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Abstract

Background: Chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-Seq) has been
widely used to identify genomic loci of transcription factor (TF) binding and histone modifications. ChIP-Seq data
analysis involves multiple steps from read mapping and peak calling to data integration and interpretation. It remains
challenging and time-consuming to process large amounts of ChIP-Seq data derived from different antibodies or
experimental designs using the same approach. To address this challenge, there is a need for a comprehensive analysis
pipeline with flexible settings to accelerate the utilization of this powerful technology in epigenetics research.

Results: We have developed a highly integrative pipeline, termed HiChIP for systematic analysis of ChIP-Seq data.
HiChIP incorporates several open source software packages selected based on internal assessments and published
comparisons. It also includes a set of tools developed in-house. This workflow enables the analysis of both paired-end
and single-end ChIP-Seq reads, with or without replicates for the characterization and annotation of both punctate and
diffuse binding sites. The main functionality of HiChIP includes: (a) read quality checking; (b) read mapping and filtering;
(c) peak calling and peak consistency analysis; and (d) result visualization. In addition, this pipeline contains modules for
generating binding profiles over selected genomic features, de novo motif finding from transcription factor (TF) binding
sites and functional annotation of peak associated genes.

Conclusions: HiChIP is a comprehensive analysis pipeline that can be configured to analyze ChIP-Seq data derived
from varying antibodies and experiment designs. Using public ChIP-Seq data we demonstrate that HiChIP is a fast and
reliable pipeline for processing large amounts of ChIP-Seq data.
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Background
Chromatin immunoprecipitation (ChIP) coupled with next-
generation sequencing (ChIP-Seq) represents a powerful
approach to identify genome-wide occupancy of transcrip-
tion factors (TFs) and histone tail modifications [1]. The
ENCODE and modENCODE consortia have generated an
atlas of TF binding sites and histone modifications for 100+
cell types, including these from human and mouse [2].
ChIP-Seq data processing starts with the mapping of

short reads to a genome reference. The mapped reads
(alignments) are then used to generate signal tracks in a
variety of formats (Wig, bigWig, bedGraph, or TDF) for
data visualization. They are further used to identify
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regions showing significant enrichment over a control
library like an IgG control generated using a non-specific
IgG antibody, or an input control without using an anti-
body [2]. ChIP-Seq data shows three types of binding
profiles: punctate binding, diffuse binding, and a mixture
of both [3]. Sequence-dependent TFs and some histone
modifications (such as H3K4me3) usually exhibit punctate
binding sites of a few hundred base pairs in size. Com-
paratively, some other histone modifications display broad
binding profiles that could spread over several hundred
kilobases, such as H3K9me3, known to be associated with
constitutive heterochromatin, and H3K36me3 associated
with transcribed regions. The signals from RNA polymer-
ase II peak at 5’ end of genes, and can extend over the
body of transcribed genes, forming a mixture of sharp and
diffuse binding profiles.
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There are over thirty publicly available programs for
peak calling [4]. Most of them focus on punctate binding
profiles using either window scanning or aggregation of
overlapping reads to identify peaks. A subset of these
programs has been extensively evaluated on their sensi-
tivity and specificity [4,5]. Due to the variation of signal
intensity, signal discontinuity within an entire binding
domain and insufficient sequencing depth, it has been
challenging to define the boundary of diffuse binding
domains at high resolution [6]. Currently, only a few
packages have been developed to analyze diffuse binding
profiles [6-8]. Among them, SICER and RSEG are com-
parable for experiments with controls [8]. SICER is one
of the best programs showing high accuracy in detecting
broad binding regions from H3K36me3 [9].
The ENCODE consortium recommends that ChIP-Seq

experiments have two biological replicates in order to
assess data reliability. Based on the previous guideline, a
ChIP-Seq experiment is considered to be reproducible if
at least 75% of the peaks overlap between replicates; or
top 40% of the peaks show >80% overlap [2]. A method
called irreproducible discovery rate (IDR) has been
developed, which measures the consistency between lists
of ranked peaks from replicates [10]. It represents a
more robust and consistent approach to identify highly
reproducible peaks.
Several packages have been developed for downstream

analysis of identified peaks. The most common analyses
include the assignment of peaks to gene bodies or gene
regulatory domains [11]; the generation of binding pro-
files over transcription start sites (TSSs) or other key
genomic features [12-14]; the coverage of genomic fea-
tures by peaks [12]; the testing of functional enrichment
for peak-associated genes [13]; and motif finding [15].
Of these, a peak is usually assigned to a nearby gene
based on a pre-defined cutoff for the maximal distance
from peak center to gene start, which typically ranges
from 2 to 50 kb but can be as far as 1 Mb [11]. This as-
signment introduces bias towards genes in closer vicinity
of peaks and impacts subsequent tests for function
enrichment.
A few pipelines have been developed to analyze ChIP-

Seq data [13,14,16-18]. ChIPpeakAnno and seqMINER
focus on the integration of ChIP-Seq data with genomic
features [13,14]. On the other hand, Fish the ChIPs (FC)
[19] and a web server called Nebula [17] support read
mapping; peak calling for punctate binding events; as-
signment of peaks to genes and data visualization. How-
ever, none of them provide functionality for the filtering
of mapped reads; the identification of broad binding do-
mains; the assessment of reproducibility; and the analysis
of paired-end data.
To address this shortfall, the Highly Integrative Chro-

matin Immunoprecipitation (HiChIP) pipeline provides
comprehensive analysis of ChIP-Seq data. HiChIP has
the following features: (a) the analysis of both paired-
end and single-end data; (b) filtering of mapped reads
based on duplicate level, mapping quality score, genomic
uniqueness, insertion size and orientation (for paired-
end reads only); (c) the selection of an appropriate peak
finder based on binding profile, with MACS [20] for
punctate binding sites and SICER [6] for broad binding
domains; (d) the implementation of the IDR package
[10] to perform consistency analysis of punctate binding
sites between replicates; and (e) downstream analysis,
such as finding motif(s) from TF binding sites using
MEME suite [15], generating binding profiles over key
genomic features and calculating coverage of genomic
features by peaks using CEAS [12], as well as assigning
peaks to genes and testing for gene ontology (GO)
enrichment using in-house tools. The integrative analysis
allows bioinformaticians and investigators to spend less
time on low-level data analysis and instead focus on data
integration and interpretation.
Implementation
This ChIP-Seq analysis pipeline has been developed by
integrating public packages with internally developed
tools. It is intended for research purposes only. The core
functions include: (a) read quality assessment and read
mapping; (b) filtering of mapped reads and estimation of
library complexity; (c) peak calling and identification of
highly consistent peaks between replicates; (d) signal in-
tensity estimation, normalization and visualization; and (e)
annotation of peaks and binding profiles (Figure 1).
Since researchers may not always have immediate access

to cluster resources, this pipeline allows either parallel
processing of a large number of samples in a cluster or
serial processing of multiple samples on a single machine.
Detailed instructions about how to run HiChIP pipeline
and how to use individual tools are described in the user
manual available at: http://bioinformaticstools.mayo.edu/.
Website containing license agreements for each of the
public tools is also provided in the user manual.
Test datasets
To test HiChIP performance, we used five public datasets
in human, including single-end ChIP-Seq datasets target-
ing TFs NFKB and ER and histone mark H3K27me3; a
paired-end ChIP-Seq dataset targeting TF RUNX1; and an
ER chip-chip dataset. Each of the ChIP-Seq datasets
includes both IP and control.
The NFKB datasets are from cell lines GM12878 and

GM12891; each with two replicates for both IP and
control. The FASTQ sequence files were downloaded
from: http://hgdownload.cse.ucsc.edu/goldenPath/hg18/
encodeDCC/wgEncodeYaleChIPseq.

http://bioinformaticstools.mayo.edu/
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq


Figure 1 Flowchart of HiChIP. It contains five key functions (see implementation), developed by using both public tools and in-house scripts.
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The ER ChIP-Seq datasets include 18 libraries from five
cell lines (MCF-7, ZR75-1, T-47D, BT-474, and TAM-R).
Each cell line had 2–3 replicates for IP and a single control.
We downloaded the BWA aligned BAM files from National
Center for Biotechnology Information (NCBI) Gene Ex-
pression Omnibus (GEO) under accession GSE32222 [21].
The RUNX1 dataset is from an acute myeloid leukemia

patient with the t(8;21) translocation [22]. The FASTQ files
from one IP (GSM850826) and one control (GSM850828)
were downloaded from NCBI GEO. Since the control
library had only ~7.3 million pairs of reads, we downsized
the total 18.8 million to 8 million pairs for the IP library.
The H3K27me3 datasets are from cell lines GM12878,

HeLa S3 and MCF-7. GM12878 had two replicates in IP
and one control library, while the other two cell lines each
had two replicates for both IP and control. The FASTQ
sequence files for GM12878 and HeLa S3 were downloaded
from: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeBroadHistone and these for MCF-7
were from: http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeSydhHistone.
The ER chip-chip data is generated from the MCF-7 cell

line using the Affymetrix human tiling microarray. The
dataset was downloaded from: http://research4.dfci.harvard.
edu/brownlab//datasets/index.php?dir=ER_MCF7_whole_
human_genome/.

Read quality assessment
FastQC is a fast and flexible package for checking overall
sequence quality (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). For each sample, FastQC reports
the distribution of average per-base and per-read quality,
as well as the level of duplication and possible sources
of contaminations. If there is indication of abnormality
in mapping results, such as low mapping rate, user can
review read quality in the FastQC reports and try to im-
prove the mapping rate by trimming low-quality bases
or adaptor sequences in the reads.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhHistone
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhHistone
http://research4.dfci.harvard.edu/brownlab//datasets/index.php?dir=ER_MCF7_whole_human_genome/
http://research4.dfci.harvard.edu/brownlab//datasets/index.php?dir=ER_MCF7_whole_human_genome/
http://research4.dfci.harvard.edu/brownlab//datasets/index.php?dir=ER_MCF7_whole_human_genome/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Read mapping algorithms
Several mapping software packages have been developed
to map short reads to the reference genome [23]. BWA is
a robust and fast short-read aligner, and has been widely
used to map ChIP-Seq reads [24]. Novoalign (http://www.
novocraft.com/main/index.php) is slower than BWA but
is known to have higher sensitivity [23]. To decide which
one to be implemented into the pipeline, we compared
mapping rate between Novoalign and BWA on both
single-end and paired-end ChIP-Seq data, and further
assessed how the mapping difference might impact peak
calling.

Post-processing of mapped reads
After initial alignment, the mapped reads need to be fur-
ther processed in order to improve peak calling sensitivity
and specificity. The post-processing steps below address
the issues of poorly mapped reads, duplicate reads and
reads mapping to multiple locations.

Reads with low mapping quality
It is a common practice to remove reads with low map-
ping quality. For single-end reads, HiChIP uses samtools
[25] to filter out reads based on a user-defined mapping
quality score threshold (default: 20). Mapped paired-end
reads have three mapping states: both ends uniquely
mapped; one of the ends uniquely mapped; both ends
mapping to multiple locations (both have a zero
mapping quality score). Samtools does not maintain the
pairing information when performing mapping quality-
based filtering for paired-end reads. Therefore, we pro-
vide a script to remove pairs of reads that have one or
two ends below the mapping quality cutoff set by the
user. The user can choose not to apply this filtering to
the pairs of reads with the two ends mapping to multiple
genomics locations (both have a quality score of “0” set
by BWA). After the filtering, the proper pairing informa-
tion will still be maintained.

Duplicate reads
For ChIP experiments, the sequencing library is mostly
generated from a much smaller amount of DNA com-
pared to standard DNA or RNA sequencing. Duplicate
reads that map to the same genomic location and strand
are frequently present in ChIP-Seq datasets. For many
applications, duplicate reads are removed as they are
considered likely represent experimental artifacts. How-
ever, in the context of a ChIP-Seq experiment duplicate
reads can also occur during the sequencing of identical
DNA fragments in peak regions. In this case, duplicate
reads contribute to peak identification and should not
be removed.
Chen et al. reported that duplicate removal could im-

prove the specificity of MACS peak calling [5]. Since the
level of duplicate reads as artifacts versus as true signals can-
not be well defined, Picard (http://picard.sourceforge.net/)
is included in HiChIP to remove duplicate reads by de-
fault. A user can specify whether to remove duplicate
reads. To reflect the level of duplicate reads, HiChIP
uses a custom script to measure library complexity as
the ratio between number of duplicate-filtered reads
and the total number of uniquely mapped reads. As
a guideline, library complexity needs to reach ~0.8 at
a sequencing depth of 10 million mapped reads [2].
Low library complexity suggests suboptimal immu-
noprecipitation efficiency, a lack of sufficient starting
material, PCR over-amplification, or a combination of
these factors.

Reads mapping to multiple genomic locations
In ChIP-Seq analysis, reads mapping to multiple genomic
locations are often discarded [26]. Depending upon the
nature of the studied epigenetic mark, this strategy may not
be optimal in some cases. For instance, a substantial
fraction of the H3K9me3 modification occurs in regions
containing repetitive DNA sequences. In a survey of 12
H3K9me3 ChIP-Seq datasets from the ENCODE pro-
ject (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/), between 16% and 28% of the mapped
reads have multiple matches in the genome. It has also been
shown that some TF binding sites are located in regions
with poor mappability [26]. In such cases, excluding reads
mapping to multiple genomic locations will decrease the
sensitivity of peak detection in these less mappable regions.
HiChIP allows the user to specify whether to filter out

reads matching multiple locations. For single-end reads,
only uniquely mapped reads are kept by default, with the
option to include one random match for reads mapping
to multiple locations. For paired-end reads, we developed
an in-house script to filter out undesired pairs. Only
mapped pairs with appropriate insertion sizes and correct
orientation are kept. Depending on the user’s specification,
these reads are further processed to retain pairs belonging
to one of the three types: (a) only uniquely mapped pairs;
(b) pairs with at least one uniquely mapped end; or (c)
pairs with at least one uniquely mapped end, plus a ran-
dom match if both ends align to multiple locations. No
currently available public tool provides equivalent flexibil-
ity in the filtering of mapped paired-end ChIP-Seq reads.

Peak calling
There are two major ChIP-Seq binding profiles: punc-
tate binding and diffuse binding. For punctate binding
sites, peak calling identifies locations with maximum
read density. For diffuse binding sites, the main goal is
to define the boundary of individual binding domains.
Therefore, different peak callers need to be used to take
into account the differences in binding profile.

http://www.novocraft.com/main/index.php
http://www.novocraft.com/main/index.php
http://picard.sourceforge.net/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
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We used MACS to identify punctuate binding sites be-
cause of its high specificity and sensitivity [4,5,10]. MACS
scans the genome for candidate regions and merges over-
lapping regions into peaks. It captures local signal fluctu-
ation by modeling the background level as dynamic
Poisson distribution.
The consistency of identified peaks can be assessed for

punctate binding sites where replicates are available. In
HiChIP, we implemented the IDR method to measure the
consistency of peaks between replicates [10]. To prepare
for IDR analysis, HiChIP combines mapped reads from IP
replicates and those from control replicates into two
merged datasets following the procedure proposed by
Landt et al. [2]. The merged IP dataset is then split into
two equally-sized pseudoreplicates after randomization;
mapped reads from each IP are also split into two equally-
sized pseudoreplicates. The true IP replicates, pseudorepli-
cates from each IP and merged IP dataset, merged IP and
merged control datasets are then used in MACS peak
calling. The consistency of resulting peaks is analyzed
using the IDR procedure.
As suggested by Landt et al. [2], if a ChIP-Seq experi-

ment has good reproducibility, the number of consistent
peaks between true biological replicates and that be-
tween pseudoreplicates from merged IP should not differ
by more than a factor of two. Similarly, the number of
consistent peaks between pseudoreplicates from bio-
logical replicate 1 and that between pseudoreplicates
from biological replicate 2 should also be within a factor
of two. We added the IDR values (<1) estimated for
shared peaks to the 4th column of the MACS output file
with the ‘encodePeak’ extension. For replicate-specific
peaks, an arbitrary value of ‘1’ is used instead. This will
allow an easy extraction of consistent peaks at any
user-specified IDR cutoff.
To identify diffuse binding sites, HiChIP leverages a

widely used program called SICER [6]. SICER uses a
clustering approach to define the boundary of diffuse
binding sites. It identifies candidate sites of variable
lengths based on a Poisson background model and links
neighboring sites together if they are separated by gaps
not exceeding a pre-defined gap size cutoff (gap size is
600 bp by default) and the whole domain is significantly
enriched over the control [6]. SICER itself only provides
filtering of binding regions based on FDR cutoff but not
on fold change over the control. HiChIP further filters
out candidate regions if the fold change is less than two.

Putative cis-regulated genes
After peak calling, potential cis-regulated genes associ-
ated with peaks are identified, which is based on the
maximum distance of peaks to the transcriptional start
sites (TSSs) or translational end sites (TESs). By default,
this distance is set at 10 kilobases.
Data visualization
To enable visual inspection of discovered binding sites
and their association with annotated genes or other gen-
omic features, HiChIP generates files that can be visual-
ized in a genome browser like the Integrative Genomics
Viewer (IGV) [27]. CEAS needs a Wig file as an input.
Since MACS version 2 does not generate a Wig file
and SICER generates a Wig file with a relatively large
span size (200 bp), we designed a module to generate
bedGraph, Wig and tiled data format (TDF) files for
data visualization.
To generate the bedGraph file, filtered reads in BAM

format are first processed into bed format as follows.
Single-end reads are extended by the average fragment
length of the library (default 200 bp). For paired-end
reads, the HiChIP pipeline keeps the first end and extends
by the fragment length estimated from mapping positions
of the two ends, rather than by the average fragment
length of the library. Given the variability of fragment
lengths across a complex genome like human genome, the
use of actual coordinates of mapped pairs is expected to
achieve better resolution in signal visualization. The bed
file is then used to generate a bedGraph file by the
genomeCoverageBed command from BEDTools [28].
The Wig file is generated from the bedGraph file,

using an in-house script that computes the extended
read coverage at a user-defined step size (default: 20 bp).
The extended read coverage is normalized to a library size
of one million mapped reads, and converted into the TDF
format using the toTDF command from the igvtools pack-
age (http://www.broadinstitute.org/software/igv/igvtools).
The normalized coverage in TDF format and identified
peaks in bed format can be visualized by uploading
files to IGV, or by opening the provided igv_session.
xml file in IGV.

Peak and binding profile annotation module
HiChIP includes three tools to annotate peaks and binding
profiles. We use MEME [15] for identifying the TF binding
motif; CEAS (Cis-regulatory Element Annotation System)
[12] for generating binding profiles over key genomic
features and for predicting possible genes regulated
by cis-regulatory elements; and an in-house tool for
calculating enrichment in gene ontology (GO) terms
for peak-associated genes.
HiChIP selects top peaks as input for CEAS and

MEME. Peaks used by CEAS are selected based on the
pre-defined –log10 (p value) (for MACS peaks) or –log10
(FDR) cutoff (for SICER peaks). Since the detection of
binding motif(s) using MEME is dependent upon the set
of DNA sequences provided, attention needs to be paid
to the cutoff for peak selection. By default the top 10%
of peaks with the largest –log10 (p value) will be used.
The HiChIP pipeline also allows the user to select a

http://www.broadinstitute.org/software/igv/igvtools
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certain number of top peaks for motif discovery. CEAS
uses normalized Wig files and peak files (bed format) as
inputs, and performs binomial test for enrichment of
binding over genomic regions such as gene promoters,
gene bodies, exons and introns.
An in-house method is implemented to identify GO

terms that are enriched in peak-associated genes. This
method uses a similar approach as GREAT [11] that
could not be integrated into our workflow, since the
main functionality of GREAT is only available through
web services. The lists of human and mouse genes
with annotated GO terms were downloaded from the
GREAT website (http://bejerano.stanford.edu/help/
display/GREAT/Genes). For each gene annotated with
at least one ontology term, the HiChIP pipeline first
defines its regulatory domain as the region from
upstream (U + UE) bp to downstream (D + DE) bp
around the TSS, where the region from upstream U bp
(default 5000) to downstream D bp (default 1000) rep-
resents the proximal regulatory domain, and UE and
DE denote the maximum upstream and downstream
extension, respectively. Binomial tests are then per-
formed to identify a list of GO terms that are enriched
in genes associated with peaks.

Results and discussion
Performance and output summary
We tested the pipeline performance on a Linux platform
with an 8-core GenuineIntel CPU at 2.66 GHz. For a
typical ChIP-Seq dataset containing a single IP and
control library, each with 20–50 million pairs of reads,
HiChIP takes 6–14 hours to complete at ~5-8 Gb mem-
ory usage.
The summary report provides links to the FastQC

output files and an igv_session.xml file for data
visualization. It also contains an html document that
covers sample information, mapping summary, library
complexity (Additional file 1: Table S1), peak summary,
as well as histograms showing read pileup distribution
within peaks. Depending on the user’s specification for
peak calling, the pipeline will generate a list of peaks
from MACS, MACS combined with IDR analysis, or
SICER.
If IDR function is executed, the HiChIP pipeline will

generate summary tables and a plot showing the number
of reproducible peaks at different IDR cutoffs (Additional
file 1: Table S2 and Additional file 1: Table S3; Figure 2).
User can also get a conservative list and an optimal list of
reproducible peaks at a given IDR cutoff (default 0.01).
A conservative list represents the number of peaks
shared between biological replicates, and an optimal list
represents the number of shared peaks either between
biological replicates or between pseudoreplicates from
merged IP, whichever has more peaks.
To help with peak interpretation, the HiChIP pipeline
generates a table that reports the closest genes
(peak_vs_gene.xls). In addition, CEAS provides a report
summarizing the percentage of peaks located in different
regions such as promoters, gene upstream and down-
stream, UTRs, and provides plots showing binding pro-
files over selected genomic features (Additional file 2).
MEME creates an html file that contains the most sig-
nificant motif(s), and a text file with names of individual
sequences from peak regions that contain a motif. Finally,
the internally-developed GO enrichment test identifies
the most significant terms enriched for peak-associated
genes (Additional file 1: Table S4). We have included a
word document to describe individual output files
(HiCHIP_workflow_summary.doc).

Comparison of BWA and Novoalign mapping
Novoalign represents one of the most accurate short-
read aligners but is much slower than BWA [23]. Using
two public ChIP-Seq datasets from TFs NFKB and
RUNX1, we compared BWA with Novoalign on the
mapping rate and its possible impact on MACS peak
calling. For the 28-bp single-end NFKB dataset, BWA
generated 3.2-4.8% more uniquely mapped reads than
Novoalign for six of the eight libraries (Additional file 3).
In two of the four IP libraries, more peaks containing
the NFKB motif were identified from BWA-mapped
reads (Table 1).
For the 45-bp paired-end RUNX1 dataset, Novoalign

mapped about 7% more reads uniquely to the genome
than BWA (Table 2). This resulted in the identification
of 224 unique peaks only from Novoalign-mapped reads,
versus 103 unique peaks only from BWA-mapped reads
(Table 3). However, the number of unique peaks with
the RUNX1 binding motif was almost identical: 86 peaks
for Novoalign-mapped read and 85 for BWA-mapped
reads. Since BWA performs better than Novoalign on
mapping single-end reads, similarly on mapping paired-
end reads and BWA is >10x faster, HiChIP uses BWA as
the aligner.

Comparison of ChIP-Seq and chip-chip peaks
To check how many ChIP-Seq peaks can be found in
chip-chip experiments, we compared ER peaks from
three ChIP-Seq libraries in MCF-7 [21] to a list of 4,621
chip-chip peaks generated from MCF-7 using the Affy-
metrix human tiling microarrays [29]. Of the 4,621 chip-
chip peaks, 4,373 (94.6%) occurred in all three ChIP-Seq
replicates and 132 (2.9%) occurred in only one or two
replicates. This left 117 chip-chip peaks not overlapped
by any ChIP-Seq peaks (Table 4). To examine whether
the 117 peaks are chip-chip specific, or ChIP-Seq peaks
but simply missed by the selected three ChIP-Seq librar-
ies, we compiled a total of 120,158 ER peaks from an

http://bejerano.stanford.edu/help/display/GREAT/Genes
http://bejerano.stanford.edu/help/display/GREAT/Genes


Figure 2 Irreproducible discovery rate between replicates. Left panel: number of significant peaks versus number of shared peaks called from
both replicates. Right panel: number of significant peaks at different IDR cutoffs. 1: between biological replicates; 2: between pseudoreplicates from
biological replicate 1, generated by randomly splitting the mapped reads into two equal-sized partitions; 3: between pseudoreplicates from biological
replicate 2; 4: between pseudoreplicates from mapped reads merged from the two biological replicates. MACS called peaks at a p value cutoff of 1e-3,
instead of the default 1e-5.
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additional 10 ChIP-Seq libraries [21]. Only 15 of the 117
chip-chip peaks showed overlap with peaks from these
10 libraries, suggesting that the majority of the 117
peaks are chip-chip specific or false positives.

The impact of duplicate removal on TF peak calling
To assess how duplicate removal might impact peak call-
ing, we compared ChIP-Seq peaks identified in the three
ER libraries before and after duplicate removal [21]. Be-
tween 238 and 1,689 peaks were identified only from reads
before duplicate removal, versus 3,348 to 7,206 peaks only
from reads after duplicate removal (Table 5). We hypothe-
sized that duplicate reads add noise to the data and dupli-
cate filtered reads are more likely associated with ER
binding sites. To validate this hypothesis, we first used
MEME to identify ER binding motif from the 100-bp
sequences centered on peaks. Between 1,121 and 2,552
(26–35.4%) of the unique peaks identified from duplicate-
filtered reads contained ER binding motif, versus 35–670
unique peaks from reads without duplicate removal
(Table 5). Also, 57.5-81.8% of the unique peaks called after
Table 1 Number of NFKB peaks from BWA and Novoalign ma

Type GM12878_NFKB_IP_rep1 GM12878_NFKB_

A B A

Overlapped peaks 1512 1513 9942

Unique peaks w/ motif 176 18 409

Unique peaks w/o motif 134 28 590

Total peaks 1822 1559 10941

Peaks were identified using MACS (−f BAM -g hs –keep-dup 1 -q 0.01) and motif fin
-maxsize 999999999 -revcomp). Shown were the number of overlapped peaks betw
aligner-specific peaks with or without NFKB binding motif. ChIP-Seq from each cell
duplicate removal were shared by the 120,158 ER peaks
from the other 10 libraries [21]. These findings indicate
that duplicate removal improves the sensitivity of MACS
peak calling for ER ChIP-Seq data and is a critical step in
the HiChIP pipeline [5].
The two approaches differed only in the filtering of

duplicates, suggesting that the identification of unique
peaks in the three libraries is due to this filtering. To
support this inference, we first checked the level of
duplication in the three libraries. Indeed, library IP_1
(GSM798423) that had the most extra peaks (7,206,
Table 5) after duplicate removal contained up to 24%
duplicates, versus only 7% in IP_2 (GSM798424) and
13% in IP_3 (GSM798425, based on Table 5). To further
illustrate the distribution of duplicates from peak versus
that from non-peak regions, we extended each peak by
100 bp at both sides and defined the remaining regions
as non-peak regions. These non-peak regions showed
the basal level of duplication, which was 14.5% in IP_1,
and <6% in the other two libraries (Table 6; Figure 3).
Duplicates were heavily biased toward peak regions, as
pped reads

IP_rep2 GM12891_NFKB_IP_rep1 GM12891_NFKB_IP_rep2

B A B A B

9960 2257 2264 6082 6082

90 88 19 36 30

249 442 74 21 7

10299 2787 2357 6139 6119

ding by MEME suite (−dna -mod zoops -nmotifs 5 -minw 10 -maxw 20
een BWA mapped reads (A) and Novoalign mapped reads (B), and number of
line had two biological replicates (rep1 and rep2).



Table 2 BWA and Novoalign mapping of paired-end reads

Library Type Total
(million)

BWA Novoalign

A B C A B C

GSM850526 IP 8 86 5.09 8.91 92.71 4.75 2.54

GSM850528 Control 7.29 82.32 7.09 10.59 89.68 6.62 3.7

The 45-bp paired-end ChIP-Seq data were from TF RUNX1. Raw reads were
mapped to hg19 by both BWA and Novoalign. BWA parameters are: bwa aln -o
1 -l 32 -t 4 -k 2 and bwa sampe -n 10 -a 500 -o 10000 -N 10 -s. Novoalign
parameters are: novoalign -i PE 250,30 -r Random –hdrhd off -c 1 -d reference.
nix -F STDFQ -f end1.fastq end2.fastq -o SAM, where reference.nix is the
reference sequence index file. A: percentage of pairs with at least one uniquely
mapped end; B: percentage of pairs with multiple mapping locations; C: others,
including unmapped pairs, pairs with only one mapped end and
improperly mapped pairs with small insertion size or wrong orientation.

Table 4 ER ChIP-Seq and chip-chip peaks in MCF-7 cell line

ChIP-Seq Chip-chip

Library Total
peaks

Total
peaks

Overlapped
peaks

Unique
peaks

Overlap
(%)

IP_1 69390 4621 4492 129 97.2

IP_2 46688 4621 4391 230 95.0

IP_3 57657 4621 4450 171 96.3

A list of 4,621 highly confident (p value < =1e-5) chip-chip peaks was extracted from
the file “ER_binding_p-value.xls” downloaded from http://research4.dfci.harvard.edu/
brownlab//datasets/index.php?dir=ER_MCF7_whole_human_genome/. ChIP-Seq
peaks were identified by MACS at the q value cutoff of 0.01. Both ChIP-Seq and
chip-chip analysis used hg18 reference sequence.

Table 5 Number of ER peaks from MCF-7 cell line

Type IP_1 vs.
control

IP_2 vs.
control

IP_3 vs.
control

A B A B A B
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compared to non-peak regions. In all three libraries,
peak regions together covered <1% of the mappable
genome but harbored >60% of the duplicates (Table 6).
To test whether the abundance of duplicates is corre-

lated with the confidence level of peaks, for each library
we split the p-value-sorted peaks into 10 equal-sized
groups, with peaks in the first group having the lowest p
values. The top 10% of the peaks (in the first group) had
a duplication rate between 42.8% to 57%, containing
roughly half of the total duplicates (Table 6; Figure 3).
In contrast, the bottom 70% of the peaks (groups 4 to
10) had much reduced duplication rate (Figure 3). Our
analysis suggested that, while filtering of duplicates con-
tributes to the identification of extra peaks, it reduces
the signal intensity to a much greater extent for the
most significant peaks. The latter will impact the test
for differential binding between different IPs.
We further used the TF RUNX1 dataset to investigate

how duplicate removal might impact peak calling from
paired-end data. The RUNX1 IP had up to 67%
duplicates identified by the Picard MarkDuplicates
command. We used MACS to call 931 peaks (Table 3)
from duplicate-filtered reads and 16 times more peaks
(14,916) from reads prior to duplicate removal. Of the
14,013 peaks not overlapping the 931 peaks, only 73
(0.5%) contained the RUNX1 binding motif. This sug-
gests that the vast majority of the 14,013 unique peaks
from reads without duplicate removal represent false
positives. This result, together with the ER ChIP-Seq
Table 3 RUNX1 peaks from BWA and Novoalign
mapped reads

Type BWA Novoalign

Overlapped peaks 818 809

Unique peaks w/ motif 85 86

Unique peaks w/o motif 28 138

Total peaks 931 1033

Peaks were called by MACS (−f BAM -g hs –keep-dup all -q 0.01), after removal
of duplicates by Picard. Motif was identified by MEME suite.
results, supports duplicate removal when analyzing TF
ChIP-Seq data.

The impact of duplicate removal on H3K27me3 peak calling
We next explored whether duplicate removal improves
peak calling for ChIP-Seq data showing broad binding
profile. We analyzed H3K27me3 histone modification
dataset. H3K27me3 is catalyzed by the polycomb repressive
complex 2 (PRC2) and largely associated with transcription
repression. FASTQ files for six single-end H3K27me3 ChIP
libraries and five control libraries were downloaded from
the ENCODE project, mapped by BWA, and duplicates
filtered by Picard (Additional file 1: Table S5, also see
Duplicate reads). These libraries include 11.2-34.6 million
uniquely mapped reads with 2-8% duplicates. We identi-
fied 23,918-47,260 binding sites from duplicate-filtered
reads and 22,869-47,611 binding sites from reads without
duplicate filtering (Figure 4). For each library, the lists of
peaks with and without duplicate removal overlapped by
89-98%, with roughly the same number of peaks unique
to each list. We observed that the unique peaks had much
higher FDR than the peaks shared by the two lists (Figure 5),
suggesting that these unique peaks represent less confident
sites with low H3K27me3 occupancies.
Unique reads (million) 16.9 22.27 21.08 22.66 25.36 29.15

Overlapped peaks 62184 62407 41455 41551 54309 54354

Unique peaks 7206 1689 5233 238 3348 857

Unique peaks w/ motif 2552 670 1359 35 1121 362

Unique peaks w/o motif 4654 1019 3874 203 2227 495

Total peaks 69390 64096 46688 41789 57657 55211

Peaks were called by MACS (−f BAM -g hs –keep-dup all -q 0.01) from
BWA-mapped reads (to hg18). Motif was identified using MEME as described
above. A: number of ER peaks identified by this pipeline, using duplicate-filtered
reads (by Picard); B: number of peaks from reads without duplicate removal. IP_1
to IP_3 are three replicates, IP_1: GSM798423, IP_2: GSM798424, IP_3:
GSM798425; control (input): GSM798440.

http://research4.dfci.harvard.edu/brownlab//datasets/index.php?dir=ER_MCF7_whole_human_genome/
http://research4.dfci.harvard.edu/brownlab//datasets/index.php?dir=ER_MCF7_whole_human_genome/


Table 6 Duplicate level in three ER ChIP-Seq libraries

Library Type* Size (Mb) Non-duplicates (M) Duplicates (M) Sum (M) Duplicates (%) Portion (%)**

IP_1 All peaks 17.08 4.34 3.24 7.58 42.73 60.23

IP_1 Top peaks 3.33 1.92 2.54 4.46 57.03 47.3

IP_1 Non-peak 3049.89 12.27 2.08 14.35 14.51 38.71

IP_1 Total 3080.44 16.9 5.38 22.27 24.13 100

IP_2 All peaks 12.54 2.94 1.1 4.04 27.3 69.79

IP_2 Top peaks 2.31 1.2 0.9 2.11 42.84 57.12

IP_2 Non-peak 3058.77 17.9 0.47 18.36 2.54 29.55

IP_2 Total 3080.44 21.08 1.58 22.66 6.98 100

IP_3 All peaks 15.94 4.87 2.69 7.56 35.53 70.87

IP_3 Top peaks 3.02 1.97 2.05 4.02 51.04 54.1

IP_3 Non-peak 3053.24 20.11 1.08 21.19 5.09 28.46

IP_3 Total 3080.44 25.36 3.79 29.15 13.01 100

*The non-peak regions are these after excluding regions from −100 bp to +100 bp of all peaks; the top peaks refer to the top 10% of the peaks with the smallest
p values.
**Percentage over total duplicates in the library.
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To investigate whether duplicates are enriched in highly
confident peaks as previously seen in the ER ChIP-Seq
dataset (Figure 3), we split peaks into 10 groups based on
ascending order of FDR and checked the level of duplicates
per group (Figure 6). Strikingly, the H3K27me3 ChIP-Seq
data had comparable levels of duplicates between peak and
Figure 3 Peak p value versus level of duplicate reads in three
ER ChIP-Seq libraries. Peaks were ranked based on –log10 (p value)
in descending order and split into 10 groups (x-axis) of equal size.
The y-axis represents the level of duplicate reads. The horizontal
dashed lines indicate the level of duplication from non-peak regions,
which are regions not covered by peaks +/−100 bp.

Figure 4 Summary of peak calling for H3K27me3 ChIP-Seq.
H3K27me3 ChIP-Seq data were downloaded from the ENCODE
project (see implementation) and duplicates were filtered out by
Picard. Each cell line has two biological replicates (r1 and r2). SICER
software was used to call peaks using both duplicate-filtered reads
and reads without duplicate removal.



Figure 5 Box plot of FDR from shared and unique H3K27me3 peaks. Peaks were called from duplicate-filtered reads and also from reads
without duplicate filtering. Peaks shared between the two methods were randomly sampled to generate the same number of peaks as the
unique peaks and used in the plot. The y-axis represents –log10 (FDR). The two biological replicates are indicated by r1 and r2, respectively.

Figure 6 Peak FDR versus level of duplicate reads in six
H3K27me3 ChIP-Seq libraries. Peaks were ranked based on –log10
(FDR) in descending order and split into 10 groups (x-axis) of equal
size. The y-axis represents the level of duplicate reads. The horizontal
dashed lines indicate the level of duplication from non-peak regions,
as defined in Figure 3. The two biological replicates are indicated by
r1 and r2, respectively.
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non-peak regions; the top peaks generally did not show
enrichment of duplicates (Figure 6). Unlike in the TF
ChIP-Seq data showing narrow binding sites, duplicates
are not particularly enriched in broad peaks called in the
H3K27me3 dataset. These results indicate that duplicate
removal appears to have less impact on peak calling for
diffuse binding profile.

IDR analysis
We tested IDR analysis using three ER ChIP-Seq
libraries, which include two biological replicates for IP
(IP_1 and IP_2) and a single control [21] (Tables 4 and 5).
To call both significant and insignificant peaks in order to
identify an appropriate IDR cutoff, we used a less stringent
p value cutoff (1e-3) in MACS peak calling. When plotting
the number of reproducible peaks over different IDR values,
a clear transition was observed from highly reproducible
peaks to poorly reproducible peaks (Figure 2). At the IDR
cutoff of 0.01 (default), there were 22,382 and 14,286
consistent peaks between the two pseudoreplicates of IP_1
and IP_2, respectively, with a ratio of 1.6 (22382/14286). We
identified 26,971 consistent peaks between two pseudorepli-
cates from merged IP and 21,224 consistent peaks between
replicates IP_1 and IP_2, with a ratio of 1.3. In both cases,
the ratio is less than 2, indicating good reproducibility be-
tween IP_1 and IP_2 (Figure 2; Additional file 1: Table S3).
If two replicates show poor reproducibility (ratio >2), then it
is necessary to generate a third replicate to validate the
reliability of identified peaks.

Conclusions
HiChIP is a comprehensive ChIP-Seq data analysis pipeline
with more than 10 functions (Figure 1). It performs read
mapping, peak calling for punctate and diffuse binding
sites and downstream functional analysis. To enhance
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the quality of peak calling, HiChIP includes options for
filtering out less reliably mapped reads to reduce noise.
It also includes IDR analysis to identify a list of repro-
ducible peaks between replicates. It provides a consist-
ent and configurable method to assist the user to run
this pipeline.
By applying HiChIP to publicly available single-end

ER ChIP-Seq datasets we found that filtering of dupli-
cates increases the sensitivity of MACS peak calling
but heavily underestimates enrichment levels for the
most significant peaks. For the paired-end RUNX1
ChIP-Seq data, the vast majority of the peaks called
only from reads without duplicate removal represent
false positives. These results suggest the necessity of
enabling duplicate filtering for TF peak calling and using all
mapped reads for estimating enrichment level and identify-
ing differential binding sites. In contrast, duplicate filtering
has less impact on peak calling from marks showing broad
binding profile like H3K27me3.
Although HiChIP has combined several methods to

enhance the preprocessing and annotation of ChIP-
Seq data, several challenges remain that need to be
addressed in the future. For example, it is still difficult
to define the boundary of diffuse binding sites at high
resolution and to identify the direct target genes of TF
binding sites and histone modifications. As new or im-
proved methods become available, the modular design
of HiChIP will enable their smooth integration into
the existing pipeline.

Availability and requirements
Project name: HiChIP: A high-throughput pipeline for
integrative analysis of ChIP-Seq data
Project home page: http://bioinformaticstools.mayo.edu/
Operating system: 64-bit Linux (The program has been
tested on Centos)
Programming language: Shell, Perl and R
Other requirements:
JAVA version 1.6.0_17 or higher
Perl version 5.10.0 or higher
Python version 2.7 or higher
Python-dev
Cython and Numpy python modules
R version 2.14.0 or higher
FastQC version 0.10 or higher
BWA version 0.5.9 or higher
MACS version 2.0.10 or higher
SICER version 1.1
IGVTools version 2.3.16
Samtools version 0.1.19
MEME version 4.8.1
CEAS version 1.0.2
Picard version 1.97
BEDTools version 2.17.0
Additional files

Additional file 1: Table S1. Complexity of NFKB ChIP-Seq IP and
control libraries. Table S2. Number of consistent peaks at different IDR
values. ER ChIP-Seq datasets from MCF-7 cell line were used. Table S3.
Summary of IDR analysis of ER ChIP-Seq data. Table S4. A snapshot of
output from GO enrichment analysis. ER ChIP-Seq library IP_1
(GSM798423, MCF-7 cell line) was used. Table S5. Duplicate level in six
H3K27me3 ChIP-Seq libraries.

Additional file 2: Snapshot of output from CEAS analysis. Reads
mapping to chromosome 1 from libraries IP_1 and input were used [21].
Top panel: the distribution of peaks in 11 genomic features; bottom
panel: average binding profiles around TSS +/−2 kb for all the RefGene
and for two user-provided gene lists.

Additional file 3: BWA versus Novoalign in mapping single-end
reads. The 28-bp ChIP-Seq reads from eight libraries of TF NFKB were
downloaded from UCSC (http://hgdownload.cse.ucsc.edu/goldenPath/
hg18/encodeDCC/wgEncodeYaleChIPseq/). Reads were mapped to the
human genome reference hg19 using BWA and Novoalign. BWA
parameters are: bwa aln -o 1 -l 32 -t 4 -k 2 and bwa samse -n 10 -f;
novoalign parameters are: Novoalign -r Random –hdrhd off -c 1 -d
reference.nix -F STDFQ -f end1.fastq -o SAM. BWA mapping: libraries 1, 3,
5, 7, 9, 11, 13, and 15; Novoalign mapping: libraries 2, 4, 6, 8, 10, 12, 14,
and 16. Numbers in parentheses represented number (in million) of total
raw reads and uniquely mapped reads, respectively. For six of the eight
libraries, BWA increased uniquely mapped reads by 3.2-4.8%. 1:
GM12878_Input_IgG_rep1 (27.42, 17.29) 2: GM12878_Input_IgG_rep1
(27.42, 16.24). 3: GM12878_Input_IgG_rep2 (18.33, 10.96) 4:
GM12878_Input_IgG_rep2 (18.33, 10.23). 5: GM12878_NFKB_IP_rep1
(25.17, 18.93) 6: GM12878_NFKB_IP_rep1 (25.17, 18.13). 7:
GM12878_NFKB_IP_rep2 (17.2, 13.24) 8: GM12878_NFKB_IP_rep2
(17.2, 12.63). 9: GM12891_Input_IgG_rep1 (17.05, 8.45) 10: GM12891_Input_
IgG_rep1 (17.05, 7.63). 11: GM12891_Input_IgG_rep2 (12.35, 6.24) 12:
GM12891_Input_IgG_rep2 (12.35, 6.26). 13: GM12891_NFKB_IP_rep1 (29.25,
13.9) 14: GM12891_NFKB_IP_rep1 (29.25, 12.66). 15: GM12891_NFKB_IP_rep2
(30.63, 16.05) 16: GM12891_NFKB_IP_rep2 (30.63, 16.09).
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