Given an edit threshold k = 1, assume
that we select k + 2 = 3 non-overlapping tri-grams of
g1 = AGT, g2 = ATC, and g3 = TTG in G(r) (underlined in
the read) as the prefix q-grams. For g1, we obtain location
2 of Sg since g1 appears at location 0 in r and at location
2 in Sg . For g2, we cannot find a matched q-gram in Sg .
Finally, for g3, we get location 3 of Sg since g3 appears at
location 10 in r and at location 13 in Sg . Because there is
no location that appears at least twice, we filter out both
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locations of 2 and 3. However, the edit distance between
the read and the subsequence of Sg starting at location 2
is 1 and we should be able to return location 2 of Sg as a
mapping location. The problem is caused by the under-
lined base G in Sg , which is located between two matched
grams AGT and TTG as depicted in Figure 3(a).
To fix this problem, we need to allow gaps between two

matched q-grams up to the edit distance threshold. That
is, we treat two locations appearing only once as candi-
date locations if their difference is within the edit distance
threshold. In our example, since the difference between
the locations 2 and 3 is within the edit distance threshold
1, we generate both of the locations 2 and 3 as candidates.
The second problem is caused by indels occurring

before any locations of matched prefix q-grams. If there
are d deletions of bases in a reference sequence before
the matched q-grams, we need to consider a subsequence
starting at l − d, where l is a candidate location calcu-
lated from the matched q-grams. For example, consider
a genome sequence Sg = GAGAGATCTGCATAA . . . and a
read r = GAAGATCTGCATAA, where three underlined tri-
grams GAT, TGC, andTAA inG(r) are selected as the prefix
grams for an edit distance 1. As our technique returns
location 1 in Sg for all the three q-grams, we use the loca-
tion as a candidate and verify the genome subsequence s
starting at the location. Because the edit distance between
r and s is 2, we do not have a mapping of the read r. How-
ever, if we consider the subsequence starting from location
0 of Sg , we should be able to return the location 0 as amap-
ping location because the edit distance is 1 as depicted
in Figure 3(b). This problem is caused by the deletion of
the underlined base G from Sg , which is located before the
three matched grams GAT, TGC, and TTA.
By contrast, if there are i insertions of bases in a ref-

erence sequence before any locations of matched prefix
q-grams, we need to consider a subsequence starting at loca-
tion l+i, where l is a candidate location. For example, con-
sider a genome sequence Sg = AGAAGATCTGCATAA . . .

and a read r = GAGAGATCTGCATAA, where three
underlined tri-grams are matched for an edit distance 1.

Although location 0, which is calculated from thematched
tri-grams, does not satisfy the edit distance threshold, we
should be able to return location 1 as a mapping location
as depicted in Figure 3(c). The underlined base G in r (or
the insertion of the G into Sg) causes this problem.
Therefore, given an edit distance threshold k and a can-

didate starting location l, a potential match can start at
any location between l − k and l + k. Similarly, indels can
also occur after matched prefix q-grams. Given a candi-
date ending location c, a potential match can end at any
location between c−k and c+k. So altogether, we need to
consider a verification window from l − k to c + k to find
all potential matches (Figure 3(d)). However, because the
verification time based on sequence alignment is propor-
tional to the size of the verification window, enlarging the
window at both ends by k is computationally expensive.
In Hobbes2, we adopt the following heuristic to improve
the mapping speed: We first use the verification window
[l, c+k] (Figure 3(d)), and run a semi-global banded align-
ment algorithm to identify all potential matches located
within this window. If this verification window yields
no matches, we then consider the verification window
[l − k, c]. This approach could potentially miss some true
mappings that start before l and at the same time end after
c. However, empirically we found that those mappings are
relatively rare and do not significantly impact the accuracy
of our algorithm.

Implementation details
As Hobbes2 uses an additional prefix q-gram instead of
bit vectors, it can significantly improve the performance
and substantially reduce memory consumption. In this
section, we describe how Hobbes2 was implemented on
top of Hobbes. Other details and optimization techniques
for implementation that are not presented here are the
same as those in Hobbes.
Hobbes2 builds an inverted index in the same way that

Hobbes does. That is, each element in an inverted list con-
tains a bit vector. However, Hobbes2 loads inverted lists
without bit vectors into the memory if it determines that a

Figure 3 Problems caused by indels. (a) Indels occurring between two matched q-grams (b) Deletions occurring before any matched q-grams.
(c) Insertions occurring before any matched q-grams. (d) Verification windows of a semi-global alignment algorithm.
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Table 1 Rabema benchmark results of mapping simulated 100k reads of length 100bp against HG18

Time (min:sec) Benchmark category Peak

Mapper 1 thr 16 thrs All All-best Any-best Recall memory

Hobbes2 9:43 1:33 99.85
100.0 100.0 100.0

99.99
100.0 100.0 100.0

99.99
100.0 100.0 100.0

98.97
100.0 99.90 99.68

14.6 GB99.99 99.94 97.48 100.0 100.0 99.84 100.0 100.0 99.84 99.34 99.04 99.77

Hobbes 19:36 3:35 98.34
99.29 99.28 98.93

98.67
98.86 99.02 99.00

98.99
99.19 99.31 99.34

96.91
98.66 97.99 96.68

20.7 GB97.40 93.78 87.84 98.19 92.85 89.21 98.55 93.25 90.14 95.33 91.68 90.17

Masai 18:11 − 99.83
100.0 100.0 100.0

99.94
100.0 100.0 100.0

99.94
100.0 100.0 100.0

99.03
100.0 100.0 100.0

16.9 GB99.73 99.18 97.69 99.69 98.73 98.52 99.69 98.73 98.52 99.71 98.77 98.56

RazerS3 60:06 42:07 99.90
100.0 100.0 100.0

99.99
100.0 100.0 100.0

99.99
100.0 100.0 100.0

99.09
100.0 100.0 100.0

4.5 GB100.0 99.86 98.44 100.0 100.0 99.92 100.0 100.0 99.92 100.0 100.0 99.92

Bowtie2 − 266:21 99.74
100.0 100.0 100.0

99.97
100.0 100.0 100.0

99.97
100.0 100.0 100.0

98.80
100.0 99.70 99.40

37.7 GB100.0 99.55 95.75 100.0 99.70 98.35 100.0 99.72 98.45 99.10 98.70 98.50

BWA 75:04 12:20 97.73
100.0 99.98 99.64

98.89
100.0 99.98 99.61

98.90
100.0 99.98 99.61

97.91
100.0 99.98 99.45

4.8 GB93.47 82.91 75.15 93.03 78.87 70.57 93.03 78.98 70.73 92.47 78.55 71.18

GEM 5:19 2:56 97.74
100.0 99.99 99.84

99.86
100.0 99.88 99.81

99.92
100.0 99.96 99.93

98.66
100.0 99.42 99.12

4.3 GB97.36 88.78 68.31 99.47 99.28 97.34 99.69 99.61 97.67 98.17 98.29 98.64

Bowtie2* 0:31 0:32 91.34
98.87 97.75 93.55

97.08
97.65 97.33 95.69

99.29
100.0 99.45 97.65

95.96
97.75 96.88 95.00

3.2 GB81.07 53.90 21.95 95.38 93.98 93.74 97.41 96.24 95.89 94.60 93.33 93.95

BWA* 2:08 0:25 92.27
100.0 99.82 96.90

98.79
100.0 99.83 99.41

98.83
100.0 99.89 99.49

97.31
100.0 99.17 97.76

4.5 GB79.11 45.49 16.99 92.57 78.26 70.34 92.70 78.60 70.73 90.39 77.11 70.35

GEM* 0:31 0:13 94.48
100.0 99.38 97.61

99.86
100.0 99.88 99.81

99.92
100.0 99.95 99.92

98.62
100.0 99.28 99.06

4.3 GB90.10 69.11 35.34 99.41 99.17 97.37 99.72 99.61 97.75 98.24 98.35 98.94

all: all mappings within the given edit distance threshold; all-best: all best mappings (i.e., all mappings with lowest edit distances); any-best: any best mappings (i.e., any mapping with lowest edit distances).
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read has at least k+2 non-overlapping q-grams, where k is
a distance threshold. In this case, Hobbes2 filters out false
positives using an additional q-gram while it generates
candidates. If the number of q-grams contained in a read
is less than k + 2, Hobbes2 loads both inverted lists and
bit vectors into memory. Hobbes2 assumes fixed length
input reads and calculate the number of non-overlapping
q-grams using the length of the first input read. For vari-
able length reads, it also safely maps each read but it does
not filter out false positives for those reads that have not
enough q-grams.
Obviously, the predefined gram length is important for

the usability of the proposed filtering technique since
it determines the number of q-grams in a read. If we
increase the gram length, there could be fewer locations
in a genome sequence containing the gram, causing the
inverted lists to be shorter. Thus, it may decrease the time
for scanning inverted lists and produce fewer candidate
locations. On the other hand, the size of a hash table
for grams in an inverted index becomes very large. If we
increase the gram length by 1, the size of the hash table
increases by up to 4 times since we have four distinct bases
of A, C, G, and T.
Thus, index lookup time for a gram may be the bottle-

neck of readmapping as the size of the hash table becomes
larger. We found that the mapping speed with an 11-
gram inverted index was the best when we mapped 100bp
reads on HG18 genome sequence [see Additional file 1:
Figure S1 for experimental results on gram length]. Based
on the experiments, Hobbes2 uses 11-grams and thus it
can always find enough grams for a 100bp read with up to
7 errors.

Results and discussion
Experimental setup
We implemented Hobbes2 in C++, and compiled it with
GCC 4.4.3. All experiments were run on a machine with
94 GB of RAM, and dual Intel Xeons X5670 (12 cores and
24 threads total) at 2.93 GHz, running a 64-bit Ubuntu
OS. We performed experiments to examine all mapping
capabilities of Hobbes2. We focused on edit distance con-
straints, and all experiments were performed with the
edit distance threshold set to be 5 [see Additional file 1:

Table S1 for the experimental results with Hamming
distance constraints]. Hobbes2 also has an optional m-
mapping mode, which returns the results of only those
reads whose maximum number of distinct mapping loca-
tions is less than or equal to a given threshold m. We
reported the experimental results on the m-mapping
mode in Additional file 1: Table S2.
We thoroughly compared Hobbes2 with three state-of-

the-art all mappers - Hobbes, RazerS3, and Masai, and
three other popular read mappers - GEM [15], BWA and
Bowtie2. We did not include other all mappers (such as
SOAP2 [16], SHRiMP2 [17], mrsFAST [18], and mrFAST-
CO [19]) in our comparison as it has been shown pre-
viously that these all mappers do not perform as well as
RazerS3, Masai, and/or Hobbes.We configured readmap-
pers to output results in the SAM format with cigar strings
[see Section S3 in Additional file 1 for the details of the
configuration of each read mapper].

Index construction andmemory footprint
For each reference genome, we built an inverted index of
overlapping q-grams on the reference genome. By default,
Hobbes2 uses 16-bit vectors, resulting in a total index
size of 16 GB for the whole human genome NCBI HG18.
Hobbes2 loads only the index into memory and the mem-
ory footprint of the index for HG18 is about 11 GB.
Because Hobbes2 has a tight-knit multi-threaded frame-
work that parallelizes both indexing and mapping, it took
only a few minutes to build an index for HG18.

Single end alignment on simulated data
We generated 100k simulated reads of length 100bp from
HG18 using a read simulator, Mason [20]. We used the
default profile setting of Mason with the illumina
option. We used Rabema [21] benchmark to compare
accuracies of read mappers. The benchmark was per-
formed for an error rate 5%, or edit distance 5. To build a
gold standard of simulated reads, we used RazerS3 in full-
sensitive mode (we ran RazerS3 with its default setting for
the performance comparison).
The benchmark found all, all of the best, and any of

the best edit distance locations from the mapping results
of each mapper. As the simulator generated original

Table 2 Results of mapping 500k and 1million single end reads of length 100bp against HG18

500,000 reads 1,000,000 reads

Read #mappings Time (min:sec) Peak Read #mappings Time (min:sec) Peak

Mapper mapped (million) 1 thr 16 thrs memory mapped (million) 1 thr 16 thrs memory

Hobbes2 91.476% 66.34 44:54 05:17 14.7 GB 91.558% 132.87 87:27 09:04 14.7 GB

Hobbes 91.449% 66.93 84:38 13:10 21.5 GB 91.533% 134.14 169:50 26:33 22.8 GB

Masai 91.473% 66.44 47:38 − 17.1 GB 91.555% 133.09 82:46 − 17.3 GB

RazerS3 91.472% 66.10 276:00 193:19 10.8 GB 91.554% 132.45 540:35 378:18 18.8 GB
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Table 3 Results of mapping 1million single end reads of length 100bp against C. elegans and D. melanogaster

C. elegans D. melanogaster

Read #mappings Time (min:sec) Peak Read #mappings Time (min:sec) Peak

Mapper mapped (million) 1 thr 16 thrs memory mapped (million) 1 thr 16 thrs memory

Hobbes2 91.003% 5.71 03:09 00:41 0.8 GB 95.470% 438.33 79:35 28:46 1.2 GB

Hobbes 90.994% 5.84 04:26 01:06 1.4 GB 95.436% 453.43 90:11 57:01 29.1 GB

Masai 91.002% 5.68 05:19 − 0.9 GB 95.466% 446.98 131:11 − 1.3 GB

RazerS3 91.002% 5.69 13:28 12:35 1.4 GB − − − − 96.5 GB

locations of simulated reads, we also measured the recall
of each mapper, which is the fraction of reads whose
original locations correctly reported.
Table 1 shows rabema scores in percentage, each of

which is the average fraction of edit distance locations
returned by a read mapper per read. Large numbers
are total scores and small numbers are scores for reads
with 0 1 2

3 4 5 errors. We could not measure the mapping time
of Masai with 16 threads since it does not support multi-
threading. We omitted the mapping time of Bowtie2 with
a single thread since it could finish only about 10% of 100k
reads in 6 hours.
In terms of the accuracy of all mapping, the top three

performers were RaserS3, Hobbes2 and Masai, with an
accuracy score of 99.90, 99.85 and 99.83, respectively.
Hobbes2 was slightly worse than RaserS3 on reads
with high error rates. However, in terms of mapping
time, Hobbes2 was much faster than both RaserS3 and
Masai - six times faster than RaserS3 and twice as faster
than Masai on a single thread, and 20 times faster than
RaserS3 on 16 threads (there is no implementation of
multi-threading on Masai.) BWA and Bowtie2, two
most popular read mappers, trailed behind Hobbes2 in
both accuracy and mapping time. GEM was faster than
Hobbes2 on a single thread but slower than Hobbes2 on
16 threads. Although GEM mapped reads fast but it lost
a lot of mapping locations of edit distance 4 and 5 and
exhibited poor accuracy.
We also ran BWA, Bowtie2, and GEM in their default

mode (or best mapping mode) to compare the perfor-
mance. The results are reported at the end of Table 1 with
mapper names, Bowtie2*, BWA*, and GEM*, respectively.
Although they could produce results quickly, they exhib-
ited poor mapping results. In particular, they lost most of
locations of edit distance 5 and about a half of locations of
edit distance 4.

Table 4 Filtration of 500k reads of length 100bp on HG18

Mapper Filtration time (min:sec) Number of candidates

Hobbes2 04:14 1,161,828,591

Hobbes 01:45 3,833,554,010

Masai 09:48 1,190,600,997

RazerS3 15:01 7,007,527,711

Single end alignment on real data
We used the human genome with HG18, caenorhabditis
elegans (WormBaseWS201), and drosophilamelanogaster
(FlyBase release 5.42) as reference sequences. For the
human genome, we used the 100bp reads from specimen
HG00096 of the 1000 genome project [22]. We also used
100bp reads taken from the DNA Data Bank of Japan
(DDBJ) repository [23] with entry SRX026594 for the
worm genome and SRX148416 for the fly genome.
Table 2 lists the experimental results of mapping 1 mil-

lion reads of length 100bp against the human genome.
We excluded Bowtie2 and BWA in the experiment since
they are not designed as all mappers and exhibited poor
mapping speed when aligning long, repetitive genomes.
Hobbes2 mapped more reads than other read map-
pers while running significantly faster. Hobbes2 with 16
threads was about 3 times faster than Hobbes, 9 times
faster than Masai and 42 times faster than RazerS3. By
comparing the results of 500k reads and 1 million reads,
we observed that the mapping time of each read map-
per was approximately proportional to the number of input
reads.
The memory footprint of Hobbes2 was the smallest

among the four mappers being compared on the dataset
with 1 million reads. The memory requirement of
Hobbes2 was independent of the number of input reads
because it did alignment read by read. Masai used slightly
more memory as the number of reads increased. The
memory consumption of RazerS3 was greatly affected by
the number of reads and the total number of mappings.
Table 3 shows the results of mapping 1 million reads of

length 100bp against the C. elegans and D. melanogaster

Table 5 Results of mapping 1million× 2 paired end reads
of length 100bp against HG18

Read Mapping time (min:sec) Peak

Mapper mapped 1 thr 16 thrs memory

Hobbes2 86.66% 59:40 11:12 14.9 GB

Hobbes 86.52% 61:54 24:43 20.4 GB

Masai 84.07% 68:46 − 17.3 GB

RazerS3 86.68% 420:07 342:14 17.5 GB

Bowtie2* 82.12% 8:40 0:52 3.6 GB
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data sets. Hobbes had much higher memory footprint
than Hobbes2 on the D. melanogaster data set. RazerS3
was unable to map reads on the D. melanogaster data set
because it used too much memory space and was killed
before the job was finished.
Again, Hobbes2 mapped more reads than other map-

pers for both data sets. For the C. elegans data set,
Hobbes2 with 16 threads was about twice as faster as
Hobbes, 7 times faster thanMasai and 18 times faster than
RazerS3. For the D. melanogaster data set, Hobbes2 also
exhibited the best mapping speed in both single threaded
and multi-threaded cases. Hobbes2 used the least amount
of memory in both data sets.
The significant improvement of Hobbes2 is mainly due

to our improved method of generating initial candidates.
It is very important to quickly generate a small num-
ber of candidates in edit distance case since most of the
mapping time is spent in the verification process, which
requires a more expensive dynamic programming proce-
dure. Table 4 shows the number of candidates initially
generated by the read mappers and the time for gener-
ating candidates. Hobbes2 generated the least number
of candidates among the read mappers. Hobbes gener-
ated candidates very fast with the help of bit vectors, but
Hobbes2 andMasai generated about four times fewer can-
didates than Hobbes. Hobbes2 produced candidates more
than two times faster than Masai while generating fewer
candidates.

Paired end alignment
For paired end read alignment, we used the human
genome HG18 as the reference sequence. We ran experi-
ments using 100bp read pairs from specimen HG00096.
Our performance results for the paired end alignment

are summarized in Table 5. We excluded BWA in the
experiment since it does not support the minimum insert
size. Bowtie2 in all mapping mode could not finish the
mapping in 24 hours. We used Bowtie2 in the default
mode, which is listed as Bowtie2* in Table 5. Since Masai
does not directly support mapping paired end reads, we
separately ran masai_mapper for each read file to out-
put results in Masai’s raw format, and merged the results
using masai_output_pe to produce mappings in the
SAM format.
We observed that Hobbes2 was the fastest among

all mappers in both single threaded and multi-threaded
cases. With 16 threads, Hobbes2 was about twice as faster
as Hobbes, and 31 times faster than RazerS3. In terms
of mapped pairs, Hobbes2 was similar to Hobbes and
RazerS3, but was better thanMasai. Hobbes used the least
amount of memory for the paired end mapping. Although
Bowtie2* ran very fast, it lost many mapping pairs, and
thus exhibited poor mapping quality compared with other
all mappers.

Conclusion
Hobbes2 efficiently finds all mapping locations of a read
in a reference genome. We have shown that Hobbes2
is substantially faster than state-of-the-art all mappers
while maintaining similar accuracy. In addition, Hobbes2
consumes less memory space than other read mappers
for long reads since it does not rely on additional data
structures other than inverted lists of q-gram signatures.
Our experiments have also shown that Hobbes2 scales

very well in multi-threaded environment, and exhibits the
best performance among the competitors. Given today’s
trend toward massively multi-core CPUs, read mappers
with good multi-thread support will likely become more
necessary in the future.
Because of its simplicity, we believe the candidate gen-

eration method implemented in Hobbes2 can also be
adapted for other read mapping programs for improving
their performance.

Additional file

Additional file 1: Supplementary material. This file contains
supplementary text, algorithm, figures, and tables.
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