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Abstract

Background: Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing
throughput, and improved annotation have expanded the diversity of genomics applications in research and
clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand,
coordinating secure access for multiple analysts, and sharing validated tools and results.

Results: To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local
hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and
extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from
individuals to large cohorts.

Conclusions: By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform,
we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable
computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome
samples.
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Background
Whole exome capture sequencing (WES) and whole ge-
nome sequencing (WGS) using next generation sequen-
cing (NGS) technologies [1] have emerged as compelling
paradigms for routine clinical diagnosis, genetic risk pre-
diction, and patient management [2]. Large numbers of
laboratories and hospitals routinely generate terabytes of
NGS data, shifting the bottleneck in clinical genetics from
DNA sequence production to DNA sequence analysis.
Such analysis is most prevalent in three common settings:
first, in a clinical diagnostics laboratory (e.g. Baylor’s
Whole Genome Laboratory www.bcm.edu/geneticlabs/)
testing single patients or families with presumed heritable
disease; second, in a cancer-analysis setting where the unit
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of interest is either a normal-tumor tissue pair or
normal-primary tumor-recurrence trio [3]; and third, in
biomedical research studies sequencing a sample of
well-phenotyped individuals. In each case, the input is a
DNA sample of appropriate quality having a unique
identification number, appropriate informed consent,
and relevant clinical and phenotypic information.
As these new samples are sequenced, the resulting data

is most effectively examined in the context of petabases of
existing DNA sequence and the associated meta-data.
Such large-scale comparative genomics requires new se-
quence data to be robustly characterized, consistently re-
producible, and easily shared among large collaborations
in a secure manner. And while data-management and in-
formation technologies have adapted to the processing
and storage requirements of emerging sequencing tech-
nologies (e.g., the CRAM specification [4]), it is less cer-
tain that appropriate informative software interfaces will
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be made available to the genomics and clinical genetics
communities. One element bridging the technology gap
between the sequencing instrument and the scientist or
clinician is a validated data processing pipeline that
takes raw sequencing reads and produces an annotated
personal genome ready for further analysis and clinical
interpretation.
To address this need, we have designed and imple-

mented Mercury, an automated approach that integrates
multiple sequence analysis components across many
computational steps, from obtaining patient samples to
providing a fully annotated list of variant sites for clin-
ical applications. Mercury fully integrates new software
with existing routines (e.g., Altas2 [5]) and provides the
flexibility necessary to respond to changing sequencing
technologies and the rapidly increasing volume of
relevant data. Mercury has been implemented on both
local infrastructure and in a cloud computing platform
provided by DNAnexus using Amazon Web Services
(AWS). While there are other NGS analysis pipelines,
some of which have even been implemented in the cloud
[6], the combination of Mercury and DNAnexus to-
gether provide for the first time a fully integrated ge-
nomic analysis resource that can serve the full spectrum
of users.

Results and discussion
Figure 1 provides an overview of the Mercury data pro-
cessing pipeline. Source information includes sample
and project management data and the characteristics of
library preparation and sequencing. This information en-
ters the pipeline either directly from the user or from a
laboratory information management system (LIMS). The
first step, generating sequencing reads, is based on the
vendor’s primary analysis software, which generates se-
quence reads and base-call confidence values (qualities).
The second step maps the reads and qualities to the
Valence Workflow
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Figure 1 Mercury Data Flow. 1) Sequencing Instrument raw data is passed
base call confidence values (qualities). 2) Reads and qualities are passed to a m
the placement of reads on the reference (producing a BAM file). 3) Individual
that then is processed in preparation for variant calling. 4) Atlas-SNP and Atlas
5) Annotation adds biological and functional information to the variant lists a
reference genome using a standard mapping tool, such
as BWA [7,8], producing a BAM [9] (binary alignment/
map) file. The third step produces a “finished” BAM that
includes sorting, duplicate marking, indel realignment,
base quality recalibration, and indexing (using a com-
bination of tools including SAMtools [9], Picard (http://
picard.sourceforge.net), and GATK [10]). The fourth
step in Mercury uses the Atlas2 suite [5,11] (Atlas-SNP
and Atlas-indel) to call variants and produce a variant
file (VCF). The fifth step adds biological and functional
annotation and formats the variant lists for delivery.
Each step is described in detail in the Methods section,
as is the flow of information between steps.
Mercury has been optimized for the Illumina HiSeq

(Illumina, Inc.; San Diego, CA) platform, but the genera-
lized workflow framework is adaptable to other settings.
The entire pipeline has been implemented both locally
and in a cloud computing environment. All relevant code
and documentation are freely available online (https://
www.hgsc.bcm.edu/content/mercury) and the scalable
cloud solution is available within the DNAnexus library
(http://www.dnanexus.com/). Sensible default parameters
have already been determined so that researchers and
clinicians can reliably analyze their data with Mercury
without needing to configure any of the constituent
programs or obtaining access to large computational re-
sources, and they can do so in a manner compliant with
multiple regulatory frameworks.

Local workflow management
Implementing a robust analysis framework that incorpo-
rates a heterogeneous collection of software tools presents
many challenges. Running disparate software modules
with varying inputs and outputs that depend on each
other’s results requires appropriate error checking and
centralized output logging. We therefore developed a
simple yet extensible workflow management framework,
 Manager
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Valence (http://sourceforge.net/projects/valence/), that
manages the various steps and dependencies within
Mercury and handles internal and external pipeline
communication. This formal approach to workflow
management helps maximize computational resource
utilization and seamlessly guides the data from the se-
quencing instrument to an annotated variant file ready
for clinical interpretation and downstream analysis.
Valence parses and executes an analysis protocol des-

cribed in XML format with each step treated as either an
action or a procedure. An action is defined as a direct call
to the system to submit a program or script to the job
scheduler for execution; a procedure is defined a collec-
tion of actions, which is itself a workflow. This design
allows the user to easily add, remove, and modify the steps
of any analysis protocol. A protocol description for a spe-
cific step must include the required cluster resources, any
dependencies on other steps, and a command element
that describes how to execute the program or script. To
ensure that the XML wrappers are applicable to any run,
the command is treated as a string template that allows
XML variables to be substituted into the command prior
to execution. Thus, a single XML wrapper describing how
to run a program can be applied to different inputs.
Valence can be deployed on any cluster with a job sche-
duler (e.g., PBS, LSF, SGE), implementing a database to
track both the job (the collection of all the steps in a
protocol to be executed) and the status (“Not Started,”
“Running,” “Finished,” “Failed”) of any action associated
with the job.
Mercury users can easily incorporate new analysis tools

into an existing pipeline. For example, we recently
expanded the scope of our pipeline to include Tiresias
(https://sourceforge.net/projects/tiresias/), a structural
variant caller focused on mobile elements, and ExCID
(https://github.com/cbuhay/ExCID), an exome coverage
analysis tool designed to provide clinical reports on
under-covered regions. To incorporate Tiresias and
ExCID into the Mercury pipeline, we needed only to
specify the compute requirements and add the ap-
propriate command to the existing XML workflow
definition; Valence then automatically handles all data
passing, logging, and error reporting.

Cloud workflow management
Mercury has been instantiated in the cloud via the DNA-
nexus platform (utilizing AWS’s EC2 and S3). DNAnexus
provides a layer of abstraction that simplifies develop-
ment, execution, monitoring, and collaboration on a cloud
infrastructure. The constituent steps of the Mercury pipe-
line take the form of discrete “applets,” which are then
linked to form a workflow within the DNAnexus platform
infrastructure. Using the workflow construction GUI, one
can add applets (representing each step) to the workflow
and create a dependency graph by linking the inputs and
outputs of subsequent applets. Inputs are provided to an
instance of the workflow, and the entire workflow is run
within the cloud infrastructure. The various steps within
the workflow are then executed based on the dependency
graph. As with Valence, individual applets can be config-
ured to run with a specific set of computational resource
requirements such as memory, local disk space, and num-
ber of cores and processors. We are currently working to
merge the local and cloud infrastructure elements by inte-
grating the upload agent into Valence, allowing Valence to
trigger a DNAnexus workflow once all the data is suc-
cessfully uploaded. Such coordination would serve to
transparently support analysis bursts.
TheMercury pipeline within DNAnexus comprises code

that uses the DNAnexus command-line interface to in-
stantiate the pipeline in the cloud. The Mercury code for
DNAnexus is executed on a local terminal. For example,
one may provide a list of sample FASTQ files and sample
meta-data locations to Mercury, at which point Mercury
uploads the data and instantiates the predefined workflow
within DNAnexus. On average, on a 100 Mbps connec-
tion, we were able to upload at a rate of ~14 MB/sec. We
were able to parallelize this uploading process, yielding an
effective upload rate of ~90 MB/sec. The size of a typical
FASTQ file from WES with 150X coverage has a com-
pressed (bzip2) file size of approximately 3 GB. Uploading
such a file from a local server took less than five minutes.
After sample data are uploaded to the DNAnexus envir-
onment, the workflow is instantiated in the cloud.
Progress can be monitored online using the DNAnexus

GUI (Figure 2) or locally through the Mercury monitoring
code. To achieve full automation, the monitoring code
can be made a part of a local process to poll for analysis
status at regular intervals and start analysis of new se-
quences automatically upon completion of sequencing.
When the Mercury monitoring code detects successful
completion of analysis an email notification is sent out.
The results can either be downloaded to the local server
or the user can view various tracks and data with a native
genome browser.

Performance
Turn-around time for raw data generation on most NGS
platforms is already considered long for many clinical ap-
plications, so minimizing analysis time is a primary goal of
the Mercury pipeline. By maintaining a high-performance
computing cluster consisting of hundreds of 8-core,
48 GB RAM nodes and introducing Mercury into the
sequencing pipeline, we can minimize wait times by en-
suring that compute resources are always available for all
sequence events as the instrument produces the data. To
match compute resources to production requirements, we
carefully monitor the run times (and RAM and CPU

http://sourceforge.net/projects/valence/
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https://github.com/cbuhay/ExCID


Figure 2 Workflow monitoring in DNAnexus. The GUI for applet monitoring displays the progress as a Gantt chart. The left panel lists the various
steps including the parallelization steps with each row corresponding to a compute instance. A particular step can be clicked to determine the exact
inputs and output or logs of execution for that step. Here we show a snapshot of the webpage displaying the progress of execution for the NA12878
exome analysis.
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requirements) of each step in theMercury pipeline. Table 1
describes the pipeline for each compute-intensive step,
from the generation of reads and qualities from raw data
(bcl to FASTQ) to generation of post-processed annotated
variant files (VCFs). Resource requirements for each step
are given in terms of fraction of an 8-core node (CPU)
and RAM allocated. Note that some steps under-utilize
available CPUs because they require most (or all) of the
RAM available on a given node. For data generated via
WES from human samples, the Mercury pipeline requires
less than 36 hours of wall-clock time and 15 node-hours
(i.e., the equivalent of one whole node fully dedicated
to processing for 15 hours). Run times and resource
requirements will vary with data type, reference genome,
and computing hardware configuration.
After porting each element of the Mercury pipeline

into the DNAnexus environment, the tools (i.e., “apps”)
can be run on the cloud in environments with different
CPU, RAM, disk, and bandwidth resources to optimize
wall-clock time and cost-efficiency. Parallelization within
a pipeline reduces the time for a single run, which is
useful for quick development cycles or time-sensitive
applications. In addition, many parallel pipelines can be
run simultaneously. The current peak usage for the
Mercury pipeline on DNAnexus is approximately 12,000
cores. This throughput is a small fraction of the



Table 1 Mercury computational resource requirements

Data gen Alignment BAM finishing Variants Anno

BCL to
FastQ

BWA
align

BWA sample Mates, Dupe,
Stats

Cap & Cvrg Metrics GATK indel targets GATK indel realign GATK recal BAM valid Atlas SNP Atlas Indel Cassandra

Nodes 1 1 0.333 0.5 0.125 1 0.333 1 0.125 0.167 0.167 0.167

RAM 48 48 15 28 3 48 14 32 4 7 7 8

Hours 3.62 1.84 1.38 3.39 1.30 0.28 2.25 3.04 0.75 9.00 7.51 1.71

Node*hrs 3.62 1.84 0.46 1.70 0.16 0.28 0.75 3.04 0.09 1.50 1.25 0.29

All estimates are approximate for whole exome and light-skim whole genome (~10-20 Gbp of data) sequenced on Illumina HiSeq and processed with the most recent versions of RTA and Casava. Nodes are 8-core,
48 GB RAM, with ~3 GHz Intel CPUs and ~1 TB of local scratch disk. Steps include all aspects of the pipeline from building reads and qualities (fastQ) from raw data (bcl files), through alignment and BAM generation
using the BWA aligner, and BAM finishing with GATK post-processing and duplicate marking, capture and coverage metric calculation, and BAM file validation, finally producing variants from the Atlas2 variant calling
suite with annotations from our annotator, Cassandra.
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theoretical maximum that could be achieved in AWS.
For the standard implementation of Mercury in the
cloud analyzing a validation exome (Hapmap sample
NA12878), the total wall time to produce an annotated
variant call VCF (starting with paired-end FASTQ files)
is approximately one day.

Data management, sharing, reliability, and compliance
Large projects present a large data management challenge.
For example, the Baylor-Hopkins Center for Mendelian
Genomics has generated WES data from approximately
2,000 samples and the Human Genome Sequencing
Center at Baylor College of Medicine has generated more
than 10,000 WES and 3,500 WGS data from research
samples from the CHARGE consortium [12]. As a pilot
study, we processed 1,000 WES data sets–approximately
80 terabytes of genomic data–from the Center for
Mendelian Genomics using Mercury in DNAnexus. Using
multi-threaded uploads we were able to deliver data into
the cloud at an average rate of ~960 exomes per day. Once
uploaded, the data is analyzed with Mercury, and the
resulting variants can be accessed for further analysis via a
web GUI. Data can also be tagged, and these tags can be
filtered or retrieved. Runs of individual pipelines and tools
can be queried in a similar way.
As datasets become larger, multi-site collaborative con-

sortiums play an increasingly important role in contem-
porary biomedical research. A major advantage of cloud
computing over local computing is that cloud storage can
be shared across multiple organizations. Instead of each
collaborator maintaining a local copy of the data and
working in isolation, cloud users can be given appropriate
access permissions so some researchers can view and
download the results, others can run analyses on the data
and build tools, and those with administrative privileges
can determine access to the project. This data paradigm is
Table 2 A feature summary of Mercury in DNAnexus and sim

Mercury in
DNAnexus

Galaxy Sev

Mapper BWA No canonical (many) BW

Variant caller Atlas2 No canonical (many) GAT

Annotation Cassandra snpEff, AlleleFrequency snp

Visualization Built-in browser Built-in browser Link

Runs on local hardware No* Yes No

Runs on cloud infrastructure Yes Yes Yes

HIPAA compliant Yes No No

Requires setup configuration No Yes No

Can add tools independently Yes Yes By

Data sharing & collaboration Yes Yes No

*Mercury can be run on local hardware via Valence, but does not include all of the
the only feasible approach to giving patients meaningful
access to their own genomic data.

Comparison to existing methods
A number of other tools and services provide similar func-
tionality to Mercury on DNAnexus, with differing ap-
proaches to extensibility, ease of use for non-programmers,
support for local or cloud infrastructures, and software
available by default (Table 2). For example, the academic
service Galaxy primarily focuses on extensibility and buil-
ding a developer community [13-15]. Seven Bridges is a
commercial service that combines a few fixed pipelines
with a visually distinctive workflow editor. Chipster is an
academic service that packages a variety of NGS tools in
addition to a variety of microarray tools and combines
these with visualization of data summaries and QC metrics
[16]. Anduril is designed to manage a local cluster and
contains packages for a variety of tasks, including align-
ment and variant calling as well as image analysis and flow
cytometry, which are not addressed by the other cloud
services surveyed [17]. With respect to the software used
in sequence production pipelines, Mercury is most dis-
tinguished by its Atlas variant caller and the extensive
annotations provided by its Cassandra annotation tool
(https://www.hgsc.bcm.edu/software/cassandra).

Future directions
As genomic studies transition from extensive us of whole
exome capture sequencing methods to an emphasis on
whole genome sequencing [18], we can take advantage of
Mercury’s flexibility to adapt to shifting research priorities.
Currently, the sequencing community uses whole exome
sequencing because of its comparatively low cost and
because it enriches for biological signals that are readily
interpretable. However, with changing price structures,
the advantages of eliminating the capture step in the
ilar tools and services

en bridges Chipster Anduril

A BWA BWA/Bowtie

K Samtools mpileup Samtools/GATK, Varscan

Eff, ANNOVAR Bioconductor ANNOVAR

s to IGV Built-in browser No

Yes Yes

Jobs queued to public server No

No Not Applicable (local only)

Yes Yes

request No No

No No

security and data sharing features of Mercury in DNAnexus.

https://www.hgsc.bcm.edu/software/cassandra
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laboratory, improvements in lossless compression of se-
quence data, and improved annotation of the non-protein
coding region of the genome (e.g., genome.ucsc.edu/
ENCODE/), whole genome sequencing may become a
more appealing option. Early adopters of whole genome
sequencing will certainly include medical sequencing for
research and diagnostic purposes. Therefore, a high prio-
rity for Mercury is the continual updates to the annotation
information using web-based databases. Such web-based
annotation updates can incorporate the latest develop-
ments related to genome function in near real-time.
Clinically relevant annotation is of particular interest in

the growing area of cancer somatic mutation. Currently,
disease-related annotation considers inherited disease
alleles gleaned from OMIM (www.omim.org), HGMD
(www.hgmd.org; assuming the user has the appropriate
license to use this data), and genome-wide association
studies (www.genome.gov/gwastudies). Similarly inform-
ative databases, such as the Catalogue of Somatic Muta-
tions in Cancer (COSMIC; www.sanger.ac.uk/genetics/
CGP/cosmic/), are emerging and will need to be fully vet-
ted and incorporated into Cassandra. The goal of Mercury
is to provide a simple solution for end-to-end sequence
analysis so that non-expert users can obtain a list of anno-
tated and prioritized variants as rapidly as possible, and so
that expert users can augment and modify the pipeline to
meet specialized needs.

Conclusions
The long-anticipated NGS data deluge [19] has now ar-
rived. The first personal NGS genome was published in
2007 [4], and today we estimate that the number of
available exomes and genomes approaches one hundred
thousand. It is equally impressive that the application of
NGS to biomedical research and clinical medicine is rap-
idly becoming standard. Such applications are driven by
the utility of sequence data, as demonstrated by a num-
ber of instances where DNA sequencing has been used
not only for diagnostic purposes but also to reveal more
efficacious therapies [18].
By taking advantage of cloud computing and with

Mercury implemented on the DNAnexus platform, we
have demonstrated a powerful combination of a robust
and fully validated software pipeline and a scalable com-
putational resource. To date, we have analyzed thousands
of samples (using the AWS cloud: EC2 and S3), including
a population study comprising 3,500 samples and 10,000
samples for which WGS and WES were generated,
respectively, more than 1,000 Mendelian disease cases
shared with data consumers all over the world, and
smaller projects such as 50 exome trios and 30 cancer
WGS tumor/normal pairs. To our knowledge, these pro-
jects represent the largest genomic analysis effort to be
realized in the cloud to date. They presage a wave of
genomic computing that will transform how genomic data
is analyzed and delivered to the scientific community, into
clinical practice, and eventually directly into the hands of
patients and advocates.

Methods
Reads and read qualities
Making reads and assigning those reads a quality metric is
the only step of Mercury that relies almost exclusively
upon vendor-provided software. Processing raw data files
down to signal intensities and then taking the signal data
through the demultiplexing (i.e., assigning a sequence read
to an individual barcoded sample), base calling, and qua-
lity scoring processes is integrally tied to the sequencing
chemistry and machine instrumentation. Vendors, in
collaboration with the user community, are constantly de-
veloping and improving this primary data input step. As
such, the integrated Mercury pipeline is triggered by the
completion of the data transfer from the instrument into
the local compute environment, at which point vendor
tools are used to generate a FASTQ file containing reads
and qualities for each sequence event. The current ver-
sion of Mercury is optimized for the Illumina HiSeq in-
strument, so it currently integrates with Bcl2FastQ
(http://support.illumina.com/downloads/bcl2fastq_con-
version_software_184.ilmn), the Illumina analysis toolkit.
Modularity of the Mercury pipeline facilitates incorpo-
ration of upgrades to Bcl2FastQ and the replacement of
Bcl2FastQ with functionally similar tools as necessary. At
the end of this step, data from a flow cell is broken down
into individual sequence events associated with each
barcode.

Mapping and BAM Generation
Once reads and qualities are generated, each sequence
event is mapped to a reference genome. The Burrows-
Wheeler Aligner (BWA) [8] is the current preferred map-
ping tool for Illumina HiSeq data, though Mercury’s
modular design allows for alternative mapping tools. The
mapping process for short reads consists of a “seeding”
step that identifies regions of similarity between the read
and reference, and then a local alignment stage that makes
comparisons among reads in a region. Through this itera-
tive process, BWA identifies the most likely placement for
the reads and the differences between each read and the
reference.
Once mapping is complete, additional processing steps

are taken to improve the resulting BAM files. The data
is sorted by mapping position, duplicate reads (artifacts
of the sample preparation process) are flagged, and
metadata summarizing data production information is
added. Further downstream, base quality recalibrations
and local realignment around regions with indel calls are
performed to further improve the information content

http://www.omim.org
http://www.hgmd.org
http://www.genome.gov/gwastudies
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://support.illumina.com/downloads/bcl2fastq_conversion_software_184.ilmn
http://support.illumina.com/downloads/bcl2fastq_conversion_software_184.ilmn
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of variant calls. For cases in which data from a single
sample spans multiple sequence events, Mercury pro-
vides the means to merge individual sequence event
BAMs into a single sample-level BAM that can then be
used for downstream analysis.

Variant calling
Mercury is designed to provide robust variant calling for
readily available whole exome sequencing data but is
extensible to similar functionality for whole genome data.
We have implemented Atlas2 [5,11], an SNV- and indel-
calling suite. Atlas2 uses a logistic regression approach
to detect systematic sequencing errors using context-
sensitive input variables, following three hierarchical steps:
a logistic regression model to characterize systematic
sequencing errors, a probability score that detects and
removes errors, and a minimal heuristics filters as post-
hoc quality assurances to address mapping and capture
biases. Atlas2 has high SNP-discovery sensitivity and spe-
cificity when applied to the 1000 Genomes Whole Exome
data [11]. The accuracy of homozygous and heterozygous
SNPs are as high as 99.8% and 99.6%, respectively, when
compared to the SNP array data. We have also demon-
strated high quality in short indel discoveries [5].

Technical validation and reproducibility
To enable clinical applications, we characterized Mercury’s
reproducibility of calls in gene-coding regions. We gene-
rated VCFs from two independent samples and compared
the high quality variant calls from one to the variant calls
of any quality from the other sample. The process was
then repeated with the sample roles reversed. At the end
of this process, we produced three sets of comparisons:
SNPs with passing evidence in both samples, SNPs that
only have passing evidence in the first sample, and those
that only have passing evidence in the second sample. For
illustrative purposes, reproducibility through technical
replicates for eight samples meeting the basic criteria of
Table 3 Technical replicate data for the Mercury pipeline for e

Sample # A only A only (%) A and

HS-1011 133 0.561% 23,320

HS-1015 155 0.542% 28,312

HS-1016 155 0.644% 23,752

HS-1017 105 0.456% 22,767

HS-1018 165 0.693% 23,531

HS-1019 162 0.682% 23,441

HS-1020 493 2.041% 23,518

HS-1021 161 0.681% 23,188

Average 191 0.718% 23,979
greater than 90% of targeted bases covered at 20x or better
is shown in Table 3. These observations indicate strong
consistency (less than 2% variability between technical
replicates), with approximately 24,000 SNPs found con-
sistently in the overlap.
We then assessed Mercury’s accuracy by evaluating the

sensitivity and specificity of the Mercury SNP calls. SNP
array data and whole-exome sequencing data were ge-
nerated from a single sample, and seven exome technical
replicates were analyzed with Mercury. The array data
indicated the presence of 1,927 SNPs and 2,814 homo-
zygous reference sites that overlapped with regions
targeted by the exome capture reagent. Table 4 details
Mercury’s ability to recover these sites, averaging almost
99% sensitivity across the replicates. Moreover, Mercury
made no SNP calls in any of the replicates for any of the
SNP array homozygous reference sites, and achieved
sufficient coverage to consider those sites reference
homozygous.
To facilitate validation by others of local installations

of Mercury or modified applications in the cloud, we are
making available the FASTQ, BAMs and VCFs of a sin-
gle individual with a known Mendelian condition [20].
These data are available at http://www.ncbi.nlm.nih.gov/
sra?term=SRP023104.

Annotation
Mercury provides variant annotation via the Cassandra
annotation suite, which describes the quality and pre-
dicted functional consequences of genomic variants, pro-
viding the biological and clinical contexts needed to assess
the significance of each variant. Variants are presented to
the user with all quality control metrics produced by
Atlas2, the “pileup string,” [9] and the theoretical mapp-
ability (a measure of sequence degeneracy throughout the
region) of the position. The pileup string can be visually
or automatically inspected to identify biases in the variant
strandedness or determine whether the variant is 5’- or
ight samples sequenced in duplicate (A and B)

B A and B (%) B only B only (%)

98.409% 244 1.029%

98.910% 157 0.548%

98.732% 150 0.624%

98.768% 179 0.777%

98.795% 122 0.512%

98.686% 150 0.631%

97.355% 146 0.604%

98.125% 282 1.193%

98.473% 179 0.613%

http://www.ncbi.nlm.nih.gov/sra?term=SRP023104
http://www.ncbi.nlm.nih.gov/sra?term=SRP023104


Table 4 Concordance of SNP array and Mercury data

Replicate PASS ALL

1 1897 1906

2 1900 1906

3 1898 1904

4 1895 1905

5 1899 1907

6 1904 1907

7 1902 1905

Average 1899.28 1905.71

Average % 98.56 98.89

For each exome technical replicate, we report the number of passing SNPs
found by Mercury and the total number of SNPs (passing and not passing) in
the VCF that overlap the SNP array design. The SNP array contains 1,927 sites
that overlap the exome capture region.
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3’-biased within the supporting reads. Low theoretical
mappability can be used to determine whether reads
aligned to certain positions could have been mapped
confidently or whether they were likely to have been mis-
mapped. AnnoVar [19] is used to determine a variant’s ef-
fect on both a conservative (RefSeq) and inclusive (UCSC)
gene model set. This assessment also describes whether a
variant changes an amino acid residue, whether it creates
or removes a stop-codon, and the variant’s location: near
an intron-exon boundary, within an intron, within a
known non-coding RNA, or in an intergenic region. The
annotation also includes five algorithms that predict the
deleterious nature of nonsynonymous variants [21]. Vari-
ants are additionally annotated according to their fre-
quency and presence in multiple variant collections
(e.g., dbSNP, Thousand Genomes). Lastly, variants are
annotated based on functional data for the gene in which
they occur. These data include the known function of the
gene (e.g., Swiss-Prot), any previous association of the
gene with a disease (e.g., OMIM), post-translational modi-
fications of the gene, and the expression profile of the
gene across human organs. Together, these data are
applied to assess the variant quality, its minor allele
frequency, and any disease association while also elucida-
ting the potential effects of the variant within a genetic
framework.

Metadata and LIMS
Mercury integrates external metadata resources and in-
puts such as a reference genome, sequence data locations,
and a capture design bed file and therefore requires an in-
tegrated LIMS within the pipeline. Our LIMS solution is
partitioned into three major modules: project manage-
ment (PM), sample tracking (ST), and reporting. The PM
module provides tools to define the purpose of the project
and aggregate samples together. Such aggregation allows
project-level decisions (e.g., capture design parameters,
reference genome for mapping) to be applied to all rele-
vant samples at once. The ST module provides features
for tracking samples as they move through the sequencing
center pipeline. Samples are tracked via a barcode given to
each sample when it is accepted by the sequencing center.
Once that barcode is recorded, all lab experiments and
informatics analyses performed on the sample track this
barcode. The barcode-based LIMS reporting module lets
users monitor a sample’s progress in the pipeline and
adjust the steps if necessary. The ability to see the history
of the samples and sample data grouped or individually, is
necessary for troubleshooting problematic samples and
for developing and monitoring timelines.
To make Mercury portable, we provide communica-

tion “hooks” for transferring data between Mercury and
LIMS. These hooks are scripts that can be modified to
query or deliver data to any metadata resource. Exam-
ples of information served to Mercury from LIMS are
the reference genome and previously generated SNP
array data for quality assurance purposes. By decoupling
Mercury from the sample tracking data we have built a
more portable and compliance-ready pipeline, thus pro-
viding increased flexibility.

Quality assurance, quality control, and error handling
In local environments, Mercury maintains an off-the-
shelf validated open-source pipeline. Such transparency
can pose challenges to the strict regulatory requirements
that govern clinical sequence analysis. To support ana-
lysis best practices, we provide a set of documents, data,
and validation tools (detailed manuals available with the
code at https://www.hgsc.bcm.edu/content/mercury) as
well as publically available test data [22]. Strict version
control is maintained.
TheMercury pipeline generates a variety of performance

metrics, including the number of pass-filter bases, read
mapping fractions, concordance with orthogonal array ge-
notypes, novel SNP rates, and transition-to-transversion
ratios, which allow the user to gauge the quality of the
final variant call results. Genotype arrays create a finger-
print of each sample upon intake that is then compared to
the sequence data to validate sample identity. The govern-
ing principle of the process is to generate the quality con-
trol (QC) data as soon as possible and deliver that QC
data into the LIMS (or other meta-data aggregating
resource), but not to automatically interrupt the pipeline
based only on QC data. The QC data are used in two
ways. First, these data are considered in the clinical sign-
out process for an individual run or sample. Second, the
QC data can be used to detect systemic problems in the
production pipeline, such as contaminated reagents or a
malfunctioning sequencing instrument.

https://www.hgsc.bcm.edu/content/mercury
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Data security and compliance
The translational nature of modern genomic data and
the scope of collaborations demand levels of data secu-
rity unprecedented in our field. Based on our experience
using Mercury on the DNAnexus platform to analyze
thousands of samples, we have found a substantially
higher security standard for data in the cloud than in most
local systems. Managing the regulatory requirements of
standards for handling sensitive medical data such as
HIPAA, CLIA, dbGaP, and 21 CFR parts 11, 58, and 493
represents a considerable investment in compliance, se-
curity, and systems engineering expertise, and most local
environments do not have the resources to maintain the
required standards. By using cloud computing platforms,
we are able to leverage diverse expertise, including mo-
dern, high-security data center technologies, best practices
in encryption and authentication, and software system
design to support clinical applications such as auditability,
record retention and destruction, and reproducibility.
At the infrastructure level, DNAnexus uses data centers

in high-security facilities with SAS-70/SSAE-16, PCI Level
1, and FISMA Moderate certifications. At the user level, it
enforces best practices such as password strength and
rotation, session expiration, and client encryption. All data
access is carefully controlled, logged for auditing purposes,
encrypted end-to-end (both in flight and at rest), integ-
rity-verified, and replicated in at least three physically dis-
tinct data centers to ensure against loss. Data analysis is
constrained to computing nodes that are sandboxed using
virtualization and encryption technologies, and are ver-
sioned to ensure reproducibility and the ability to track
data provenance. The software has undergone multiple
third-party audits, including penetration testing by secu-
rity experts, and the overall system has been ISO 27001
certified an internationally recognized standard for secure
data management processes.
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