
Cilia et al. BMC Bioinformatics 2014, 15:309
http://www.biomedcentral.com/1471-2105/15/309

RESEARCH ARTICLE Open Access

Predicting virus mutations through statistical
relational learning
Elisa Cilia1,2, Stefano Teso3, Sergio Ammendola4, Tom Lenaerts1,2,5 and Andrea Passerini3*

Abstract

Background: Viruses are typically characterized by high mutation rates, which allow them to quickly develop
drug-resistant mutations. Mining relevant rules from mutation data can be extremely useful to understand the virus
adaptation mechanism and to design drugs that effectively counter potentially resistant mutants.

Results: We propose a simple statistical relational learning approach for mutant prediction where the input consists
of mutation data with drug-resistance information, either as sets of mutations conferring resistance to a certain drug,
or as sets of mutants with information on their susceptibility to the drug. The algorithm learns a set of relational rules
characterizing drug-resistance and uses them to generate a set of potentially resistant mutants. Learning a weighted
combination of rules allows to attach generated mutants with a resistance score as predicted by the statistical
relational model and select only the highest scoring ones.

Conclusions: Promising results were obtained in generating resistant mutations for both nucleoside and
non-nucleoside HIV reverse transcriptase inhibitors. The approach can be generalized quite easily to learning mutants
characterized by more complex rules correlating multiple mutations.

Background
HIV is a pandemic cause of lethal pathologies in more
than 33 million people. Its horizontal transmission trough
mucosae is difficult to control and treat because the virus
has a high virulence and it infects several type of immune
surveillance cells, such as those characterized by CD4
receptor (CD4+ cells). The major problem in treating the
human virus infection is the drug selectivity since the
virus penetrates in the cell where it releases its genetic
material to replicate itself by using the cell mechanisms.
A drug target is the replicating apparatus of the cell.
HIV antiviral molecules will be directed against several
cells such as macrophages or lymphocytes T to interfere
with viral replication. The HIV releases a single-strand
RNA particle, a reverse transcriptase and an integrase into
the cell cytoplasm. Quickly the RNA molecule is retro-
transcribed in a DNA double strand molecule, which is
integrated into the host genome. The integration events
induce a cellular response, which begins with the tran-
scription of the Tat gene by the RNA polymerase II. Tat

*Correspondence: passerini@disi.unitn.it
3Department of Computer Science and Information Engineering, University of
Trento, via Sommarive 5, I-38123 (Povo) Trento, Italy
Full list of author information is available at the end of the article

is a well-known protein responsible for the HIV acti-
vation since it recruits some cytoplasm host proteins
involved in the expression of viral genes. Remarkably, HIV
can establish a life-long latent infection by suppressing
its transcription, thus making ineffective the large part
of antiviral drugs aimed at controlling the viral repli-
cation. However replicating viruses adopt several drug
resistance strategies, for instance, HIV induces amino acid
mutations reducing the efficacy of the pharmaceutical
compounds. The present work is aimed at gaining knowl-
edge on mutations that may occur into the viral RNA
transcriptase [1]. This is an important target to develop
antiretroviral medicines and different types of molecules
have been found active: theNucleoside Reverse Transcrip-
tase Inhibitors (NRTI) and Non NRTI (NNRTI). Although
RNA RT inhibitors are active, the HIV virus is capa-
ble of quickly changing the RNA RT encoding sequence
thus acquiring drug resistance. The antiviral therapy is
based on the use of cocktails of molecules including
new RNA RT inhibitors. A computational approach to
predict possible mutation sites and their sensibility to
drug is thus an important tool in drug discovery for the
antiretroviral therapy.

© 2014 Cilia et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:passerini@disi.unitn.it
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 2 of 12
http://www.biomedcentral.com/1471-2105/15/309

Computational methods can assist here by exploring
the space of potential virus mutants, providing potential
avenues for anticipatory drugs [2]. To achieve such a goal,
one first needs to understand what kind of mutants may
lead to resistance. A general engineering technique for
building artificial mutants is referred to as rational design
[3]. The technique consists in modifying existing proteins
by site directed mutagenesis. It relies on a deep domain
knowledge in order to identify candidate mutations that
may affect protein structure or function. The process typ-
ically involves extensive trial-and-error experiments and
is also aimed at improving the understandingmechanisms
of a protein behavior.
In this work we report on our initial investigation to

develop an artificial system mimicking the rational design
process. We consider two increasingly complex learn-
ing settings and corresponding learning techniques. In
the first one we rely on a training set made of sin-
gle amino acid mutations known to confer resistance
to a certain class of inhibitors (we will refer to this as
mutation-based learning). An Inductive Logic Program-
ming (ILP) learner [4] is trained for each class of inhibitors
in order to extract general rules describing mutations
conferring resistance to the drug class. The learned
rules are then used to infer novel mutations which may
induce similar resistance. In the second setting we learn
directly from mutants (comprising of up to 51 amino
acid mutations) that have been experimentally tested
for their resistance to the same classes of inhibitors
(we will refer to this as mutant-based learning). This
second setting is actually the most common situa-
tion, in which one is presented with a number of
mutants together with some evidence of their suscep-
tibility to certain treatments, but no clear information
on which mutation is responsible for their behaviour.
In this setting we employ a statistical relational learn-
ing approach [5] capable of learning weighted combina-
tions of relational rules discriminating between groups of
instances, drug-resistant vs drug-susceptible mutants in
our case. The learnedmodel is then used to generate novel
mutants together with a score indicating their predicted
resistance.
Machine learningmethods have been previously applied

to mutation data for predicting the effects of non-
synonymous single nucleotide polymorphisms on protein
stability [6], function [7-11], and drug susceptibility [12].
All of the these predictors make use of pure statisti-
cal learning techniques (Bayesian classifiers [7,8], neu-
ral networks [9], random forests [10], support vector
machines [11]) in combination with a large variety of
sequence, structural, and functional features. A recent
evaluation of the predictive performance of mutation pre-
diction methods can be found in the review by Thusberg
et al. [13].

To the best of our knowledge, the present paper is
the first attempt to learn relational features of mutations
affecting protein behavior and use them for generating
novel relevant mutations. Modeling mutant resistance
with relational rules provides two key advantages. First,
the learned rules can be easily interpreted by human
experts, providing valuable insights into the mechanisms
of drug resistance. Second, while previous work focused
uniquely on the identification of resistance mutations,
our method can natively produce novel candidate muta-
tions that are likely to confer greater fitness/resistance to
a drug.
In the case of single mutations, it is straightforward

to generate a set of potentially resistant mutations sim-
ply by testing all candidates with any of the above pre-
dictors. The same procedure, however, does not scale
to the multiple case, where exhaustive enumeration is
infeasible. On the contrary, our method can be readily
extended to produce mutants with two or more muta-
tions: the learned rules effectively constraint the space of
candidate mutants, drastically reducing the (exponential)
number of candidates. Additionally, it is possible to aug-
ment our approach by employing a more sophisticated
statistical predictor to further characterize the gener-
ated mutants. Although in the experimental evaluation
of the present work we focus on single residue muta-
tions, we are actively working on extending our approach
to generate mutants characterized by multiple mutated
residues.
We report an experimental evaluation focused on HIV

RT. RT is a well-studied protein: a large number of
mutants have been shown to resist to one or more drugs
and databases exist that collect those data from different
sources and make them available for further analyses [14].
We tested the ability of our approach to generate drug-
resistant amino acid mutations for NRTI and NNRTI.
Our results show statistically significant improvements
for both drug classes over the baseline results obtained
through a random generator. A preliminary version of this
work was presented in [15].
The approach can be in general applied in muta-

tion studies aimed at understanding protein function. By
searching for residues most likely to have a functional role
in an active site, the approach can for instance be used
in the engineering of enzyme mutants with an improved
activity for a certain substrate.

Methods
Datasets
We applied our approach to predict HIV RT mutations
conferring resistance to two classes of inhibitors: NRTI
and NNRTI. The two classes of inhibitors differ in the tar-
geted sites and rely on quite different mechanisms [16,17].
NNRTI inhibit the reverse transcriptase by binding to

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 3 of 12
http://www.biomedcentral.com/1471-2105/15/309

the enzyme active site, therefore directly interfering with
the enzyme function. NRTI are instead incorporated
into the newly synthesized viral DNA for preventing its
elongation.
We compiled two datasetsD = {(x, y) ∈ X × Y}, where

X is the input space where the examples x are drawn
from, either the space of single mutations or the space of
mutants, depending on the learning setting (respectively,
mutation-based and mutant-based learning). Examples x
are expressed in the form of ground facts as well as the
labels y, which represent the targets of the prediction.
For instance, Y ={resistant, non-resistant}
(corresponding to {true, false}) in the mutation-
based learning setting and with respect to a specific
inhibitor.
The former (Dataset 1) is a dataset of amino acid muta-

tions derived from the Los Alamos National Laboratories
(LANL) HIV resistance database [18] by Richter et al. [19],
who used it to mine relational rules among mutations.
It consists of 95 amino acid mutations labeled as resis-
tant to NRTI and 56 labeled as resistant to NNRTI, over a
set of 581 observed mutations. For the mutant-based set-
ting, we collected (Dataset 2) HIV RT mutation data from
the Stanford University HIV Drug Resistance Database.
The database provides a dataset of selected mutants of
HIV RT with results of susceptibility studies to various
drugs, and was previously employed [12] for predicting
drug resistance of novel (given) mutantsa. It is com-
posed of 838 different mutants annotated with suscepti-
bility levels (low, medium and high) to drugs belonging
to the NRTI (639 mutants) and NNRTI (747 mutants)
drug classes. We considered a setting aimed at identify-
ing amino acid mutations conferring high susceptibility
(with respect to medium or low), and considered a mutant
as highly susceptible to a drug class if it was annotated
as being highly susceptible to at least one drug from that
class.

Learning in first order logic
Our aim is to learn a first-order logic hypothesis for a
target concept, i.e. mutation conferring resistance to a
certain drug, and use it to infer novel mutations consis-
tent with such hypothesis. We rely on definite clauses
which are the basis of the Prolog programming language.
A definite clause c is an expression of the form:

h ← b1 AND . . . AND bn

where h and the bi are atomic literals. Atomic literals are
expressions of the form p(t1, . . ., tn) where p/n is
a predicate symbol of arity n and the ti are terms, either
constants (denoted by lower case) or variables (denoted
by upper case) in our experiments. The atomic literal h
is also called the head of the clause, typically the target
predicate, and b1 AND . . . AND bn its body. Intuitively,

a clause encodes the fact that the head will hold whenever
the body holds. For instance, a simple hypothesis like:

res_against(A,nnrti) ← mutation(A,C) AND

close_to_site(C)

indicates that a mutation C in the proximity of a binding
site confers to mutant A resistance against a certain drug
(nnrti).
A clause c is said to cover a mutant if the mutant is

classified as resistant according to the clause, i.e. if the
head is true. Learning in this setting consists of search-
ing for a set of definite clauses H = {ci, . . . , cm} covering
all or most positive examples, and none or few negative
ones if available. Standard ILP techniques, such as Aleph,
Golem [20], Progol [21], and FOIL [22], employ one of
two opposite strategies to search the space of hypotheses.
In bottom-up learning, the search starts from the most
specific clause (allowed by the language bias) that covers
a given example, which is then generalized until it can-
not be further generalized without covering any negative
examples. Generalization of the current clause relies on
applying a generalization operator, which either i) substi-
tutes a variable to a constant, or ii) removes a literal from
the body. Conversely, top-down approaches start from the
true hypothesis, which entails all examples, and gradually
specialize it to reduce its coverage of negative examples.
Clause specialization is performed by i) substituting a con-
stant to a variable, or ii) adding a literal to the body.
While these strategies are (necessarily) heuristic, it is pos-
sible to control the complexity of the hypothesis space by
choosing an appropriate language bias. A more detailed
treatment of the learning algorithm used by Aleph can be
found in the Algorithm overview section.
The learned first-order clauses can be interpreted as

relational features that characterize the target concept.
The main advantage of these logic-based approaches
with respect to other machine learning techniques is the
expressivity and interpretability of the learned models.
Models can be readily interpreted by human experts and
provide direct explanations for the predictions. On the
other hand, purely logic-based approaches fail to incor-
porate uncertainty in the hypotheses they produce, and
different degrees of importance of the clauses of which
hypotheses are made. Statistical relational learning [23,24]
techniques aim at filling this gap by combining statistics
and expressive representational languages in developing
predictive models. A simple and effective solution con-
sists of learning a weighted combination of clauses, where
clauses and their weights are jointly learned in trying to
model the concept of interest.
In the biological domain, ILP has been successfully

applied to a variety of learning problems, such as pre-
dicting sequence-based homology and gene/protein

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 4 of 12
http://www.biomedcentral.com/1471-2105/15/309

function [25], finding regularities in microarray data [26],
modeling protein–ligand [27] and protein–protein
interactions [28], discovering pharmacophores [29], and
drug design [30,31].

Background knowledge
We built a relational knowledge base for the problem
domain. Table 1 summarizes the predicates that we
included as a background knowledge. We represented
the amino acids of the reference wild type (consensus
sequence) with their positions in the primary sequence
(position/2) and the specific mutations characteriz-
ing them (mut/4). Target predicates were encoded as
resistance of the mutation or mutant to a certain drug
(res_against/2).
Note that this encoding considers mutations at the

amino acid rather than nucleotide level, i.e. a single amino
acid mutation can involve up to three nucleotide changes.
Focusing on single nucleotide changes would have drasti-
cally expanded the space of possible mutations. We thus
kept the focus on amino acid mutations but we included
the cost (in terms of nucleotide changes) of a certain

amino acid mutation to further refine our search proce-
dure as explained in the following.
Additional background knowledge was included in

order to highlight characteristics of amino acids and
mutations. To this aim we devised all the subsequent
predicates:

typeaa/2 indicates the type of the natural amino acids
according to the Venn diagram grouping based on
the amino acids properties proposed in [32]. For
example, a serine is a tiny and polar amino acid.

color/2 indicates the type of the natural amino acids
according to the coloring proposed in [33] and
reported in Table 2. For example the magenta class
includes basic amino acids as lysine and arginine
while the blue class includes acidic amino acids as
aspartic and glutamic acids. These groups of amino
acids do not overlap as in the previous case.

same_type_aa/3 indicates whether two amino acids
belong to the same type T, i.e. a change from one
amino acid to the other conserves the type of the
amino acid.

Table 1 Background knowledge predicates

Background knowledge predicates

position(AA,Pos) Indicates an amino acid in the wild type sequence

mut(MutID,AA,Pos,AA1) Indicates a mutation: mutation or mutant identifier, position and amino acids
involved, before and after the substitution

res_against(MutID,Drug) Indicates whether a mutation or mutant is resistant to a certain drug

color(Color,AA) Indicates the coloring group of a natural amino acid

typeaa(T,AA) Indicates the type (e.g. aliphafatic, charged, aromatic, polar) of a natural amino acid

same_color_type(AA1,AA2) Indicates whether two amino acids belong to the same coloring group

same_typeaa(AA1,AA2,T) Indicates whether two amino acids are of the same type T

same_color_type_mut(MutID, Pos) Indicates a mutation to an amino acid of the same coloring group

different_color_type_mut(MutID, Pos) Indicates a mutation changing the coloring group of the amino acid

same_type_mut_t(MutID, Pos, T) Indicates a mutation to an amino acid of the same type T

different_type_mut_t(MutID, Pos) Indicates a mutation changing the type of the amino acid

aamutations(Pos,AA1,AA2,Num) Indicates whether a given mutation requires at least a single, double, or triple
nucleotide substitution

close_to_site(Pos) Indicates whether a specific position is close to a binding or active site if any

location(L,Pos) Indicates in which fragment of the primary sequence the amino acid is located

conservation(Pos,ConsClass) Indicates whether a position is highly conserved or not

in_ss(SS,N,Pos) Indicates whether a mutation occurs within the Nth secondary structure element of
a given type

in_motif(Pos,Motif) Indicates whether a mutation occurs within a known sequence motif

catalytic_propensity(AA,CP) Indicates whether an amino acid has a high, medium or low catalytic propensity

mutated_residue_cp(Rw,Pos,Rm,CPold,CPnew) Indicates how, in a mutated position, the catalytic propensity has changed (e.g. from
low to high)

Summary of the background knowledge facts and rules. MutID is a mutation or a mutant identifier depending on the type of the learning problem.

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 5 of 12
http://www.biomedcentral.com/1471-2105/15/309

Table 2 Amino acid types encoded in color classes

Color class Amino acids Description

Red AVFPMILW Small and/or hydrophobic and/or aromatic

Blue DE Acidic

Magenta RK Basic

Green STYHCNGQ Hydroxyl and/or polar and/or basic

Classification of amino acid types in color classes originally proposed in [33] and
used to define the color/2 predicate.

same_color_type/2 indicates whether two amino
acids belong to the same coloring group, i.e. a
change from one amino acid to the other conserves
the coloring group of the amino acid.

same_type_mut_t/3 indicates that an amino acid
substitution at a certain position does not mod-
ify the amino acid type T with respect to the wild
type. For example mutation i123v conserves the
aliphatic amino acid type while mutation i123d
does not (i.e. different_type_mut_t/3 holds
for it).

same_color_type_mut/2 indicates that an amino
acid substitution at a certain position does notmod-
ify the amino acid coloring groupwith respect to the
wild type. For example mutation d123e conserves
the blue amino acid group while mutation d123a
does not (i.e. different_color_type_mut/2
holds for it).

aamutations/4 indicates whether a given amino acid
mutation can be triggered by a single, double,
or triple nucleotide substitution. For instance to
change an alanine a into an aspartic acid d a single
nucletotide substitution can be sufficient as in the
case a: gct → d: gat.

The predicates color/2, same_color_type/2, and
same_color_type_mut/2 have been originally pro-
posed in [34]. Other background knowledge facts and
rules were devised in order to express structural rela-
tions along the primary sequence, secondary structure,
and catalytic propensity of the involved amino acids:

close_to_site/1 indicates whether a specific posi-
tion is less than 5 positions away from a residue
belonging to a binding or active site. In our specific
case, the background theory incorporates knowl-
edge about a metal binding site and a heterodimer-
ization site.

location/2 indicates in which fragment of the pri-
mary sequence the amino acid is located. Locations
are numbered from 0 by dividing the sequence into
fragments of 10 amino acid length.

conservation/2 indicates whether a position is
highly conserved or not. Conservation is defined

in terms of positional variation (entropy) among a
curated multiple-alignment of reverse transcriptase
sequences, taken from the LANL HIV resistance
database [35].

in_ss/3 indicates whether a mutation occurs within a
known secondary structure element. We encoded
position specific knowledge for the four sec-
ondary structure classes: helix, strand, turn, and
coil, through the predicates helix/1, strand/1,
turn/1, and coil/1. This information was
derived from the 3D model of the RT structure by
using the DSSP program [36].

in_motif/2 indicates whether a mutation occurs
within a known sequence motif. Our background
theory includes information about PROSITE [37]
and Pfam motifs [38].

catalytic_propensity/2 indicates whether an
amino acid has a high, medium or low catalytic
propensity according to [39].

mutated_residue_cp/5 indicates how, in a mutated
position, the catalytic propensity has changed (e.g.
from low to high).

Conservation, secondary structure, and features encod-
ing the closeness to the active site are among the stan-
dard features used by mutation effect predictors [8,40].
Motifs have been used for a number of tasks, such as the
identification of non-neutral single nucleotide polymor-
phisms [41].

Algorithm overview
The proposed approach is sketched in Figure 1.

Step 1: Learning phase
The first step is the learning phase. A learner is fed with
a logical representation of the data D and of the domain
knowledge B to be incorporated, and it returns a first-
order logical hypothesis H for the concept of mutation
conferring resistance to a certain class of inhibitors.
In this context there are two suitable ways to learn the

target concept, depending on the type of input data and
their labeling:

a) the one-class classification setting, learning a model
from positive instances only. This is the approach we
employ for Dataset 1: positive examples are muta-
tions for which experimental evidence is available
that shows resistance to a drug, but no safe claim can
be made on non-annotated mutations.

b) the binary classification setting, learning to discrim-
inate between positive and negative instances. This
setting is appropriate for Dataset 2: positive exam-
ples are in our experiments mutants labeled as highly
susceptible to the drug class, negative examples are
those with medium or low susceptibility.

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 6 of 12
http://www.biomedcentral.com/1471-2105/15/309

Figure 1Mutation engineering algorithm. Schema of the mutation engineering algorithm.

In the one-class classification case we employ the Aleph
(A Learning Engine for Proposing Hypotheses) ILP sys-
tem [42], which learns first order logic hypotheses in
a bottom-up fashion. It incrementally builds a hypoth-
esis trying to cover all positive examples. The hypoth-
esis search is guided by a Bayesian evaluation function,
described in [43], scoring candidate solutions according
to an estimate of the Bayes’ posterior probability that
allows to trade-off hypothesis size and generality. Aleph
adds clauses to the hypothesis based on their coverage
of training examples. Given a learned model, the first
clauses are those covering most training examples and
thus usually the most representative of the underlying
concept.
In Figure 2 we show a simple example of hypothe-

sis covering a set of training mutations from Dataset 1.
The learned hypothesis models the ability of a muta-
tion to confer resistance to NNRTI and is composed of
four first-order clauses, each one covering different sets
of mutations of the wild type as highlighted in colors:
yellow for the first clause, blue for the second, red for
the third, and green for the fourth one. Some muta-
tions are covered by more than one clause as shown
by the color overlaps. For instance, a mutation of the
glycine in position 190 satisfies three clauses: the first,

the second and the fourth. On top of the RT con-
sensus sequence we also report the corresponding sec-
ondary structure annotation, by highlighting in magenta
the helices and in blue the β-strands. The PROSITE and
Pfam motifs prf:RT_POL and pfam_fs:RVT_thumb
appearing in the clauses identify specific regions along the
RT sequence. Bold letters in the picture indicate residues
involved in the RT metal binding site (D110, D185 and
D186).
In the binary classification case, we employ kFOIL [5],

a statistical relational approach which learns a weighted
combination of clauses discriminating positive from neg-
ative instances. kFOIL is a kernel-based approach [44],
capable of learning hypotheses made of complex non-
linear combinations of clauses. For the sake of inter-
pretability we limit ourselves to second degree polynomial
kernels, where the predictive model is a combination of
conjunctions of up to two clauses.
In Figure 3 we show an example with a few clauses

extracted from the hypothesis learned on one of the
dataset partitions generated during the experimental eval-
uation (see Results section). As in the above example,
the model is composed of four first-order clauses, each
contributing to the characterization of NNRTI resistance
mutations. Three of the four clauses specify positions

Figure 2Model for the resistance to NNRTI learned from Dataset 1. An example of learned hypothesis for the NNRTI task with highlighted
amino acid positions covered by the hypothesis clauses.

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 7 of 12
http://www.biomedcentral.com/1471-2105/15/309

103, 106 and 190 directly as likely targets for resis-
tance conferring mutations. The second clause, which is
not position specific, represents mutations of thyrosines
occurring within a strand, where the mutation is a non-
charged amino acid. Note that two clauses with distinct
position predicates cannot be simultaneously satis-
fied by the same mutation. Conjunctions of clauses will
thus typically involve one position-specific clause and one
or more position-aspecific ones, where the latter further
detail the features that likely resistant mutations at that
position are expected to exhibit.

Step 2: Generative phase
The second step of our approach is the generative phase,
in which the learned hypothesis is employed to find
novel mutations that can confer drug resistance to an RT
mutant. A set of candidate mutations can be generated by
using the Prolog inference engine starting from the rules
in the learned model. The rules are actually constraints on
the characteristics that a mutation of the wild type should
have in order to confer resistance to a certain inhibitor,
according to the learned hypothesis.
Algorithm 1 details the mutation generation procedure.

We assume, for simplicity, to have a model H for a single
drug class. The procedure works by querying the Pro-
log inference engine for all possible variable assignments
that satisfy the hypothesis clauses, each representing a
mutation by its position and the amino acid replacing
the wild type residue. The set of mutations generated
by the model is ranked according to a scoring func-
tion SH before being returned by the algorithm. When
using Aleph, we define SH as the number of clauses in
H that a candidate mutation m satisfies. When using
kFOIL, SH is the value of the weighted combination of
the satisfied clauses. The latter case allows a much more
refined scoring, as will be showed in the experimental
evaluation.
Algorithm for novel relevant mutations discovery.

Consider the example model in Figure 2. Among the
mutations generated using the model are all those chang-
ing the glycine in position 190 in a non polar amino acid:
190P, 190A, 190F, 190I, 190L, 190V, 190M.Here 190P indi-
cates a change of the wild type amino acid at position
190 into a proline. Each of these mutations satisfies the
first, the second and the fourth clause, receiving a score
of three. Note that mutation 190A is part of the known
NNRTI surveillance mutations (see [45]).
As for the model in Figure 3, the position specific rules

all identify known surveillance mutations: 103N, 103S,
106M, 106A, 190A, and 190S. Clause two affects position
181, a thyrosine occurring within a strand, and corre-
sponds to surveillance mutations 181C, 181I, 181V.

Results
Learning frommutations
We first learn general rules characterizing known resis-
tance mutations (fromDataset 1) to be used for predicting
novel candidate ones.
We divided the dataset of mutations into a training and

a test set (70/30) in a stratified way, which means by pre-
serving, both in the train and test set, the proportion of
examples belonging to one of the two drug classes. This
produces a training set of 106 mutations and a test set of
45 ones.
We trained the ILP learner on the training set and

we evaluated on the test set the set of mutations gener-
ated using the learned model. The evaluation procedure
takes the set of generated mutations and checks which
of them appears in the test set. We compare the recall
of the approach, i.e. the fraction of test mutations gener-
ated by the model, with the recall of a baseline algorithm
that generates a set (of the same cardinality) of random
mutations. By random mutation we mean here the muta-
tion at a random position in the wildtype into a randomly
chosen amino acid, different from the one occurring in
the wildtype at that position. A random generation is

Algorithm 1 Mutation generation algorithm.
1: input: background knowledge B, learned model H
2: output: rank of the most relevant mutationsR
3: procedure GENERATEMUTATIONS(B,H)
4: InitializeM ← ∅
5: A ← find all assignments a that satisfy at least one clause ci ∈ H
6: for a ∈ A do
7: m ← mutation corresponding to assignment a
8: score ← SH(m) � scorem according to model H
9: M ← M ∪ {(m, score)}

10: end for
11: R ← RANKMUTATIONS(M) � rank relevant mutations
12: returnR
13: end procedure

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 8 of 12
http://www.biomedcentral.com/1471-2105/15/309

Figure 3Model for the resistance to NNRTI learned from Dataset 2. An example of learned hypothesis for the NNRTI task with highlighted
amino acid positions covered by the hypothesis clauses.

admittedly a rather simple baseline, but it is useful in
highlighting the amount of reduction of the search space
(the space of mutations) achieved by our algorithm. In
order to fully exploit this gain in exploration efficiency, the
algorithm should be extended to generate mutants with
multiple mutations. This is the subject of our future work,
as discussed in the Conclusions.
We computed 30 random 70/30 train/test splits and per-

formed 30 runs of our algorithm on each split (Aleph has a
random component generating the seed for the hypothesis
search). Figure 4 reports results averaged over all runs for
both NNRTI and NRTI tasks. In this setting, the average
size of the learned hypotheses for NNRTI andNRTI are 10
and 14 rules respectively. The figure shows themean recall
on the test set when increasing the score threshold for
accepting a mutation, i.e. the number of clauses a muta-
tionmust satisfy in order to be accepted. The results of the
random baseline consider the same number of mutations

selected by the method for each threshold. The recall
trend is shown in orange for our approach and in green
for the random generator for both classes of inhibitors.
Recall differences are statistically significant according to
a paired Wilcoxon test (α = 0.01).
We finally learned amodel on the whole dataset in order

to generate a single set of mutations for further inspection.
We report five examples of novel mutations with the high-
est score for each one of the tasks: S105Y, S105T, S105N,
S105G, S105C for NNRTI and 50A, 63A, 63M, 159L,
195V for NRTI. For NNRTI, known resistance mutations
are found in positions 103 and 106, possibly explaining
the high score of mutations at position 105. In [46], the
authors found a set of novel mutations conferring resis-
tance to efavirenz and nevirapine, which are NNRTI. Our
mutation generation algorithm partially confirms their
findings. Apart frommutation 138Q, not generated by our
model, all other mutations have been generated, with 90I

Figure 4Mean recall trend by number of satisfied clauses (Dataset 1).Mean recall of the generated mutations on the resistance test set
mutations from Dataset 1 by varying the number of satisfied clauses. The mean recall values in orange refer to the proposed generative algorithm.
The mean recall values in green refer to a random generator of mutations.

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 9 of 12
http://www.biomedcentral.com/1471-2105/15/309

satisfying two out of five clauses and 101H, 196R, and 28K
satisfying one.
Table 3 reports the most commonly learned clauses

for both NNRTI and NRTI classification tasks. The rules
for NNRTI resistance give relevance to mutations in
β-strands, while for NRTI, mutations on turns and coils
seem to be more relevant. It is also evident that the
most susceptible region for developing resistance to these
inhibitors is the region between positions 54 and 234
along the primary sequence, corresponding to the motif
prf:RT_POL. In addition, for the resistance to NNRTI
the region between positions 98 and 107 is more relevant,
while for NRTI it is the region between positions 64 and
71 (see the location predicate).

Learning frommutants
The next set of experiments is focused on learning muta-
tions from mutant data (Dataset 2). Learned models are
still limited to single amino acid mutations, and so are
novel mutants generated by the system.
We randomly assigned the mutants in Dataset 2 to

30 train/test set splits, by avoiding having mutants con-
taining the same resistance mutation (according to the
labelling used in Dataset 1) in both training and test

sets. For each of the 30 splits, we evaluated the recall of
the generated mutations on the known resistance muta-
tions (from Dataset 1), by first removing all the mutations
that were also present in the training set. Comparison is
again made on a baseline algorithm generating random
mutations.
Results averaged on the 30 random splits are reported

in Figure 5. The curve shows the average recall of the
generated mutations while varying the threshold over
their confidence, and the corresponding number of over-
all generated mutations. For NNRTI, we can see that we
obtain an average recall of 25% while generating only
250 mutants, and can reach up to 27% with about 300
generated mutants. In both cases the results are statisti-
cally significantly higher than those achieved by a random
generator (paired Wilcoxon test, α = 0.01).
The hypothesis for the resistance to NNRTI identi-

fies more than half (12 out of 18) of the known resis-
tance surveillance mutations reported in [45]: 103N, 103S,
106A, 181C, 181I, 181V, 188L, 188C, 190A, 190S, 190E, all
with very high confidence. The model also predicts other
not previously reported mutations as being resistant with
high confidence, for instance 183F and 232A, very close to
known surveillance mutations 181C and 230L.

Table 3 Most frequent learned clauses (Dataset 1)

models Learned clause

NNRTI

21.8 mut(A,B,C,D) AND strand(C)

20.5 mut(A,B,C,D) AND location(11,C)

17.1 mut(A,B,C,D) AND strand(C) AND in_motif(C,’prf:RT_POL’)

9.9 mut(A,B,C,D) AND in_motif(C,’pfam_fs:RVT_1’)

9.4 mut(A,B,C,D) AND same_type_mut_t(A,C,neutral) AND strand(C)

7.9 mut(A,B,C,D) AND color(red,D) AND in_motif(C,’prf:RT_POL’)

7.3 mut(A,B,C,D) AND same_type_mut_t(A,C,nonpolar)

6.8 mut(A,B,C,D) AND in_motif(C,’prf:RT_POL’)

6.1 mut(A,B,C,D) AND color(red,B)

5.9 mut(A,y,C,D)

NRTI

25.2 mut(A,B,C,D) AND location(7,C)

18.8 mut(A,B,C,D) AND in_motif(C,’prf:RT_POL’)

16.1 mut(A,B,C,D) AND turn(C) AND in_motif(C,’prf:RT_POL’)

12.1 mut(A,B,C,D) AND same_type_mut_t(A,C,neutral) AND in_motif(C,’prf:RT_POL’)

11.3 mut(A,B,C,D) AND coil(C) AND conservation(C, high)

11.1 mut(A,B,C,D) AND conservation(C, high)

11 mut(A,B,C,D) AND same_color_type_mut(A,B) AND in_motif(B,’prf:RT_POL’)

8.7 mut(A,B,C,D) AND same_color_type_mut(A,B)

7.3 mut(A,B,C,D) AND in_motif(C,’pfam_fs:RVT_1’)

7.3 mut(A,B,C,D) AND color(red,B) AND in_motif(C,’prf:RT_POL’)

List of the ten most frequent rules learned on Dataset 1, sorted by average number of models they appear in.

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 10 of 12
http://www.biomedcentral.com/1471-2105/15/309

Figure 5Mean recall of the generated mutations on the resistance test set mutations from Dataset 2 by varying the threshold on the
prediction confidence, and the corresponding average number of overall generated mutations (i.e., not necessarily in the test set), in
blue. The red line refers to the random generator of mutants. (a) Left panel: results for the NNRTI case. (b) Right panel: results for the NRTI case.

Table 4 Most frequent learned clauses (Dataset 2)

models Learned clause

NNRTI

All mut(A,B,C,D) AND position(C,X)

9 mut(A,B,C,D) AND position(C,103) AND typeaa(neutral,D)

6 mut(A,B,C,D) AND position(C,106) AND typeaa(tiny,D)

6 mut(A,y,C,D) AND typeaa(neutral,D) AND strand(C)

6 mut(A,y,C,D) AND strand(C)

5 mut(A,B,C,a) AND position(C,106)

5 mut(A,y,C,D) AND typeaa(neutral,D)

4 mut(A,B,C,D) AND position(C,90) AND correlated_mut(A,C,E)

4 mut(A,B,C,D) AND position(C,143) AND same_type_aa(D,B,polar)

3 mut(A,B,C,D) AND typeaa(aromatic,B) AND strand(C) AND typeaa(neutral,D)

NRTI

All mut(A,B,C,D) AND position(C,X)

17 mut(A,m,C,D) AND same_type_aa(B,D,nonpolar)

13 mut(A,m,C,D) AND highconservation(C)

12 mut(A,w,C,D)

9 mut(A,m,C,D) AND inMotif(C,pfam_ls:RVT_1)

9 mut(A,m,C,D)

9 mut(A,p,C,D)

6 mut(A,B,C,D) AND position(C,165) AND correlated_mut(A,C,E)

6 mut(A,B,C,D) AND position(C,188) AND correlated_mut(A,C,E)

6 mut(A,m,C,D) AND inMotif(C,prf:RT_POL)

6 mut(A,m,C,D) AND inMotif(C,pfam_fs:RVT_1)

List of the ten most frequent learned rules for Dataset 2, sorted by number of models they appear in. The table also includes the clause position(C,X), which is
present in all models for different values of X.

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 11 of 12
http://www.biomedcentral.com/1471-2105/15/309

Also in the case of NRTI the generative algorithm
suggests most (32 of 34) known surveillance mutations
reported in [45]: all of them except those targeting posi-
tion 69 (including an insertion).
Table 3 lists the most frequently learned clauses in the

30 distinct models learned during the cross-validation
procedure. It is easy to see that the most frequent clauses
tend to favor mutations to positions 103, 106, and 143
for NNRTI resistance and 165 and 188 for NRTI resis-
tance, among other less frequent positions. The clauses
also specify properties of the mutations occurring at
these positions. On the one hand, NNRTI resistant muta-
tions are predicted to have a strong preference for strand
residues (with strand occurring three times in Table 4)
and for non-charged mutations. On the other hand,
NRTI resistant mutations are predicted to occur within
PROSITE motif RT_POL and Pfam motif RVT_1; muta-
tions to highly conserved methionine positions are also
predicted to confer resistance, as confirmed by surveil-
lance mutation 184V.

Discussion and future work
The results shown in the previous section are a promis-
ing starting point to generalize our approach to more
complex settings. We showed that the approach scales
from few hundreds of mutations as learning examples to
almost a thousand of complete mutants. Moreover the
learned hypotheses significantly constrain the space of all
possible single amino acid mutations to be considered,
paving the way to the expansion of the method to multi-
site mutant generation. This represents a clear advantage
over alternative existing machine learning approaches,
which would require the preliminary generation of all
possible mutants for their evaluation. Restricting to RT
mutants with two mutated amino acids, this would
imply testing more than a hundred million candidate
mutants. At the same time our statistical relational learn-
ing approach cannot attain the same accuracy levels of a
sophisticated technique modelling for instance the three
dimensional rearrangements of the resulting mutant. We
plan to combine the respective advantages of the two
approaches by using our statistical relational model as
a pre-filtering stage, producing candidate mutants to be
further analysed by complex modelling techniques and
additional tools evaluating, for instance, a mutant sta-
bility. An additional direction to refine our predictions
consists of jointly learning models of resistance to dif-
ferent drugs (e.g. NNRTI and NRTI), possibly further
refining the joint models on a per-class basis. On a pre-
dictive (rather than generative) task, this was shown [34]
to provide improvements over learning distinct per-drug
models.
Our approach is not restricted to learning drug-

resistance mutations in viruses. More generally, it can

be applied to learn mutants having certain properties
of interest, e.g. improved or more specific activity of
an enzyme with respect to a substrate, in a full protein
engineering fashion.

Conclusions
In this work we proposed a simple statistical relational
learning approach applicable to mutant prediction and
protein engineering. The algorithm relies on a training
set of mutation data annotated with drug resistance infor-
mation, builds a relational model characterizing resistant
mutations, and uses it to generate novel potentially resis-
tant ones. Encouraging preliminary results on HIV RT
data indicate a statistically significant enrichment in resis-
tance conferring mutations among those generated by
the system, on both mutation-based and mutant-based
learning settings. Albeit preliminary, our results suggest
that the proposed approach for learning mutations has
a potential in guiding mutant engineering, as well as
in predicting virus evolution in order to try and devise
appropriate countermeasures. In the next future we plan
to generalize the proposed approach to jointly generate
sets of related mutations shifting the focus from the gen-
eration of single amino acid mutations to mutants with
multiple mutations.

Endnote
aGenotype-Phenotype Datasets. http://hivdb.

stanford.edu/cgi-bin/GenoPhenoDS.cgi

Competing interests
The authors declare to have no competing interests.

Authors’ contributions
EC compiled the datasets. EC, ST, and AP participated in building the
background knowledge. EC and ST conducted the experimental evaluation
and contributed to the interpretation of the results. AP designed and
coordinated the whole study. All authors participated in the design of the
study and contributed in writing the article. All authors read and approved the
final manuscript.

Acknowledgements
EC and TL acknowledge the support of the F.W.O. (Belgium) and the
F.R.S.-F.N.R.S. (Belgium) of which EC is also a postdoctoral researcher. ST and
AP acknowledge the support of the Italian Ministry of University and Research
under grant PRIN 2009LNP494 (Statistical Relational Learning: Algorithms and
Applications) and of Google under a Google Faculty Research Award
(Integrated Prediction of Protein Function, Interactions and Pathways with
Statistical Relational Learning).

Author details
1MLG, Département d’Informatique, Université Livre de Bruxelles, Boulevard
du Thriomphe - CP 212, 1050 - Brussels, Belgium. 2Interuniversity Institute of
Bioinformatics in Brussels (IB)2, ULB-VUB, La Plaine Campus, Triomflaan - CP
263, 1050 - Brussels, Belgium. 3Department of Computer Science and
Information Engineering, University of Trento, via Sommarive 5, I-38123 (Povo)
Trento, Italy. 4Ambiotec sas, R&D, Via Appia Nord 47, 00142 Cisterna di Latina
(LT), Italy. 5AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 - Brussels, Belgium.

Received: 18 February 2013 Accepted: 25 June 2014
Published: 19 September 2014

http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi
http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi

Cilia et al. BMC Bioinformatics 2014, 15:309 Page 12 of 12
http://www.biomedcentral.com/1471-2105/15/309

References
1. Götte M, Li X, Wainberg M: HIV-1 reverse transcription: a brief

overview focused on structure-function relationships among
molecules involved in initiation of the reaction. Arch Biochem Biophys
1999, 365(2):199–210.

2. Cao ZW, Han LY, Zheng CJ, Ji ZL, Chen X, Lin HH, Chen YZ: Computer
prediction of drug resistance mutations in proteins REVIEWS.
Drug Discov Today: BIOSILICO 2005, 10(7):521–529.

3. Rubingh DN: Protein engineering from a bioindustrial point of view.
Curr Opin Biotechnol 1997, 8(4):417–422.

4. Muggleton S, De Raedt L: Inductive logic programming: theory and
methods. J Logic Program 1994, 19-20(suppl 1):629–682.

5. Landwehr N, Passerini A, De Raedt L, Frasconi P: kFOIL: learning simple
relational kernels. In Proceedings of the 21st national conference on
Artificial intelligence - Volume 1. Palo Alto, California: AAAI Press;
2006:389–394.

6. Capriotti E, Fariselli P, Rossi I, Casadio R: A three-state prediction of
single point mutations on protein stability changes.
BMC Bioinformatics 2008, 9(suppl 2):S6.

7. Needham CJ, Bradford JR, Bulpitt AJ, Care Ma, Westhead DR: Predicting
the effect of missense mutations on protein function: analysis with
Bayesian networks. BMC Bioinformatics 2006, 7:405.

8. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR: Amethod and server for predicting
damaging missense mutations. Nat Methods 2010, 7(4):248–249.

9. Bromberg Y, Rost B: SNAP: predict effect of non-synonymous
polymorphisms on function. Nucleic Acids Res 2007, 35(11):3823–3835.

10. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD,
Radivojac P: Automated inference of molecular mechanisms of
disease from amino acid substitutions. Bioinformatics 2009,
25(21):2744–2750.

11. Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R:
WS-SNPs&GO: a web server for predicting the deleterious effect of
human protein variants using functional annotation. BMC Genomics
2013, 14(3):1–7.

12. Rhee SY, Taylor J, Wadhera G, Ben-Hur A, Brutlag DL, Shafer RW:
Genotypic predictors of human immunodeficiency virus type 1 drug
resistance. Proc Nat Acad Sci USA 2006, 103(46):17355–17360.

13. Thusberg J, Olatubosun A, Vihinen M: Performance of mutation
pathogenicity prediction methods onmissense variants. HumMutat
2011, 32(4):358–368.

14. Shafer R: Rationale and uses of a public HIV drug-resistance
database. J Infect Dis 2006, 194(suppl 1):S51–S58.

15. Cilia E, Teso S, Ammendola S, Lenaerts T, Passerini A: Predicting virus
mutations through relational learning. In Proceedings of the ECCB
Workshop on Annotation, Interpretation andManagement of Mutations
(AIMM-2012). Volume 916. Aachen, Germany: CEUR-WS; 2012.

16. De Clercq E: HIV inhibitors targeted at the reverse transcriptase.
AIDS Res Hum Retroviruses 1992, 8(2):119–134.

17. Spence R, Kati W, Anderson K, Johnson K:Mechanism of inhibition of
HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science
1995, 267(5200):988–993.

18. Los Alamos National Laboratory HIV-1 Resistance Mutation
Database. [http://www.hiv.lanl.gov/content/sequence/RESDB/]

19. Richter L, Augustin R, Kramer S: Finding relational associations in HIV
resistance mutation data. In Proceedings of Inductive Logic Programming
(ILP), Lecture Notes in Computer Science. Volume 5989. Berlin Heidelberg:
Springer; 2010:202–208.

20. Muggleton S, Feng C: Efficient induction of logic programs. New
Generation Comput 1992, 38:281–298.

21. Muggleton S: Inverse entailment and Progol. New Generation Comput
1995, 13(3–4):245–286.

22. Quinlan JR, Cameron-Jones RM: Induction of logic programs: FOIL and
related systems. New Generation Comput 1995, 13(3–4):287–312.

23. Getoor L, Taskar B: Introduction to Statistical Relational Learning (Adaptive
Computation andMachine Learning). Palo Alto, California: MIT Press; 2007.

24. Raedt LD, Frasconi P, Kersting K, Muggleton S, (Eds): Probabilistic Inductive
Logic Programming - Theory and Applications, Volume 4911 of Lecture Notes
in Computer Science. Berlin Heidelberg: Springer; 2008.

25. King RD: Applying inductive logic programming to predicting gene
function. AI Mag 2004, 25:57.

26. Ryeng E, Alsberg BK:Microarray data classification using inductive
logic programming and gene ontology background information.
J Chemometrics 2010, 24(5):231–240.

27. Santos JA, Nassif H, Page D, Muggleton S, Sternberg ME: Automated
identification of protein-ligand interaction features using Inductive
Logic Programming: a hexose binding case study. BMC Bioinformatics
2012, 13:162.

28. Tran TN, Satou K, Ho TB: Using inductive logic programming for
predicting protein-protein interactions frommultiple genomic data.
In Proceedings of Knowledge Discovery in Databases (PKDD). Lecture Notes in
Computer Science. Volume 3721. Berlin Heidelberg: Springer; 2005:321–330.

29. Finn P, Muggleton S, Page D, Srinivasan A: Pharmacophore discovery
using the inductive logic programming system Progol.Mach Learn
1998, 30(2–3):241–270.

30. King RD, Muggleton S, Lewis RA, Sternberg M: Drug design by machine
learning: The use of inductive logic programming to model the
structure-activity relationships of trimethoprim analogues binding
to dihydrofolate reductase. ProcNat Acad Sci 1992, 89(23):11322–11326.

31. Tsunoyama K, Amini A, Sternberg MJ, Muggleton SH: Scaffold hopping
in drug discovery using inductive logic programming. J Chem Inform
Model 2008, 48(5):949–957.

32. Betts M, Russell R: Amino-acid properties and consequences of
substitutions. Bioinformatics Geneticists 2003:289–316.

33. Taylor WR: The classification of amino acid conservation. J Theor Biol
1986, 119(2):205–218.

34. Cilia E, Landwehr N, Passerini A: Relational feature mining with
hierarchical Multitask kFOIL. Fundam Informaticae 2011,
113(2):151–177.

35. Los Alamos National Laboratory HIV Databases.
[http://www.hiv.lanl.gov/]

36. Kabsch W, Sander C: Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 1983, 22(12):2577–2637.

37. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N,
Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL,
Eddy SR, Bateman A, Finn RD: The Pfam protein families database.
Nucleic Acids Res 2012, 40(D1):D290–D301.

38. Sigrist CJ, Cerutti L, De Castro E, Langendijk-Genevaux PS, Bulliard V,
Bairoch A, Hulo N: PROSITE, a protein domain database for
functional characterization and annotation. Nucleic Acids Res 2010,
38(suppl 1):D161–D166.

39. Bartlett G, Porter C, Borkakoti N, Thornton J: Analysis of catalytic
residues in enzyme active sites. J Mol Biol 2002, 324:105–121.

40. Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect
protein function. Nucleic Acids Res 2003, 31(13):3812–3814.

41. Bromberg Y, Rost B: SNAP: predict effect of non-synonymous
polymorphisms on function. Nucleic Acids Res 2007, 35(11):3823–3835.

42. A Learning Engine for Proposing Hypotheses (Aleph). [http://www.
comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html]

43. Muggleton S: Learning from positive data. In Proceedings of Inductive
Logic Programming (ILP). Lecture Notes in Computer Science. Volume 1314.
Berlin Heidelberg: Springer; 1997:358–376.

44. Landwehr N, Passerini A, Raedt L, Frasconi P: Fast learning of relational
kernels.Mach Learn 2010, 78(3):305–342.

45. Bennett DE, Camacho RJ, Otelea D, Kuritzkes DR, Fleury H, Kiuchi M,
Heneine W, Kantor R, Jordan MR, Schapiro JM, Vandamme AM,
Sandstrom P, Boucher CaB, van de Vijver D, Rhee SY, Liu TF, Pillay D,
Shafer RW: Drug resistance mutations for surveillance of transmitted
HIV-1 drug-resistance 2009 update. PloS one 2009, 4(3):e4724.

46. Deforche K, Camacho RJ, Grossman Z, Soares Ma, Van Laethem K,
Katzenstein Da, Harrigan PR, Kantor R, Shafer R, Vandamme AM: Bayesian
network analyses of resistance pathways against efavirenz and
nevirapine. AIDS (London, England) 2008, 22(16):2107–15.

doi:10.1186/1471-2105-15-309
Cite this article as: Cilia et al.: Predicting virus mutations through statistical
relational learning. BMC Bioinformatics 2014 15:309.

http://www.hiv.lanl.gov/content/sequence/RESDB/
http://www.hiv.lanl.gov/
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Datasets
	Learning in first order logic
	Background knowledge
	Algorithm overview
	Step 1: Learning phase
	Step 2: Generative phase

	Results
	Learning from mutations
	Learning from mutants

	Discussion and future work
	Conclusions
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

